

Stabilization of an ²¹¹At-Labeled Antibody with Sodium Ascorbate

Shino Manabe,* Hiroki Takashima, Kazunobu Ohnuki, Yoshikatsu Koga, Ryo Tsumura, Nozomi Iwata, Yang Wang, Takuya Yokokita, Yukiko Komori, Sachiko Usuda, Daiki Mori, Hiromitsu Haba, Hirofumi Fujii, Masahiro Yasunaga, and Yasuhiro Matsumura*

INTRODUCTION

Radioimmunotherapy (RIT) is defined as targeted radionuclide therapy using radiolabeled antibodies. RIT has expanded the applications of radiotherapy from focusing on local tumors to targeting scattered tumors, such as distant metastases and disseminated lesions. As for β -particles, two kinds of radiopharmaceuticals, which target the CD20 molecule on the surface of lymphoma cells, ⁹⁰Y-labeled rituximab and ¹³¹I-labeled rituximab, have already shown clinical benefits against CD20positive non-Hodgkin B-cell lymphoma.¹ Compared with β particles, α -particles have more potent linear energy transfer (LET) and a shorter path range. Owing to their high-energy emission within a short path length, α -particles can selectively eliminate target cells with minimal radiation damage to the surrounding normal tissues when delivered selectively to tumor tissues. These properties render α -particles an attractive tool for treating intractable tumors.^{2–5} ²¹¹At is an α -emitter with a short half-life (7.2 h) and does not yield cytotoxic daughter isotopes during its decay; the first branch (58.2%) decays through electron capture to ²¹¹Po (half-life: 516 ms), which decays through α -particle emission to ²⁰⁷Bi (half-life: 31.55 y). The second branch (41.8%) directly decays through α -particle emission to ²⁰⁷Bi. ²⁰⁷Bi results in stable ²⁰⁷Pb via its metastable states after the electron capture. To harness the short path of α particles and potent LET, ²¹¹At must be precisely delivered to the target. For delivering ²¹¹At to the desired regions, ²¹¹Atlabeled small molecules, including uridine analogues,⁶ benzylguanidine (a norepinephrine analogue),⁷ biotin analogues,⁸ a phenylalanine derivative,⁹ and bisphosphonate complexes, have been previously designed.¹⁰ Furthermore, ²¹¹At-labeled antibodies were reportedly tested to deliver highly cytotoxic ²¹¹At to the target in preliminary investigations and preclinical situations.¹¹⁻¹⁸ The ²¹¹At-labeled anti-Tenascin mAb 81C6 was administered locally to 18 patients with recurrent malignant brain tumors,¹¹ and the ²¹¹At-labeled MX35 $F(ab')_{2}$, targeting the sodium-dependent phosphate transport protein 2B, was intraperitoneally administered to nine patients with ovarian cancer.¹² In addition to the promising results obtained by these studies, the procedure for the production of ²¹¹At-labeled antibodies under the current Good Manufacturing Practices (cGMP) toward clinical application was recently reported.¹⁹ To maximize the functions of ²¹¹At-labeled antibodies, the quality of the conjugates must be validated. Therefore, in the present study, we evaluated the quality of an ²¹¹At-conjugated antibody. Several reports on the disruption of radioimmunoconjugates by reactive oxygen species (ROS), determined by functional analyses, have been published.²⁰⁻²⁴ In this paper, we clearly show the disruption of the ²¹¹At-conjugated antibody by ROS generated from water radiolysis through various approaches including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The ROS concentration was measured using a luminol assay system, and the degradation was

Received: February 5, 2021 Accepted: May 20, 2021 Published: May 31, 2021

http://pubs.acs.org/journal/acsodf

Article

Figure 1. Sodium dodecyl sulfate–polyacrylamide gel (SDS–PAGE) and autoradiography for 211 At-labeled trastuzumab. SA concentrations (mg/mL) are indicated. SDS–PAGE and autoradiography were performed to determine the effects of SA on the stability of the immunoconjugate. (a) Polyacrylamide gel on day 0 and (b) autoradiograph of 211 At-labeled trastuzumab on day 0 and (c) polyacrylamide gel after 1 d and (d) 211 At-labeled trastuzumab after 1 d.

Figure 2. Flow cytometry analysis of the binding activity of ²¹¹At-labeled trastuzumab to human epidermal growth factor receptor 2 (HER2)expressing cells. ²¹¹At-labeled trastuzumab with or without SA at the indicated concentrations facilitated binding with breast cancer cell lines having different HER2 expression levels. SK-BR-3: high HER2 expression; MCF-7: low HER2 expression. Sn-trastuzumab is N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide-conjugated trastuzumab. Negative control is a sample incubated with only the secondary antibody. The flow cytometry analysis was performed 6 d after ²¹¹At labeling.

suppressed by quenching ROS by addition of sodium ascorbate (SA), a safe (or non-cytotoxic) reducing agent.

RESULTS AND DISCUSSION

Evaluation of the Effects of SA Concentration on the Stability of ²¹¹At-Labeled Trastuzumab by SDS–PAGE, Autoradiography, and Flow Cytometry Assay. ²¹¹At-labeled trastuzumab was prepared according to the previously described procedures.^{13,25,26} The effects of different concentrations of SA on the stability of ²¹¹At-labeled trastuzumab were evaluated using SDS–PAGE, and autoradiography was performed on the day of ²¹¹At labeling and on the following day (Figure 1). Even on the day of ²¹¹At labeling, ²¹¹At-labeled trastuzumab was slightly disrupted in the absence of SA (Figure 1a,b). On the following day, ²¹¹At-labeled trastuzumab was completely disrupted in the presence of less than 6×10^{-4} mg/

mL SA (Figure 1c,d). These results indicate that the astatinated antibodies were disrupted in a time-dependent manner. In contrast, ²¹¹At-labeled trastuzumab in the presence of more than 6×10^{-2} mg/mL SA was still stable on the following day, thus indicating the concentration-dependent protective effects of SA.²⁷

The binding activity (binding activity = $MI - MI_{NC}$) of ²¹¹Atlabeled trastuzumab to high (SK-BR-3) and low (MCF-7) human epidermal growth factor receptor 2 (HER2)-expressing cell lines was investigated using flow cytometry, where MI is defined as median intensities of samples incubated with trastuzumab, Sn-trastuzumab, or ²¹¹At-trastuzumab and MI_{NC} is median intensities of negative control, which is the sample incubated with only the secondary antibody.

Binding activities of trastuzumab, N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide-conjugated trastuzumab (Sn-tras-

Figure 3. Cytotoxic effects of ²¹¹At-labeled trastuzumab in breast cancer cell lines. The cytotoxic effects of ²¹¹At-labeled trastuzumab with and without SA on breast cancer cell lines with different expression levels of human epidermal growth factor receptor 2 (HER2) were determined using the WST-8 cell count assay. SK-BR-3: high HER2 expression; MCF-7: low HER2 expression. N = 4. Data are presented as mean \pm standard deviation (SD) values.

tuzumab), and astatinated trastuzumab (²¹¹At-trastuzumab) in phosphate-buffered saline (PBS) for SK-BR-3 cells were 2.01 × 10^5 , 1.98×10^5 , and 3.91×10^3 , respectively (Figure 2). Binding activities of ²¹¹At-trastuzumab in 6×10^{-4} , 6×10^{-2} , and 6 mg/ mL SA to SK-BR-3 cells were 1.29×10^4 , 1.33×10^5 , and 1.59×10^5 , respectively. In the presence of more than 6×10^{-2} mg/mL SA, the binding activity of ²¹¹At-trastuzumab was maintained. The binding affinities of trastuzumab and functionalized trastuzumab to MCF-7 cells were weak because of their low HER2 expression levels.

In Vitro Cytotoxicity Evaluation of ²¹¹At-Labeled Trastuzumab. The cytotoxicity of ²¹¹At-labeled trastuzumab was evaluated using the WST-8 assay. The cytotoxic effects of ²¹¹At-labeled trastuzumab on cancer cells depended on HER2 expression levels on the cell surface. Astatinated trastuzumab killed SK-BR-3 cells more efficiently than free ²¹¹At. However, the differences in the cytocidal effects on MCF-7 cells between free ²¹¹At and the immunoconjugates were minor. Based on the protective effects on the binding activities of ²¹¹At-trastuzumab, SA contributed to the cytocidal effects of the immunoconjugates in a dose-dependent manner (Figure 3). ²¹¹At-trastuzumab in 6 × 10⁻² and 6 mg/mL SA exerted greater cytocidal effects on SK-BR-3 cells than ²¹¹At-trastuzumab in PBS and 6 × 10⁻⁴ mg/mL SA.

Detection of ROS Using Luminol Assay. We speculated that antibody damage was caused by ROS generated through the interaction of water molecules and α -particles emitted from ²¹¹At. ROS can be detected using chemiluminescent luminol assay. The luminol assay can measure the global levels of ROS, such as H₂O₂, O₂⁻, and OH[•], with high sensitivity under physiological conditions and can be sensitized by the addition of horseradish peroxidase.²⁸

Thus, we performed the luminol assay to quantify the ROS in ²¹¹At and ²¹¹At-conjugated antibody solutions (adjusted to approximately the same radioactivity) with different SA concentrations (Figure 4). On addition of SA at a low concentration (6×10^{-4} mg/mL), the same level of luminol reactivity was detected as in the SA-free sample in both ²¹¹At and ²¹¹At-labeled trastuzumab. Although low levels of ROS were detected in 6×10^{-2} mg/mL SA ²¹¹At solution, the levels were below the detection limit in ²¹¹At-labeled antibody solution. The reason for this difference is unclear at this moment. The intensity of chemiluminescence in the samples with 6 mg/mL SA was lower than the detection limit. These results suggest that SA greatly contributes to the reduction in the amount of ROS.

Scope of Reducing Agents. The scope of reducing agents, in addition to SA, potentially applicable for reducing ROS levels was investigated. We used agents with other mechanisms of reduction, namely, L-cysteine, sodium hydrosulfite, and maltose. The reducing ability of L-cysteine and sodium hydrosulfite is because of the redox potential of the sulfur atom, whereas that of maltose is inherent in its hemiacetal structure. The concentrations of these reducing agents were set to $6 \times 10^{-2} \text{ mg/mL}$ based on the SA threshold. We performed a luminol assay to assess the ROS-quenching abilities of various reducing agents in solutions of free ²¹¹At and ²¹¹At-labeled trastuzumab (Figure 5). The order of the reducing abilities of the agents in the ²¹¹Atlabeled trastuzumab solution was SA > L-cysteine > sodium hydrosulfite > maltose (Figure 5b). We found that 6×10^{-2} mg/ mL L-cysteine did not completely quench ROS in the ²¹¹Atlabeled antibody solution, although it efficiently quenched ROS in the solution of free ²¹¹At (Figure 5a). At present, the reason for the difference in ROS concentration in the solutions of free ^{211}At and ^{211}At -labeled antibody in the presence of 6 \times 10 $^{-2}$ mg/ mL L-cysteine is unclear.

Article

SDS-PAGE revealed that maltose or sodium hydrosulfite could not adequately protect the astatinated antibodies (Figure 6). However, SA and L-cysteine protected the immunoconjugates from oxidative stress. These results are in agreement with the ROS concentration measured by luminol assay.

Accordingly, ²¹¹At-labeled trastuzumab solution containing Lcysteine or SA displayed high binding activity to SK-BR-3 and MCF-7 cells (Figure 7), depending on the surface HER2 expression levels, and these results were comparable to those obtained for the naked and linker-attached trastuzumab before astatination. However, compared with the ²¹¹At-labeled trastuzumab protected with SA or L-cysteine, the astatinated antibodies with maltose or sodium hydrosulfite did not retain their binding activity. The binding activities of trastuzumab and Sn-trastuzumab to SK-BR-3 cells were 1.50 \times 10 5 and 1.42 \times 10⁵, respectively. Binding of ²¹¹At-trastuzumab in PBS, ²¹¹Attrastuzumab in 6×10^{-2} mg/mL sodium hydrosulfite, and ²¹¹Attrastuzumab in 6×10^{-2} mg/mL maltose to SK-BR-3 cells became weak, with activities of 1.84×10^3 , 7.77×10^2 , and 7.57 \times 10³, respectively. ²¹¹At-trastuzumab in 6 \times 10⁻² mg/mL SA and ²¹¹At-trastuzumab in 6×10^{-2} mg/mL L-cysteine retained binding activities of 6.61×10^4 and 7.77×10^4 , respectively. In MCF-7 cells, the binding activities of trastuzumab, Sntrastuzumab, ²¹¹At-trastuzumab in PBS, ²¹¹At-trastuzumab in 6 \times 10⁻² mg/mL SA, ²¹¹At-trastuzumab in 6 \times 10⁻² mg/mL Lcysteine, 211 At-trastuzumab in 6 × 10⁻² mg/mL sodium

Article

Figure 4. Detection of ROS using luminol assay. (a) SA was added at different concentrations to ²¹¹At in PBS. The lower (boxed) graph is an expansion of the 6 mg/mL SA addition protocol. (b) SA was added at different concentrations to ²¹¹At-labeled trastuzumab in PBS. The lower (boxed) graphs are expansions of 6×10^{-2} and 6 mg/mL SA addition protocols. RLU = relative luminescence units. Data are presented as mean \pm SD values.

hydrosulfite, and ²¹¹At-trastuzumab in 6×10^{-2} mg/mL maltose were 8.11×10^3 , 7.87×10^3 , 2.96×10^2 , 6.78×10^3 , 7.28×10^3 , 1.33×10^2 , and 1.08×10^3 , respectively. Regarding cytotoxicity, ²¹¹At-labeled trastuzumab with L-cysteine had the same potency as ²¹¹At-labeled trastuzumab with SA, and the astatinated antibodies with these protectants exerted greater cytotoxic

effects than the immunoconjugate without the protectant (Figure 7). However, the astatinated antibodies with maltose or sodium hydrosulfite displayed antitumor activities that were less than or similar to those of the immunoconjugate without the protectant.

Figure 5. Quenching potential of different reducing agents for ROS in ²¹¹At or ²¹¹At-labeled trastuzumab solutions, as assessed using the luminol assay. (a) Reducing agents ($6 \times 10^{-2} \text{ mg/mL}$) were added to ²¹¹At in PBS. (b) Reducing agents ($6 \times 10^{-2} \text{ mg/mL}$) were added to ²¹¹At in PBS. (b) Reducing agents ($6 \times 10^{-2} \text{ mg/mL}$) were added to ²¹¹At in PBS.

CONCLUSIONS

In this study, we longitudinally investigated the quality of conjugates after labeling of antibodies with ²¹¹At, a promising α -emitter applicable for targeted alpha therapy. Our results indicate that the radioimmunoconjugates were severely

degraded within 1 day of labeling with ²¹¹At. Although these devastating effects of α -particle emitters on macromolecules, such as proteins, have been reported previously, the mechanism underlying the destruction of macromolecules including antibodies *in vivo* has not been clarified as of now. Here, we

Figure 6. (a) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) of Sn- and ²¹¹At-labeled trastuzumab (IgG) in the presence of various reducing agents. Concentration of each reducing agent is 6×10^{-2} mg/mL. SDS–PAGE analysis was performed 4 d after ²¹¹At labeling. (b) Flow cytometry analysis of the binding activity of ²¹¹At-labeled trastuzumab to different breast cancer cell lines in the presence of various reducing agents. Cell lines with high (SK-BR-3) and low (MCF-7) human epidermal growth factor receptor 2 (HER2) expression levels were treated with ²¹¹At-labeled trastuzumab in the presence of various reducing agents. Flow cytometry analysis was performed 6 d after ²¹¹At labeling. SA: sodium ascorbate; Cys: L-cysteine; SHS: sodium hydrosulfite; Mal: maltose. Concentrations of reducing agents are 6×10^{-2} mg/mL. RLU = relative luminescence units.

particularly focused on the high LET of ²¹¹At. High-LET particles can strongly induce radiolysis of exposed materials. When the water is irradiated, numerous types of radicals, primarily ROS in water solutions, are produced. In this study, using luminol assay, SDS–PAGE, flow cytometry, and cytotoxicity assays, we clearly show that ²¹¹At-labeled trastuzumab was degraded by ROS generated from the radiolysis of water.

The mechanism underlying antibody denaturation upon ²¹¹At labeling provides insights into the protection against damage caused by radioactive conjugated antibodies.

Certain reducing agents or radial scavengers can suppress ROS upon ²¹¹At conjugation.

Our assays were performed 4–6 days after ²¹¹At conjugation, with and without the reducing agents. ²¹¹At-conjugated trastuzumab was stable in the presence of SA for several days. SDS–PAGE, flow cytometry, and cytotoxicity assays revealed that the minimum concentration of SA for protection of ²¹¹At-labeled trastuzumab is 6×10^{-2} mg/mL. Protected ²¹¹At-labeled trastuzumab maintained its binding activity and potent antitumor effects on antigen-expressing cells. Although numerous ²¹¹At-labeled antibodies have been reported so far, the

stability of ²¹¹At-labeled immunoglobulin G has remained largely unclear, except in studies using large quantities of ²¹¹At-conjugated samples.¹⁹ Overall, our results clearly indicate that protection from oxidative stress is required for ²¹¹At immunoconjugation.

The stability and biodistribution of ²¹¹At-labeled antibodies are important considerations for α -particle conjugation; hence, the structure of the conjugated antibody needs to be maintained, as observed upon the addition of SA. In the presence of 6×10^{-2} mg/mL SA, the ²¹¹At-labeled antibody was stable for several days.

The selection of reducing agents is important in RIT using ²¹¹At-labeled antibodies. In this case, reducing agents should have an efficient ROS-quenching ability and less toxicity. The results of our experiments indicate that SA and L-cysteine are good candidates for use as reducing agents. Because SA is frequently added as a stabilizing agent in clinically approved formulations, SA addition is highly practicable. The toxicity of reducing agents is also important when clinical application is considered. LD₅₀ (rat) of SA is 11,900 mg/kg, whereas that of L-cysteine is 1890 mg/kg.²⁹ Considering that the LD₅₀ of SA is

Figure 7. Cytotoxic effects of ²¹¹At-labeled trastuzumab in breast cancer cell lines. The cytotoxic effects of ²¹¹At-labeled trastuzumab in the presence of reducing agents, SA and L-cysteine, and on breast cancer cell lines with different expression levels of human epidermal growth factor receptor 2 (HER2) were determined using the WST-8 assay. SK-BR-3: high HER2 expression; MCF-7: low HER2 expression. SA: sodium ascorbate; Cys: L-cysteine; SHS: sodium hydrosulfite; Mal: maltose. N = 4. Data are presented as mean \pm SD values.

extremely high, SA is currently the most effective and safest candidate as a ROS scavenger in the view of toxicity as well.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c00684.

General Procedure, ²¹¹At generation, preparation of N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide-conjugated trastuzumab, ²¹¹At labeling of trastuzumab by Sn-²¹¹At exchange reaction, detection of ROS using luminol assay, SDS-PAGE, analysis of ²¹¹At-labeled antibodies, flow cytometry analysis, *in vitro* cytotoxicity assay, and ¹H NMR spectrum of N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (PDF)

AUTHOR INFORMATION

Corresponding Authors

Shino Manabe – Pharmaceutical Department, Hoshi University, Tokyo 142-8501, Japan; Research Center for Pharmaceutical Development Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Glycometabolic Biochemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; orcid.org/0000-0002-2763-1414; Email: smanabe@hoshi.ac.jp, shino.manabe.e1@tohoku.ac.jp, smanabe@riken.jp

Yasuhiro Matsumura – Department of Immune Medicine, National Cancer Center Research Institute, 104-0045 Tokyo, Japan; Email: yhmatsum@east.ncc.go.jp

Authors

- Hiroki Takashima Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan
- Kazunobu Ohnuki Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan
- Yoshikatsu Koga Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center and Department of Strategic Programs, Exploratory Oncology

Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan

Ryo Tsumura – Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan

Nozomi Iwata – Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan

Yang Wang – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Takuya Yokokita – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Yukiko Komori – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Sachiko Usuda – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Daiki Mori – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Hiromitsu Haba – Nishina Center for Accelerator-Based Science, RIKEN, Wako-shi, Saitama 351-0198, Japan

Hirofumi Fujii – Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan

Masahiro Yasunaga – Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c00684

Author Contributions

S.M. and Y.M. conceived and designed the project. Y.K. and R.T. conjugated *N*-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide to trastuzumab. H.T., T.Y., H.H, and S.M. carried out ²¹¹At labeling. H.T., K.O., and N.I. performed TLC analysis. K.O. measured ROS by the luminol assay. H.T., K.O., R.T., and N.I. evaluated the astatinated antibodies by SDS–PAGE. H.T. performed flow cytometry. H.T. and Y.K. evaluated cytotoxicity of the astatinated antibodies. T.Y., Y.K., W.Y., D.M., and H.H. prepared ²¹¹At and measured radioactivity. H.F., M.Y., and Y.M. supervised the project. S.M., H.T., and K.O. wrote the major part of the paper. All authors analyzed and discussed results and assisted in paper preparation.

Funding

This work was supported by the Project for Cancer Research and Therapeutic Evolution (19cm0106237h0002 to H.T.) from the Japan Agency for Medical Research and Development (AMED), by RIKEN Engineering Network Project (to S.M.), and National Cancer Center Research and Development Fund (29-A-9 to Y.M. and 30-S-4 to Y.K.). The ²¹¹At was supplied through the Supply Platform of Short-lived Radioisotopes, supported by the JSPS Grant-in-Aid for Scientific Research on Innovative Areas, grant number 16H06278.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.M. thanks Professor Hidehiko Nakagawa at the Graduate School of Pharmaceutical Science, Nagoya City University, for intellectual discussions.

ABBREVIATIONS

cGMP, current Good Manufacturing Practices; LET, linear energy transfer; PBS, phosphate-buffered saline; RIT, radioimmunotherapy; ROS, reactive oxygen species; SA, sodium ascorbate; SDS–PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; SHS, sodium hydrosulfite

REFERENCES

(1) Green, D. J.; Press, O. W. Whither radioimmunotherapy: To be or not to be? *Cancer Res.* **2017**, *77*, 2191–2196.

(2) Aghevlian, S.; Boyle, A. J.; Reilly, R. M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α -particles or Auger electrons. *Adv. Drug Delivery Rev.* **2017**, *109*, 102–118.

(3) Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D'huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. *Expert Opin. Biol. Ther.* **2016**, *16*, 1035–1047.

(4) Vaidyanathan, G.; Zalutsky, M. R. Applications of ²¹¹At and ²²³Ra in targeted alpha-particle radiotherapy. *Curr. Radiopharm.* **2011**, *4*, 283–294.

(5) Zalutsky, M. R.; Pruszynski, M. Astatine-211: Production and Availability. *Curr. Radiopharm.* 2011, *4*, 177–185.

(6) Vaidyanathan, G.; Larsen, R. H.; Zalutsky, M. R. 5- $[^{211}At]$ Astato-2'-deoxyuridine, an α -particle-emitting endoradiotherapeutic agent undergoing DNA incorporation. *Cancer Res.* **1996**, *56*, 1204–1209.

(7) Vaidyanathan, G.; Zalutsky, M. R. 1-(m-[²¹¹At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation. *Bioconjugate Chem.* **1992**, *3*, 499–503.

(8) Foulon, C. F.; Alston, K. L.; Zalutsky, M. R. Astatin-211-labeled biotin conjugates resistant to biotinidase for use in pretargeted radioimmunotherapy. *Nucl. Med. Biol.* **1998**, *25*, 81–88.

(9) Meyer, G. J.; Walte, A.; Sriyapureddy, S. R.; Grote, M.; Krull, D.; Korkmaz, Z.; Knapp, W. H. Synthesis and analysis of 2-[211At]-L-phenylalanine and 4-[211At]-L-phenylalanine and their uptake in human glioma cell cultures in-vitro. *Appl. Radiat. Isot.* **2010**, *68*, 1060–1065.

(10) Murud, K. M.; Larsen, R. H.; Bruland, Ø. S.; Hoff, P. Influence of pretreatment with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APB) on organ uptake of ²¹¹At and ¹²⁵I-labeled amidobisphosphonates in mice. *Nucl. Med. Biol.* **1999**, *26*, 791–794.

(11) Zalutsky, M. R.; Reardon, D. A.; Akabani, G.; Coleman, R. E.; Friedman, A. H.; Friedman, H. S.; McLendon, R. E.; Wong, T. Z.; Bigner, D. D. Clinical experience with α -particle-emitting ²¹¹At: Treatment of recurrent brain tumor patients with ²¹¹At-labeled chimeric antitenascin monoclonal antibody 81C6. *J. Nucl. Med.* **2008**, *49*, 30–38.

(12) Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal α -particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of ²¹¹At-MX35 F(ab')₂- a phase I study. *J. Nucl. Med.* **2009**, *50*, 1153–1160.

(13) Wilbur, D. S.; Thakar, M. S.; Hamlin, D. K.; Santos, E. B.; Chyan, M.-K.; Nakamae, H.; Pagel, J. M.; Press, O. W.; Sandmaier, B. M. Reagents for astatination of biomolecules. 4. Comparision of maleimido-closo-decaborate(2-) and meta-[²¹¹At]astatobenzoate conjugates for labeling anti-CD45 antibodies with [²¹¹At]astatine. *Bioconjugate Chem.* **2009**, *20*, 1983–1991.

(14) Green, D. J.; Shadman, M.; Jones, J. C.; Frayo, S. L.; Kenoyer, A. L.; Hylarides, M. D.; Hamlin, D. K.; Wilbur, D. S.; Balkan, E. R.; Lin, Y.; Miller, B. W.; Frost, S. H. L.; Gopal, A. K.; Orozco, J. J.; Gooley, T. A.; Laird, K. L.; Till, B. G.; Bäck, T.; Sandmaier, B. M.; Pagel, J. M.; Press, O. W. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. *Blood* **2015**, *125*, 2111–2119.

(15) Lindegren, S.; Andrade, L. N. S.; Bäck, T.; Machado, C. M. L.; Horta, B. B.; Buchpiguel, C.; Moro, A. M.; Okamoto, O. K.; Jacobsson, (16) Li, H. K.; Morokoshi, Y.; Nagatsu, K.; Kamada, T.; Hasegawa, S. Locoregional therapy with α -emitting trastuzumab against peritoneal metastasis of human epidermal growth factor receptor 2-positive gastric cancer in mice. *Cancer Sci.* **2017**, *108*, 1648–1656.

(17) Li, H. K.; Hasegawa, S.; Nakajima, N. I.; Morokoshi, Y.; Minegishi, K.; Nagatsu, K. Targeted cancer cell ablation in mice by an α -particle-emitting astatine-211-labeled antibody against major histo-compatibility complex class I chain-related protein A and B. *Biochem. Biophys. Res. Commun.* **2018**, *506*, 1078–1084.

(18) Dekempeneer, Y.; Bäck, T.; Aneheim, E.; Jensen, H.; Puttemans, J.; Xavier, C.; Keyaerts, M.; Palm, S.; Albertsson, P.; Lahoutte, T.; Caveliers, V.; Lindegren, S.; D'Huyvetter, M. Labeling of anti-HER2 nanobodies with astatine-211: Optimization and the effect of different coupling reagents on their in vivo behavior. *Mol. Pharm.* **2019**, *16*, 3524–3533.

(19) Li, Y.; Hamlin, D. K.; Chyan, M.-K.; Wong, R.; Dorman, E. F.; Emery, R. C.; Woodle, D. R.; Manger, R. L.; Nartea, M.; Kenoyer, A. L.; Orozco, J. J.; Green, D. J.; Press, O. W.; Storb, R.; Sandmaier, B. M.; Wilbur, D. S. cGMP production of astatine-211-labeled anti-CD45 antibodies for use in allogeneic hematopoietic cell transplantation for treatment of advanced hematopoietic malignancies. *PLoS One* **2018**, *13*, No. e0205135.

(20) Garrison, W. M. Reaction mechanims in the radiolysis of peptides, polypeptides, and proteins. *Chem. Rev.* **1987**, *87*, 381–398.

(21) Chakrabarti, M. C.; Le, N.; Paik, C. H.; De Graff, W. G.; Carrasquillo, J. A. Prevention of radiolysis of monoclonal antibody during labeling. *J. Nucl. Med.* **1996**, *37*, 1384–1388.

(22) Kukis, D. L.; DeNardo, S. J.; DeNardo, G. L.; O'Donnell, R. T.; Meares, C. F. Optimized conditions for chelation of Yttrium-90-DOTA immunoconjugates. *J. Nucl. Med.* **1998**, *39*, 2105–2110.

(23) McDevitt, M. R.; Fin, R. D.; Ma, D.; Larson, S. M.; Scheinberg, D. A. Preparation of alpha-emitting ²¹³Bi-labeled antibody construscts foe clinical use. *J. Nucl. Med.* **1999**, *40*, 1722–1727.

(24) Liu, S.; Edwards, D. S. Stabilization of 90Y-labeled DOTAbiomolecule conjugates using gentisic acid and ascorbic acid. *Bioconjugate Chem.* **2001**, *12*, 554–558.

(25) Lindegren, S.; Frost, S.; Bäck, T.; Haglund, E.; Elgqvist, J.; Jensen, H. Direct procedure for the production of ²¹¹At-labeled antibodies with an ε -lysyl-3-(trimethylstannyl)benzamide immunoconjugate. *J. Nucl. Med.* **2008**, *49*, 1537–1545.

(26) Aneheim, E.; Gustafsson, A.; Albertsson, P.; Bäck, T.; Jensen, H.; Palm, S.; Svedhem, S.; Lindegren, S. Synthesis and evaluation of astatinated N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide immunoconjugates. *Bioconjugate Chem.* **2016**, *27*, 688–697.

(27) Takashima, H.; Koga, Y.; Manabe, S.; Ohnuki, K.; Tsumura, R.; Anzai, T.; Iwata, N.; Wang, Y.; Yokokita, T.; Komori, Y.; Mori, D.; Usuda, S.; Haba, H.; Fujii, H.; Matsumura, Y.; Yasunaga, M. Antitumor effect of an ²¹¹At-labeled anti-tissue factor antibody protected by sodium ascorbate in gastric cancer xenograft models. *Cancer Sci* **2021**, *112*, 1975.

(28) Zhu, H.; Jia, Z.; Trush, M.; Li, Y. R. A highly sensitive chemiluminometric assay for real-time detection of biological hydrogen peroxide formation. *React. Oxygen Species* **2016**, *1*, 216–227.

(29) Safety Data Sheet in Globally Harmonized System of Classification and Labelling of Chemicals for sodium ascorbate and L-cysteine.