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Universal Conductance Fluctuation 
in Two-Dimensional Topological 
Insulators
Duk-Hyun Choe & K. J. Chang

Despite considerable interest in two-dimensional (2D) topological insulators (TIs), a fundamental 
question still remains open how mesoscopic conductance fluctuations in 2D TIs are affected by spin-
orbit interaction (SOI). Here, we investigate the effect of SOI on the universal conductance 
fluctuation (UCF) in disordered 2D TIs. Although 2D TI exhibits UCF like any metallic systems, the 
amplitude of these fluctuations is distinguished from that of conventional spin-orbit coupled 2D 
materials. Especially, in 2D systems with mirror symmetry, spin-flip scattering is forbidden even in 
the presence of strong intrinsic SOI, hence increasing the amplitude of the UCF by a factor of 2  
compared with extrinsic SOI that breaks mirror symmetry. We propose an easy way to 
experimentally observe the existence of such spin-flip scattering in 2D materials. Our findings provide 
a key to understanding the emergence of a new universal behavior in 2D TIs.

Quantum interference of electrons in mesoscopic systems leads to the striking transport phenomena, 
the so-called universal conductance fluctuations (UCF)1. It predicts that disordered mesoscopic systems 
with sizes smaller than the phase coherent length exhibit sample-to-sample conductance fluctuations in 
the order of e2/h, independent of the details of the system such as material properties, disorder strength, 
and sample size. The UCF only depends the dimensionality and universality class of the system, as can 
be understood in the framework of the random matrix theory2,3. Time reversal symmetry (TRS) and 
spin rotational symmetry (SRS) play an important role in determining the universality class. There exist 
three types of universality classes: circular orthogonal ensemble (β =  1), where TRS and SRS are present; 
circular unitary ensemble (β =  2), where TRS is broken; circular symplectic ensemble (β =  4), where SRS 
is broken and TRS is preserved.

Recent discoveries of novel two-dimensional (2D) materials4 have raised several interesting issues in 
the quantum interference effects such as weak (anti)localization5,6 and UCF7–13. In particular, graphene 
exhibits unusual UCF behavior. When disorder is governed by long-range potentials, the inter-valley 
scattering of Dirac fermions is suppressed in graphene, hence the amplitude of the UCF is increased by 
a factor of 2 compared with conventional metals7–9. Moreover, it was suggested that the finite size effects 
in graphene can lead to a systematic deviation from the universal behavior10. More importantly, in the 
presence of strong spin-orbit interaction (SOI) in graphene, Qiao and coworkers11 have shown that the 
universal spin Hall conductance fluctuation, an analogue of the UCF in spin Hall conductance12,13, does 
not follow the conventional value for the circular symplectic ensemble of β =  4. Although it was argued 
that a new type of universality class exists, its origin is not clearly resolved.

Strong SOIs in 2D systems, on the other hand, give rise to a wide range of intriguing physical phe-
nomena such as spin-valley coupling14,15 and quantum spin Hall effect16–18. Quantum spin Hall insulators, 
i.e., 2D topological insulators (TIs)19–24, have bulk insulating gaps as well as conducting edge states that 
are topologically protected against backscattering by TRS. Kane and Mele have derived the formula for 
SOI in graphene16 by taking into account allowed symmetries in the lattice, where the intrinsic SOI opens 
a nontrivial energy gap near the Dirac point. Although the SOI in pristine graphene is weak25, a number 
of strategies have been proposed to enhance the coupling strength, for instance, by hydrogenation26–28, 
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adsorption of transition metal adatoms29–32, and proximity-induced effects33–38. Very recently, it was pre-
dicted that strong intrinsic SOI in 2D transition metal dichalcogenides leads to a quantum spin Hall 
phase24, and a SOI-induced band gap opening was experimentally observed in MoTe2 with a distorted 
octahedral structure39. Due to the growing interest in 2D TIs, the role of SOI in the band topology has 
become quite well established. However, a fundamental question that has remained open is how meso-
scopic conductance fluctuations in 2D TIs are affected by SOI. Characterizing the nature of mesoscopic 
conductance fluctuation is important for understanding quantum interference of the electrons in 2D TIs.

Here, we report a comprehensive analysis of the conductance fluctuation behavior in 2D TIs in the 
presence of short-range disorders. As a representative example, we consider the graphene TI system 
where intrinsic and extrinsic SOIs are described by the Kane-Mele (KM) and Rashba models, respec-
tively. We demonstrate that, although graphene TI shows universal conductance fluctuations like any 
metallic systems, the amplitude of these fluctuations is distinguished from that of conventional spin-orbit 
coupled 2D materials. Thereby, we establish a theoretical framework for interpreting the peculiar con-
ductance fluctuations in 2D TIs by clarifying the role of underlying symmetries of the system. We further 
elucidate the combined effect of SOI and symmetry breaking magnetic field on the UCF.

Methods
Disordered graphene with SOI is described by a tight-binding (TB) Hamiltonian, H =  Hg +  HSO +  Hdisorder. 
The first term represents the usual nearest-neighbor interaction, H t e c cg i j ij

i
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,
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†) 
is the annihilation (creation) operator on the ith lattice site. The effect of TRS breaking by an external 
magnetic field B is taken into account by introducing the magnetic flux, 
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are described by KM and Rashba terms, respectively, as follows16,17:
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where 〈 …〉  and 〈 〈 …〉 〉  denote the nearest-neighbor and next-nearest-neighbor interactions, respectively, 
and sz is a Pauli matrix representing the electron spin.

Short-range disorders are introduced by adding random on-site energies or adatoms,
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Here iε  is randomly chosen in the range ( −  W/2 <  εi <  W/2), with the disorder strength W, dn (dn
†) is 

the annihilation (creation) operator on the nth adatom site, and pn is the host site bonded to the adatom. 
The hopping integrals are determined by fitting the band structure to that of density functional calcula-
tions40,41, such as tij =  2.6 between the C atoms in pristine graphene, tij =  3.2 between the edge C atoms, 
and γad =  5.72 between the host C atom and adatom in the case of H adatoms with concentrations nad. 
Other type of adatoms should give qualitatively similar results except for the breaking of electron-hole 
symmetry42. The adatom-induced SOI26,28 is not included.

For a device model in which a disordered graphene nanoribbon (GNR) of 100 nm length is sand-
wiched between two semi-infinite GNR electrodes, the two-terminal conductance is calculated by using 
the Landauer-Büttiker formula, G =  (e2/h)Tr(tt†), where t is the transmission matrix. To examine the 
sample-to-sample fluctuation behavior in the conductance of the system, we analyze the data statisti-
cally. Individual data points are obtained by taking the ensemble average over more than 2,000 different 
configurations.

Results and Discussion
We first discuss the effect of the intrinsic SOI (HKM) on the electronic structure of pristine systems in 
Fig.  1. To identify the one-dimensional edge state, we consider two armchair graphene nanoribbons 
(N-aGNRs) of about 10 nm width, where N is the number of C-C dimer lines across the ribbon. For 
83-aGNR and 82-aGNR, the bulk band gaps are 0.04 and 0.15 eV, respectively. In the strong coupling 
regime (λKM =  0.1, λR =  0), the band gaps of both aGNRs increase to 0.95 eV due to the SOI, and the 
topological edge states appear in the gaps [Fig. 1(a,b)]. When periodic boundary conditions (PBC) are 
imposed along the transverse direction in 82-aGNR, the edge states are removed whereas the bulk gap 
remains unchanged [Fig. 1(c)].

To understand the influence of disorder on the transport properties of graphene TI, we plot the aver-
aged conductance of disordered GNRs as a function of channel energy for λKM =  0.1 in Fig.  2(a). For 
moderate strengths of Anderson disorder (W =  1.5, 2.0), the edge states (E >  −  0.5 eV) are unaffected by 
the disorder and hence the electron transport is ballistic, indicating the robustness of the topological edge 
states22. In the case of adatom disorder, however, the edge states become slightly damaged close to the 
neutrality point due to the formation of strongly localized adatom defect states40. Despite this, most of 
the states are still in the (quasi-)ballistic transport regime. If we remove the edge states by imposing PBC, 
the conductance value drops to zero [dotted lines in Fig.  2(a)]. On the other hand, for the bulk states 
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Figure 1.  Band structures of graphene TIs. Band structures of (a) 83-aGNR, (b) 82-aGNR, and (c) 82-
aGNR with periodic boundary conditions in the presence of intrinsic spin-orbit coupling (λKM =  0.1). The 
bulk and edge states are illustrated as black regions and blue lines, respectively. For comparison, the bulks 
states of pristine aGNRs for λKM =  0 are illustrated as gray shaded regions.

Figure 2.  Electronic transport characteristics. (a) Averaged conductance and (b) its deviation values 
are plotted as a function of channel energy for 83-aGNRs of 100 nm length in the presence of Anderson 
and adatom disorders. For comparison, the results are also given for 82-aGNRs with periodic boundary 
conditions (empty symbols). The lines in (b) represent the deviation values predicted by the UCF theory for 
circular orthogonal ensembles (β =  1), circular unitary ensembles (β =  2), and circular symplectic ensembles 
(β =  4) in quasi-one-dimensional systems1,2.
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(E <  − 0.5 eV) in the diffusive regime, conductance is suppressed and exhibits large sample-to-sample 
fluctuations depending on the disorder strength.

Graphene-based TI, like any metallic or semiconducting systems, exhibits universal conductance fluc-
tuations when the electron transport is diffusive. However, the amplitude of these fluctuations is distin-
guished from that of previously studied spin-orbit coupled 2D systems. Figure 2(b) shows the deviation 
of conductance as a function of channel energy in 83-aGNR and 82-aGNR. Since the edge states are 
robust against the disorder, conductance fluctuations are mostly zero for energies above –0.5 eV. The 
conductance fluctuation in the case of adatom disorder is associated with the hopping between defect 
states40. In the diffusive transport regime below –0.5 eV, regardless of the channel energy, disorder type, 
and disorder strength, the conductance fluctuation exhibits the universal behavior with the UCF value 
of 0.52 e2/h. Note that this UCF value corresponds to that estimated from the circular unitary ensemble 
(β =  2), and differs from the estimated value of 0.365 e2/h for the Rashba SOI (β =  4)1,43,44, although HKM 
breaks the SRS and preserves the TRS. Such a discrepancy is not originated from the topological edge 
states because the UCF is independent of the PBC, as shown in Fig. 2(b).

The distinct UCF value in the KM model is attributed to the particular form of HKM, which lacks the 
spin-flip term. HKM consists of two Haldane Hamiltonians (HHaldane) for up and down spins. In the 
Haldane model45,46, periodic magnetic flux densities are introduced, while the total flux is zero within 
the unit cell. The Haldane model is categorized as the circular unitary ensemble (β =  2) since the phase 
acquired by the next-nearest-neighbor hopping term breaks the TRS. The general form of HHaldane is 
H i c cd dHaldane H i j in jn

z
i j( )λ= − ∑ ×,

ˆ ˆ † , where λH is the coupling constant. Therefore, including sz and 
substituting λH for λKM in HHaldane exactly result in the KM Hamiltonian [Eq. (1)]. Due to the sz term, 
HKM preserves the TRS and its system belongs to the circular symplectic ensemble (β =  4). That is to say, 
the combination of two β =  2 ensembles results in the β =  4 ensemble. Since HKM is just a direct sum of 
spin-up and spin-down Haldane terms with each component having the opposite sign, 
H H HKM Haldane Haldane= ⊕+ − , the conductance values obtained by HKM are identical to those of HHaldane. 
As a result, the intrinsic SOI in graphene TI (HKM) leads to the exactly the same UCF value as that 
derived from HHaldane, which is larger by a factor of 2  compared with the extrinsic SOI case (HR) 
[Fig. 3(b)].

Here, we emphasize that our analysis for the graphene KM model can be extended to generic 2D 
systems. The microscopic SOI is described by the Hamiltonian of HSO~s ⋅  (∇ V ×  p). When (1) electrons 
are confined in 2D systems (p p pi jx y+= ˆ ˆ) and (2) the mirror symmetry with respect to the 2D plane 
is present (∂V/∂z =  0), the allowed interaction is given by sz(∂V/∂xpy −  ∂V/∂ypx). Due to the sz-related 
term, the spin-flip scattering does not take place, indicating that spin-up and spin-down states are well 
separated. Furthermore, spin-up and spin-down components are identical except for the sign as in the 
KM model [Eq. (1)]. These results imply that, when 2D materials have both the intrinsic SOI and the 
mirror symmetry about the plane, the same UCF behavior as that of the KM model should be observed. 
A more fundamental origin of such a distinct UCF value in graphene-based TI, therefore, is the perfect 
2D nature of graphene and the intrinsic SOI that preserves the mirror symmetry.

We compare the effects of an external magnetic field B, HHaldane, HKM, and HR on the UCF behavior 
in Fig. 3. When only an external magnetic field is applied perpendicular to the 2D plane, the universal-
ity class changes from a circular orthogonal ensemble (β =  1) to a circular unitary ensemble (β =  2). The 
gradual evolution of the UCF value from 0.72 to 0.52 e2/h with increasing of B is independent of the type 
and strength of disorders [Fig. 3(a)]. The reduced UCF value by a factor of 2  is attributed to the elim-
ination of the particle-particle channels (so-called Cooperons), according to the diagrammatic perturba-
tion theory1.

For B =  0, all the UCF values converge to 0.52 e2/h for the KM and Haldane interactions [Fig. 3(b)], 
following the trend of the B field only. The calculated conductance and its deviation values are exactly 
the same for the KM and Haldane interactions, due to the underlying symmetries of the Hamiltonians 
as discussed earlier. It is clear again that the existence of the topological edge states does not affect the 
UCF behavior [dashed lines in Fig. 3(b)]. On the other hand, when the Rashba SOI involving spin-flip 
scattering is considered, where the SOI breaks both SRS and the mirror symmetry, the UCF value is 
reduced by a factor of 2 as expected1,2,43,44.

To illustrate the difference between the Haldane and KM interactions, we now turn on the magnetic 
field in such systems. For a magnetic field of B =  50 T, the UCF values are plotted as a function of inter-
action parameters (λH, λKM, and λR) in Fig. 3(c). In the Haldane interaction, since TRS is already broken, 
increasing the magnetic field does not change the universality class, thus, the UCF value remains 
unchanged. In the KM interaction, the magnetic field reduces the UCF value by a factor of 2 , in con-
trast to the case of B =  0 [Fig. 3(b)]. The reduced UCF value is attributed to different symmetries in the 
two interactions: the magnetic field breaks the symmetry between up and down spins in HKM, while 
HHaldane maintains the spin symmetry even for B ≠ 0. In the Rashba interaction, the magnetic field further 
decreases the UCF value from 0.365 to 0.258 e2/h (by a factor of 2 )47.

We examine the combined effect of KM and Rashba interactions on the deviation of conductance. We 
choose the Rashba coupling of λR =  0.15 to ensure that the system is initially in the circular symplectic 
ensemble (β =  4). For B =  0, as the KM coupling λKM increases from 0 to 0.2, the UCF does not change 
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with the value of 0.365 e2/h, implying that the system maintains the universality class of β =  4. When a 
magnetic field of 50 T is additionally applied, the UCF value is reduced to 0.258 e2/h for all the values 
of λKM, similar to the Rashba case in Fig.  3(c). The UCF behavior, therefore, is not influenced by the 
intrinsic SOI as long as the extrinsic SOI involving spin-flip scattering is present in the system.

In graphene, it may be difficult to realize a spin-orbit coupled system without spin-flip scattering, 
because enhancing the SOI generally involves the breaking of mirror symmetry which leads to the 
Rashba-type interaction26–33. However, graphene TIs in sandwiched structures35,36 and monolayer transi-
tion metal dichalcogenides in trigonal prismatic (1H) structure14,15 can provide a promising platform for 
testing our prediction, because they have both strong SOI and mirror symmetry. In such systems, 
increasing the Rashba coupling by applying an external electric field would lead to the 1/ 2  reduction 
of the UCF value, as illustrated in Fig. 3(d), instead of the 1/2 reduction in Fig. 3(b). On the other hand, 
if spin-flip scattering initially exists in the system, an electric field will not affect the UCF behavior. 
Therefore, the 1/ 2  reduction of the UCF value by applying an electric field could serve as a signature 
reflecting the absence of spin-flip scattering in 2D materials. In graphene devices17,26, the 
electric-field-induced Rashba coupling was predicted to be extremely small (about 10−8 ~ 10−5 eV) 

Figure 3.  The UCF in the presence of various interactions. Black dotted, solid, and dashed lines 
denote the predicted UCF values for β =  1, β =  2, and β =  4, respectively, as in Fig. 2(b). Red, green, 
and blue symbols represents the calculated deviation values for disorder strengths of W =  1.5, W =  2.0, 
and nad =  0.5%, respectively. Channel energy is set to –1.2 eV. (a) Deviations as a function of an external 
magnetic field (B) for λKM =  λH =  λR =  0, (b)-(c) deviations as a function of λH, λKM, and λR for B =  0 and 
50 T, and (d) deviations as a function of λKM in the presence of Rashba coupling (λR =  0.15) for B =  0 and 
50 T. In (b), two dashed lines denote the results for 82-aGNRs with periodic boundary conditions.
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presumably due to neglecting the effect of orbital angular momentum48. However, a substantial Rashba 
splitting up to 0.1 eV was observed49 when Au atoms were intercalated between graphene and substrate.

As a final remark, our understanding of the UCF behavior in spin-orbit coupled systems would enable 
us to reveal the exotic spin Hall conductance fluctuations predicted in 2D TIs. It was reported that, in 
2D materials such as graphene and HgTe quantum well, the intrinsic SOI leads to an amplitude of the 
universal spin Hall conductance fluctuation (=  0.285 e/4π)11,50, which is larger than that of the extrinsic 
(Rashba-type) SOI (=  0.18 e/4π)11–13, similar to the UCF case. The reason for this discrepancy remains to 
be clarified. Although the arguments in our study for charge transport cannot be directly used to explain 
the spin Hall conductance behavior, our results provide important insights to understanding the role of 
intrinsic and extrinsic SOIs in 2D systems.

In conclusion, we have shown that the underlying symmetries of the system, rather than the topolog-
ical edge states, play a key role in characterizing the UCF in 2D TIs. In 2D materials with both strong 
SOI and mirror symmetry, we find that the UCF value can be reduced by a factor of 2  by applying an 
external electric field, while it is not affected when mirror symmetry is initially broken. Thus, our find-
ings can be experimentally confirmed by observing the effect of an electric field on the UCF, which 
reflects the existence of spin-flip scattering in 2D materials.
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