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The emergence of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic
underscores the importance of the rapid development of a non-invasive vaccine that can be easily admin-
istered. A vaccine administered by nasal delivery is endowed with such characteristics against respiratory
viruses. In this study, we generated a recombinant SARS-CoV-2 receptor-binding domain (RBD)-based
subunit vaccine. Mice were immunized via intranasal inoculation, microneedle-intradermal injection,
or intramuscular injection, after which the RBD-specific immune responses were compared. Results
showed that when administrated intranasally, the vaccine elicited a robust systemic humoral immunity
with high titers of IgG antibodies and neutralizing antibodies as well as a significant mucosal immunity.
Besides, antigen-specific T cell responses were also analyzed. These results indicated that the non-
invasive intranasal administration should be explored for the future SARS-CoV-2 vaccine design.

� 2021 Published by Elsevier Ltd.
1. Introduction

Owing to the rapid spread and high stability of the SARS-CoV-2,
COVID-19 vaccines are in urgent need. The receptor-
binding domain (RBD) of the SARS-CoV-2 spike (S) protein binds
the human angiotensin-converting enzyme 2 (ACE2) receptor,
which facilitates the cellular entry of the virus. Therefore, RBD is
the primary target of neutralizing antibodies against the virus
[1,2]. It has been demonstrated that, among a large number of
SARS-CoV-1 candidate vaccines, the vaccines targeting RBD are
more potent than those targeting the S-full-length protein [3–5]
and can even avoid the risk of disease enhancement [6,7]. The anti-
gen selection strategies used for SARS-CoV-1 are also applicable to
the development of SARS-CoV-2 vaccine [8,9].

The success of a recently marketed intranasal-sprayed vaccine,
FluMistTM [10], indicates that for vaccines against respiratory
infectious diseases, vaccination through mucosal route may
enhance the effect of the vaccine when compared to the traditional
injected routes [11,12]. This is mainly because mucosal vaccines
produce both systemic and local mucosal immune responses to
scale up the war against the virus [13]. For example, intranasal
administration induces large amounts of IgA antibodies at the site
of inoculation, which neutralizes the viruses and excludes them
from the primary infection [14–17]. Another advantage of intrana-
sal vaccines that is critical for the COVID-19 pandemic is that the
needle-free and noninvasive intranasal vaccine could be performed
by simply trained personnel or even possibly performed via self-
administration in a universal immunization campaign, thus requir-
ing minimum medical resources. An adenovirus vectored vaccine
expressing full-length SARS-CoV-2 protein administered via intra-
nasal immunization was recently demonstrated to be protective in
mice and rhesus macaques [18]. However, the immunogenicity of
an intranasal immunized SARS-CoV-2 subunit-based vaccine
remains largely unknown.

In the current study, mice were immunized with a recombinant
SARS-CoV-2 RBD adjuvanted with Alhydrogel� (aluminium oxyhy-
droxide gel, alum) to investigate the immunogenicity of an intra-
nasal delivered vaccine. The systemic immunity including the
humoral, cellular response and the mucosal immunity induced
via three different administration routes (intranasal inoculation,
microneedle-intradermal injection, or intramuscular injection)
were compared. Results showed that intranasal vaccination
induced a better humoral response with a potent neutralizing
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activity, a balanced Th1/Th2 response, and a stronger mucosal
immunity than the other two parenteral administrations.
2. Materials and methods

2.1. Cells, virus, plasmids

SF-a cells were supplied by Guangdong South China Vaccine
Co., Ltd and maintained in the EXCELL-420 medium [19].
pFastBacTMDual and DH10Bac were from Invitrogen. MicronJet
600 Needle used as a device for intradermal administration was
obtained from Nanopass Technologies Ltd. SARS-CoV-2 WIV04
(Genbank accession number: MN996528.1) was used in the live
coronavirus neutralization assay. HIV-based SARS-CoV-2 pseu-
dovirus allowing for single-cycle infection was constructed and
used in the pseudo-coronavirus neutralization assay. hACE2, T7
RNA polymerase expression vectors (pRNP) co-transfected
HEK293T cells and SARS-CoV-2 S protein, T7 promoter-luciferase
expression vectors (pT7-LUC) co-transfected HEK293T cells were
constructed in our laboratory. pRNP and pT7-LUC were obtained
from Dr. Richard Longnecker of Northwestern University.

2.2. Reagents and antibodies

Alhydrogel� 2% was purchased from Brenntag Biosector, Den-
mark. Newborn Calf Serum (NBCS) were from Zhejiang Tianhang
Biotechnology Co., Ltd. HRP-goat anti-mouse IgA alpha chain,
HRP-goat anti-mouse IgG, HRP-goat anti-mouse IgG1, and HRP-
goat anti-mouse IgG2a were purchased from Abcam. Mouse IFN-
c/IL-4 double-color ELISPOT kit was from
Cellular Technology Limited.

2.3. Mouse immunization

Female BALB/c mice (aged 6 weeks; n = 6) were vaccinated
three times at three-week intervals via the intranasal, intradermal,
or intramuscular route, as shown in Fig. 1B. Ten lg of RBD was
administered per mouse with or without 100 lg of alum via intra-
nasal route under light isoflurane anesthesia, via microneedle-
intradermal injection in the back after shaving, or through intra-
muscular injection in a right hindlimb. Each animal in the control
groups (PBS groups and alum groups) received 100 lg of alum or
the same volume of PBS. The volumes for injected (intradermal
or intramuscular injection) and mucosal administration (intranasal
inoculation) were adjusted to 50 lL and 25 lL per dose respec-
tively. The study protocol was approved by the Institutional Ani-
mal Ethics Committee of Foshan Huamio Biotechnology Company
Ltd.

2.4. Sample collection

Blood samples were collected before each immunization and
3 weeks after the final immunization by retro-orbital venous
plexus puncture. The vaginal washing fluids were obtained by rins-
ing with 20 lL of PBS each time, three times a day on the
18th/19th/20th day after the final immunization. The nasal
washes, bronchoalveolar lavage fluids and intestines were col-
lected 3 weeks after the last immunization from 6 mice in each
group. The nasal and lung lavage fluids were collected by 3
repeated washes with 200 lL of PBS, respectively. One hundred
mg of feces-free intestine was cut into small pieces (1–2 mm)
and placed in an EP tube containing 200 lL of PBS and rocked for
5 h. All the samples collected were centrifuged at 8000 � g for
10 min at 4 �C and the supernatants were stored at �80 �C till per-
forming the ELISA assay.
2281
2.5. Enzyme-linked immunosorbent assay

The IgG, IgG1, IgG2a, and IgA titers against the RBD or S protein
of SARS-CoV-2 were determined using indirect ELISA. In brief,
200 ng/well of the RBD or S protein was added to coat 96-well
microtiter plates and then incubated overnight at 4 �C. After block-
ing with 10% newborn calf serum (NBCS) for 1 h, serial two-fold
dilutions of serum were added and incubated at 37 �C for 1 h.
RBD-specific antibodies were detected using HRP-labeled goat
anti-mouse IgG, IgG1, IgG2a, or IgA separately. Color was visual-
ized by adding the substrate 3,30,5,50-tetramethylbenzidine
(TMB), and the absorbance at 450 nm was read using an ELISA
plate reader (iMARK, YQ-193). The endpoint titer was defined as
the highest reciprocal dilution of serum, which was 2.1-fold of
the background values. The titer of the sample was regarded as 0
when its OD value failed to reach 2.1 times the background OD
value even if the titer may be less than the initial dilution.
2.6. Enzyme-linked immunospot assay

Next, IFN-c- or IL-4-secreting cells were determined by using
the ELISPOT mouse kit according to the manufacturer’s instruc-
tions. Briefly, the IFN-c/IL-4 antibodies were coated onto the plates
at 4 �C overnight after pre-wetting the PVDF membrane with 70%
ethanol. 4 � 105 spleen cells freshly isolated frommice were added
in each well with RBD (50 lg/mL), without RBD or with ConA
(50 lg/mL), and were incubated at 37 �C for 24 h. Wells containing
no stimulus or containing ConA were considered as negative and
positive controls, respectively. Plates were incubated with biotiny-
lated IFN-c or IL-4 at 37 �C for 2 h, followed by incubating with
FITC-HRP and Streptavidin-AP substrate for 1 h. Finally, the sub-
strate solutions were successively added to develop the IFN-c or
IL-4 spot. The numbers of spots representing the numbers of
cytokines secreted were counted by CTL immunospot S6 Universal
Analyzer (Cellular Technology Ltd., OH, USA).
2.7. Live coronavirus neutralization assay

The live SARS-CoV-2 neutralization assay of serum samples was
performed in Animal Biosafety Level 3 Laboratory (ABSL-3) of
Wuhan Institute of Virology, Chinese Academy of Sciences (CAS).
After inactivation at 56 �C for 30 min, serum samples were serially
diluted and co-cultured with the same volume of 50 PFU SARS-
CoV-2 viruses (WIV04) at 37 �C for 1 h. The mixtures were subse-
quently transferred to the monolayers of Vero E6 cells in 24-well
plates, then the plates were incubated at 37 �C for 1 h. The viral
cytopathic effect (CPE) was monitored and the 50% neutralizing
antibody titer (NT50) was presented as the highest dilution of
the serum that reduced 50% of the CPE compared to the control
well.
2.8. SARS-CoV-2 pseudovirus neutralization assay

For pseudovirus-based neutralization assay, hACE2-293T cells
were seeded in 96 well-plates 18 h before infection. Serum sam-
ples were serially diluted and co-cultured with the same volume
of pseudotype particles at 37 �C for 1 h. The mixtures were dupli-
cated and added to the monolayers of hACE2 expressing cells in
96-well microtiter plates. Then, the plates were incubated at
37 �C in 5% CO2. Forty-eight h later, the cells were lysed and mea-
sured using Promega Glomax (GloMax� Explorer). The results were
presented as NT50.
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2.9. Cell fusion assay

The cell–cell fusion model previously described [20] was
adapted in this study. HEK293T cells co-transfected with hACE2
and pRNP were used as target cells. HEK293T cells co-transfected
with SARS-CoV-2 S protein and pT7-LUC were used as effector
cells. For SARS-CoV-2 S protein-mediated cell–cell fusion assay,
effector cells, target cells, and the serum from immunized mice
were co-cultured 72 h post-transfection. Luciferase activity was
assessed after 24 h of incubation.

2.10. Statistical analysis
Data in this study were presented as the mean -

value ± standard error of the mean (SEM). Comparisons between
groups were performed by Student’s T-test in GraphPad Prism
7.0 software. P values <0.05 were considered statistically
significant.

3. Results

3.1. Intranasal administration of an RBD vaccine induced a rapid and
significant RBD specific humoral response in mice

The recombinant RBD was expressed in insect cells infected
with the recombinant baculoviruses carrying the RBD sequence.
Following chromatography purification, the RBD was determined
Fig. 1. Characterization of recombinant RBD and immunization schedule of mice. (A)
detection. Left panel: SDS-PAGE of purified RBD. Right panel: Western blot of purified R
times at intervals of 3 weeks through intranasal immunization (i.n.), intradermal immu
before each boost immunization and before sacrifice. Vaginal washes were collected for 3
lavage fluids, and intestines were collected at the time of sacrifice.

Fig. 2. SARS-CoV-2 RBD-specific IgG antibody response in mice after each immunization,
i.m.: intramuscular immunization. Results are expressed as the mean value ± standard
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by SDS-PAGE and Western Blot, as shown in Fig. 1A. The RBD for-
mulated with or without alum was immunized in mice 3 times at
intervals of 3 weeks via the intranasal, intradermal, or intramuscu-
lar route (Fig. 1B). PBS and Alumwere used as negative control vac-
cines, respectively. No abnormal or pathological changes were
observed in mice during the vaccination process.

The mouse sera were collected at three time points, as shown in
Fig. 1B, and SARS-CoV-2 RBD-specific IgG titers were determined.
As shown in Fig. 2, after the first immunization, 2 out of 6
RBD + alum immunized mice became seropositive via intranasal
administration. Following the second immunization, moderate
levels of IgG antibodies were induced in all the mice that received
RBD + alum intranasal or intradermal vaccination, whereas low
levels of IgG titers were observed in only 3 out of 6 mice that expe-
rienced RBD + alum intramuscular vaccination. After the final
immunization, higher antigen-specific lgG titers were elicited in
RBD + alum intranasally immunized mice compared to that
induced by the other two injected routes. In addition, only small
amounts of RBD-specific IgG antibodies were detected in several
mice after the final immunization of sole RBD via the two par-
enteral routes. The result of S-specific antibody responses after
the last immunization is similar to that of RBD-specific antibody
responses (Fig. S1). These results demonstrated that the rapid
and significant IgG antibody response was elicited in intranasal
immunized mice, whereas the gentle development of IgG antibody
response was found in intramuscularly immunized mice before the
Analysis of purified RBD. Rabbit anti-RBD polyclonal antibody was used for RBD
BD. (B) Schematic of the vaccination schedule of mice. They were immunized three
nization (i.d.), or intramuscular immunization (i.m.). Blood samples were collected
consecutive days before sacrifice. Samples of spleens, nasal washes, bronchoalveolar

as measured by ELISA. i.n.: intranasal immunization, i.d.: intradermal immunization,
error of the mean (SEM) of seven mice in each group. **0.001 < P < 0.01.
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second boost. However, the antibody levels of the three groups
became similar at the end of the study.

Cytokines secreted by Th1 cells mediate isotype switching to
IgG2a, whereas cytokines secreted by Th2 cells mediate isotype
switching to IgG1 [21]. The IgG1 and IgG2a ratio represents the
balance between cellular immunity (Th1-skewed) and humoral
immunity (Th2-skewed) [22]. Thus, the IgG subclasses (IgG1 and
IgG2a) within the serum from immunized mice were further ana-
lyzed. After the last immunization, as expect, higher production of
IgG1 than IgG2a indicating a Th2-skewed response, was seen in all
groups co-administered with alum, consistent with previous stud-
ies [23,24]. However, it is worth noting that when vaccinated intra-
nasally, alum was able to facilitate a mixed Th1/Th2 response
compared to the other two parenteral routes (Fig. 3).

Overall, these results demonstrated that immunization with
RBD adjuvanted with alum through intranasal route induced the
fastest RBD-specific IgG antibody response. Furthermore, this route
was able to elicit mixed Th1/Th2 response compared with the two
other administration routes.

3.2. Intranasal administration of an RBD vaccine induced a prominent
RBD specific mucosal response in immunized mice

To assess the production of RBD-specific sIgA at the mucosal
site, nasal washes, bronchoalveolar lavage fluids (BAL), vaginal
washes and intestines of the immunized mice were obtained after
the final vaccination and tested by ELISA. Significant levels of IgA in
nasal washes, BAL, and vaginal washes were observed in
RBD + alum intranasally vaccinated mice but not in other mice
(Fig. 4A, B, and C). The vaccination of RBD with or without alum
in mice via any route elicited low levels of IgA antibodies in their
intestines; at the same time, higher levels of IgA antibodies were
induced through nasal administration (Fig. 4D). These results
reflect the promising mucosal immunity induced by the nasal
delivery of the RBD vaccine, which is consistent with previous
studies [25,26].

3.3. IFN-c and IL-4 producing T cells were elicited by intranasal
immunization of an RBD vaccine in mice

After three rounds of immunization, lymphocytes isolated from
spleens of the mice were stimulated with 50 lg/mL of the RBD.
IFN-c- and IL-4-secreting cells were determined by using the ELI-
SPOT assay. Within the intranasal administration groups, limited
IFN-c and IL-4 secretions were detected in RBD + alum-adminis
tered mice (Fig. 5A and B). The intradermal injection of RBD with
alum displayed moderate production of IL-4 with limited secretion
Fig. 3. SARS-CoV-2 RBD-specific IgG1 and IgG2a titers in mice 3 weeks after the last im
(SEM) of six mice in each group. ***0.0001 < P < 0.001; ****P < 0.0001.
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of IFN-c (Fig. 5C and D). The IL-4 production induced in RBD + alum
intramuscularly vaccinated mice was the highest among the three
administration routes, although the IFN-c production was still lim-
ited (Fig. 5E and F). Overall, these results demonstrated that the
intranasal vaccination of the vaccine was capable of inducing T cell
responses, but it was inferior to that induced by intramuscular
administration. This is consistent with the findings of another
study regarding adenovirus-based SARS-CoV-2 vaccine [18].

3.4. High levels of neutralizing antibodies were elicited by the
intranasal immunization of an RBD vaccine in mice

Neutralizing antibody (Nab) titers against SARS-CoV-2 correlate
well with protective efficacy to some extent [27]. To evaluate the
protection provided by the vaccine, Nab titers of the serum col-
lected after the second immunization were assessed using a
SARS-CoV-2 virus (Strain: WIV04, GenBank Ref: MN996528.1) neu-
tralization assay. As shown in Table 1, serum from the vaccine
(RBD + Alum) intranasally immunized mice exhibited a neutraliz-
ing titer to 1:800 (NT50), which was twice as high as that induced
in intradermally immunized mice. In contrast, limited neutralizing
antibodies were detected in intramuscularly vaccinated mice. After
the third immunization (2nd boost), the NT50 titers were assessed
using the HIV-based SARS-CoV-2 pseudovirus neutralization assay
due to limited resources of live virus. The results revealed that the
vaccine administered by intranasal route induced the highest neu-
tralizing antibody titers with the value (NT50) reaching over
1:3200. In comparison, the intradermal vaccination produced a
weaker NT50 value, whereas intramuscular injection elicited an
NT50 value inferior to that of intranasal vaccination but superior
to that of intradermal vaccination. The NT50 value of serum from
the convalescent donor cured from the infection was much lower
than that of the serum from the RBD + Alum-immunized mice after
the last immunization delivered via any administration route.
These results indicated that the intranasal administration of the
vaccine elicited a strong neutralizing activity against the virus.

3.5. Sera from intranasally immunized mice inhibited S protein-
mediated membrane fusion

Fusion assay was used to determine the cell-fusion blocking
activity of the sera samples. As shown in Fig. 6A, sera with high
levels of RBD specific antibodies bind to the S protein, thus inhibit-
ing the S protein-induced cell-fusion with reduced fluorescence.
The results showed that 50-fold diluted serum from RBD + alum
intranasally immunized mice exhibited a strong inhibition capac-
ity in preventing about 40% of the cells from undergoing fusion,
munization. Results are expressed as the mean value ± standard error of the mean



Fig. 4. SARS-CoV-2 RBD-specific secretory IgA titers in (A) nasal washes, (B) bronchoalveolar lavage fluids, (C) vaginal washes, and (D) intestines of mice 3 weeks after the last
immunization. Results are expressed as the mean value ± standard error of the mean (SEM) of six mice in each group.
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while the serum from intradermally vaccinated mice showed a
weaker ability in limiting the cell–cell fusion. An extremely limited
inhibition capacity was found through the intramuscular route
(Fig. 6B). These results demonstrated that the intranasal adminis-
tration of the RBD vaccine elicited a better cell-fusion blocking
activity, which was in agreement with the results from the live
virus and pseudovirus neutralization assays.
4. Discussion

In this study, we compared the immune responses induced by
intranasal, intradermal or intramuscular immunization with a
SARS-CoV-2 RBD subunit vaccine. The results indicated that the
intranasal administration of the vaccine displayed an excellent
profile in eliciting humoral and mucosal immunity. These findings
suggest that an intranasal SARS-CoV-2 subunit vaccine warrants
further development.

We were puzzled by the higher antigen-specific and neutraliz-
ing antibody responses after intranasal administration than after
intramuscular administration during the first and second immu-
nization. Whether this finding is due to the presence of a large
number of antigen presenting cells (APCs) in nasopharyngeal-
associated lymphoid tissue (NALT) induces different kinetics of
antibody responses remains to be determined [28].

In addition to the potent humoral immunity, the intranasal RBD
vaccine in our study also induced significant mucosal immunity on
the mucosal surfaces of the nasal cavity, lung, genital tract, and
intestine. The sIgA secreted by the mucosal B cells in the nasal cav-
ity (upper respiratory tract) and lung (lower respiratory tract)
might have formed the first-line defense against viruses that enter
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through the respiratory tract, thereby preventing them from invad-
ing the cells. These observations are consistent with the previous
studies [25,26]. The mucosal B cells activated in the
nasopharynx-associated lymphoid tissue (NALT) were then
attracted by the epithelial CCL28/MEC and migrated to the distant
effector sites, such as the intestine and the genital tract, where
more IgA were produced [29–31]. According to some recent
reports, SARS-CoV-2 infection may impair female reproductive
function. The high level of IgA found in the vagina may be another
potential advantage of the intranasal RBD vaccine [32,33].

An intranasal vaccine has many other unique advantages,
including non-invasiveness and easy administration, which allow
self-administration in non-clinical settings. These advantages are
of importance for the COVID-19 pandemic, during which large
crowds should be avoided and medical resources remain scarce.
However, some limitations exist in the present intranasal vaccine
forms. For instance, droplet vaccines require strict liquid packag-
ing, while spray vaccines require the assistance of a special device.
Dry powder is a recommended form, as it could be easily dispersed
in water or saline and easily retain its viability and safety in room
temperature, thereby avoiding the expensive cold-chain trans-
portation [34].

Protein-based vaccines are known for their safety, but their
immunogenicity is always compromised. Furthermore, adjuvants
are needed to enhance their effectiveness. Aluminum salt adju-
vants have been used clinically for nearly a century due to their
effect on the enhancement of the immune response to antigen
and their rare side effects; however, they are only limited to par-
enteral administration. Referring to intranasal use, the enhance-
ment of the vaccine by alum was also evidenced by a few
preclinical studies [35–37]. Therefore, in the current study, we



Table 1
NT50 values of neutralizing antibodies against SARS-CoV-2 virus and SARS-CoV-2 pseudovirus in serum samples of mice after vaccination.

Administration route Vaccine formulation NT50 after 1st boost (SARS-CoV-2
neutralization assay)

NT50 after 2nd boost (SARS-CoV-2
pseudovirus neutralization assay)

NT50(SARS-CoV-2 pseudovirus
neutralization assay)

Intranasal route RBD + Alum 1: 800 1:3200–1:6400
Intradermal route RBD + Alum 1: 400 1:1600–1:3200
Intramuscular route RBD + Alum <1: 10 1:3200
Convalescent serum 1:400–1:800

Fig. 5. ELISpot detection of IFN-c producing cells (A, C, and E) and IL-4 producing cells (B, D, and F) in immunized mice. i.n.: intranasal immunization, i.d.: intradermal
immunization, i.m.: intramuscular immunization. Results are expressed as spot-forming cells (SFCs) per 106 spleen cells.
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chose alum as an adjuvant and found encouraging results. We also
found that the use of alum during intranasal vaccination can better
improve the effectiveness of the vaccine compared to other routes
of administration. This may be due to the antigen adsorption prop-
erties of aluminum. In particular, the antigen was protected by the
colloidal aluminum salt particles in the nasal cavity and then
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slowly released to be directly captured by the APC in NALT, thus
extending the time and the scale of the immune response
[25,37]. In addition, bacterial toxins and their derivatives, bacterial
glycolipids, virosomes, plant-derived molecules, and cytokines
seem to be the potential alternative adjuvants for intranasal
protein-based vaccines [38].



Fig. 6. Cell–cell fusion inhibition assay. (A) Principle of S protein-mediated cell–cell fusion assay. (B) Serum samples in each group were tested in duplicate. Data are
presented as relative light units (RLUs) %.
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In our study, the robust secretions of IL-4 and a Th2-bias
response were observed following alum adjuvanted administra-
tion, which might raise concern about the immunopathology
[39]. However, to date, no evidence for the disease enhancement
of alum has been found in marketed vaccines or coronavirus vacci-
nes in preclinical studies [6,40,41], including a recently reported
SARS-CoV-2 vaccine [42]. Instead, alum could cause IL-4 secretion,
which in turn, can lead to the priming and proliferation of B cells
and the promotion of a potent antibody-mediated immunity [43–
45].

Due to the limited resources of ABSL-3 animal laboratory, we
have yet to perform the virus challenge experiments to show the
protective efficacy in mice of our intranasal vaccine. Nevertheless,
the nasal delivery of the recombinant RBD adjuvanted with alum
represents a safe and promising strategy for SARS-CoV-2 vaccine
development.
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