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Abstract: Among the thyroid cancers, papillary thyroid cancer (PTC) accounts for 90% of the cases. In
addition to the necessity to identify new targets for PTC treatment, early diagnosis and management
are highly demanded. Previous data indicated that the multivariate statistical analysis of the Raman
spectra allows the discrimination of healthy tissues from PTC ones; this is characterized by bands
typical of carotenoids. Here, we dissected the molecular effects of carotenoid accumulation in PTC
patients by analyzing whether they were required to provide increased retinoic acid (RA) synthesis
and signaling and/or to sustain antioxidant functions. HPLC analysis revealed the lack of a significant
difference in the overall content of carotenoids. For this reason, we wondered whether the carotenoid
accumulation in PTC patients could be related to vitamin A derivative retinoic acid (RA) biosynthesis
and, consequently, the RA-related pathway activation. The transcriptomic analysis performed using
a dedicated PCR array revealed a significant downregulation of RA-related pathways in PTCs,
suggesting that the carotenoid accumulation in PTC could be related to a lower metabolic conversion
into RA compared to that of healthy tissues. In addition, the gene expression profile of 474 PTC cases
previously published in the framework of the Cancer Genome Atlas (TGCA) project was examined by
hierarchical clustering and heatmap analyses. This metanalysis study indicated that the RA-related
pathways resulted in being significantly downregulated in PTCs and being associated with the
follicular variant of PTC (FV-PTC). To assess whether the possible fate of the carotenoids accumulated
in PTCs is associated with the oxidative stress response, the expression of enzymes involved in ROS
scavenging was checked. An increased oxidative stress status and a reduced antioxidant defense
response were observed in PTCs compared to matched healthy thyroids; this was possibly associated
with the prooxidant effects of high levels of carotenoids. Finally, the DepMap datasets were used to
profile the levels of 225 metabolites in 12 thyroid cancer cell lines. The results obtained suggested
that the high carotenoid content in PTCs correlates with tryptophan metabolism. This pilot provided
novel possible markers and possible therapeutic targets for PTC diagnosis and therapy. For the future,
a larger study including a higher number of PTC patients will be necessary to further validate the
molecular data reported here.
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1. Introduction

In the past 30 years, the incidence of thyroid cancer (TC) has significantly increased,
making it the fastest rising malignant solid tumor worldwide [1]. Among the TCs, papillary
thyroid cancer (PTC) accounts for 90% of thyroid cancer cases [2]. In addition to the even
more urgent necessity to discover new biological and therapeutic targets for PTC treatment,
early diagnosis and management represent key points required for the improvement of
patient prognosis. Indeed, the trauma caused by surgery and the recurrence of the tumor
are still intractable issues, bringing a certain life and economic burden to patients [3].
Therefore, it is of great significance to further explore the pathogenesis of PTC and to find
molecular targets with the potential for early diagnosis, prevention, and treatment. In
recent years, Raman spectroscopy (RS) has emerged as a powerful tool for TC diagnosis.
Indeed, our group has reported that the multivariate statistical analysis of RS spectra allows
the discrimination of healthy from thyroid cancerous tissues and makes it possible to
distinguish between the most common TC subtypes [4,5]. In particular, RS has allowed the
identification of bands typical of carotenoids in PTC cells, suggesting that the presence of
these molecules could represent a specific fingerprint of this type of TC and consequently a
potential candidate for differential diagnosis [4–6].

Carotenoids are isoprenoids naturally occurring in fruits and vegetables and are
synthesized in plants and microorganisms [7,8]. This wide family of C40 molecules has
important functions not only in carotenoid-producing organisms, but also in animals
that absorb these molecules in their diets. The primary carotenoids found in human
plasma are α-carotene, β-carotene, γ-cryptoxanthin, lycopene, and lutein [9,10]. All these
carotenoids display an antioxidant activity, and among them, α-carotene, β-carotene, and
γ-cryptoxanthin are also precursors of vitamin A in animals [10]. Besides being essential
for vision, the vitamin A derivative retinoic acid (RA) represents in vertebrates a major
signal, controlling a wide range of biological processes thanks to its ability to bind two
classes of nuclear receptors, i.e., the retinoic acid receptor (RAR) and the retinoid X receptor
(RXR) [11–13]. RAR is part of the RAR/RXR heterodimer that binds DNA regulatory
sequences, its RA-induced signaling regulating the transcription of genes involved in an
array of biological processes such as pattern formation during embryonic development,
cell differentiation, and control of certain metabolic activities [13].

Here, we aim to determine in 11 PTC patients whether the carotenoid accumulated
in this type of TC, as reported by RS analyses [4–6], is metabolized to RA or, rather, is
used by cancer cells to support antioxidant functions. Considering the low availability
of patients to be enrolled in this study, this was intended as a pilot study, providing a
molecular fingerprint of PTC useful for the identification of novel possible markers for
diagnosis and therapy.

2. Materials and Methods
2.1. Study Enrollment

We screened and enrolled subjects with thyroid nodular pathologies who were referred
to the thyroid outpatient clinic of the Metabolic Bone and Thyroid Disorders Unit of
Fondazione Policlinico Universitario Campus Bio-Medico (Rome, Italy) between January
2018 and January 2021. Our protocol adhered to the Declaration of Helsinki and to the
International Conference on Harmonization Good Clinical Practice, receiving the approval
of the local ethics committees. The participants were recruited from and were managed
at Fondazione Policlinico Universitario Campus Bio-Medico (Rome, Italy), all of them
granting written informed consent that allowed the use of their anonymized information
for data analysis. The patient eligibility criteria were as follows: (i) ≥18 years old; (ii) one
or more thyroid nodules with a medium-high ultrasound risk of malignancy (Thyroid
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Imaging—Reporting and Data System (TI-RADS) score ≥3) [14]; (iii) at least one thyroid
nodule with a fine needle aspiration (FNA) report categorized as indeterminate, suspicious,
or malignant and warranting thyroid surgery according to clinical guidelines [15]; (iv)
final histological diagnosis of PTC; and (v) willingness to provide material for RS and
carotenoid analysis. Once thyroid histology was reported and RS analysis performed, only
those subjects with material available for the transcriptomic and proteomic analyses were
included in the final analysis (Table 1).

Table 1. List of all the patients investigated, along with clinical information. US Classification was
conducted according to [14]. FA Oxy, follicular thyroid adenoma oncocytic variant; FC, follicular
thyroid carcinoma; FC Oxy, follicular thyroid carcinoma oncocytic variant; FV-PTC, follicular variant-
papillary thyroid carcinoma; n.a., not available; PTC, papillary thyroid carcinoma; PTC Oxy, papillary
thyroid carcinoma oncocytic variant; TI-RADS, Thyroid Imaging—Reporting and Data System.

Sample Gender Age at Diagnosis US Classification
(TI-RADS)

Histological
Diagnosis Raman Cluster

TIR46 F 42 5 PTC PTC
TIR47 M 52 4 FC Oxy FC
TIR48 F 43 4 PTC Oxy PTC
TIR49 F 45 4 PTC PTC
TIR50 F 30 5 PTC PTC
TIR54 F 36 4 PTC n.a.
TIR68 F 24 4 PTC PTC
TIR70 F 48 4 PTC PTC
TIR77 M 45 4 PTC FV-PTC
TIR94 M 50 5 PTC Hobnail PTC
TIR99 M 74 3 FA Oxy PTC

2.2. Patients’ Evaluation

All subjects were submitted to thyroid US evaluation, using a frequency range of
10–12 MHz on a MyLab 50 (Esaote, Genova, Italy). The US scans of the thyroid gland and
neck area were performed by 2 experienced endocrinologists at the Endocrinology Unit
at Fondazione Policlinico Universitario Campus Bio-Medico (Rome, Italy). Nodules were
classified according to the American College of Radiology (ACR) TI-RADS risk stratification
criteria [14] without prior knowledge of the cytological results. Patients harboring one
or more thyroid nodules of medium-high malignancy risk by US (TI-RADS score ≥ 3)
and submitted to thyroid FNA represented the criteria for patient selection. Once thyroid
FNA cytology was reported, only those subjects with at least one nodule categorized
as indeterminate, suspicious, or malignant, with a formal indication of thyroid surgery
according to the international guidelines [15], and a final histological diagnosis of PTC were
enrolled in the study. Histological diagnosis was reported in agreement with the current
edition of the World Health Organization (WHO) classification of endocrine tumors [16].
Because of the small size of the available tumor tissues explanted from patients, it was
not always possible to perform all the transcriptomic and proteomic analyses on the same
samples.

2.3. Raman Spectroscopy

Raman spectra were collected using a Renishaw InVia Micro-Raman spectrometer,
equipped with a solid-state diode laser source at 532 nm (nominal output power of 100 mW)
and a confocal microscope (Leica 50× Long Working Distance objective), used both to
focalize the incident laser beam and to collect the back-scattered light. Elastically scattered
light is rejected by using a holographic edge filter, while inelastically scattered intensity
is dispersed by a diffraction grating (1800 grooves/mm) on a Peltier cooled 1024 × 256
pixel Charge-Coupled Device (CCD) detector. The final instrumental resolution is of the
order of 1 cm−1. To prevent photo damage, the laser power at the sample was controlled
by neutral density filters. The spectra were collected in the 100–3600 cm−1 range. On each
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sample, 5 measurement points were selected and 5 scans per point were accumulated for
a total integration time of 50 s. The experimental conditions and data acquisition were
controlled by Wire (Renishaw) software, which also allowed the preliminary data reduction
(e.g., background and fluorescence subtraction). The MATLAB and ORIGIN 9.0 software
were used to analyze the data.

2.4. Extraction of Carotenoids from the Thyroid Tissue

The carotenoids extraction was performed according to the procedure proposed by
Peng and colleagues [17]. Briefly, healthy and tumoral thyroids were weighted and in-
cubated in 560 µL of phosphate buffered saline solution containing 1 mg of butylated
hydroxytoluene (BHT, Merck KGaA, Darmstadt, Germany) and 70 µL of a collagenase
(50 mg/mL; Carlo Erba, Milano, Italy) at 37 ◦C for 1 h using a shaker (500 rpm). After
a manual homogenization using glass potters, 70 µL proteinase K (20 mg/mL; Merck
KGaA) was added to the samples, which were further incubated at 37 ◦C for 30 min using
a shaker. After vortexing for 1 min, the lysate was mixed with 700 µL of an ethanolic buffer
containing 1% SDS and 0.1% BHT. The solution was vortexed with n-hexane (Merck KGaA)
and then centrifugated at 13,000 rpm for 30 s. The extraction with n-hexane was repeated
twice, and the supernatants were then collected and dried under a nitrogen atmosphere.
The extracts were solubilized in 120 µL methanol:chloroform 1:1, 80 µL of which were
immediately injected into the High Performance Liquid Chromatography (HPLC). All the
procedures were performed in the dark, under red light.

2.5. High Performance Liquid Chromatography (HPLC)

Carotenoids were separated following the method from [18] with minor modifications,
using a YMC C30 column (250 mm × 4.6 mm i.d., 5 µm particle size) (YMC, Kyoto, Japan)
kept at 35 ◦C and a flow of 1 mL/min. The mobile phase consisted of: (A) methanol, and
(B) tert-butyl methyl ether. The following gradient was used (35 min): 90% A for 2 min,
followed by a linear gradient to 80% A for 8 min and then to 30% A for 10 min, which
was then maintained for further 15 min. The photodiode array was set at 450 and 472 nm.
α-carotene, β-carotene, lutein, and lycopene were recognized and quantified by comparison
with analytical standards (Merck KGaA). Unidentified peaks were quantified using the
calibration curve of β-carotene. To verify the quantification reliability of using a few tens
of mg of tissue, the method was verified by measuring the recovery of carotenoids from
tissues spiked with known concentrations of β-carotene (the recovery rate was 96 ± 10%)
and by performing up to four serial repetitions of n-hexane extraction (the extractions
beyond the second did not yield detectable β-carotene).

2.6. Total RNA Extraction

Total RNA was extracted from the healthy and pathological lobes of each patient. RNA
was obtained from two formalin-fixed paraffin-embedded (FFPE) tissue sections of 5 µm
thickness each, using the RNAeasy® FFPE kit (Qiagen, Hilden, Germany) and following
the manufacturer’s instructions. Briefly, sections were deparaffinized using heptane and
methanol. After centrifugation, pellets were air-dried and then resuspended into PKD
buffer (Qiagen) containing 10 µL proteinase K (>600 mAU/mL; provided with the kit).
After a first incubation at 56 ◦C for 15 min and a second incubation at 80 ◦C for 15 min,
samples were put on ice for 3 min and finally centrifuged at 13,000 rpm for 15 min. The
DNA was removed by incubation of the collected supernatant with DNAse for 15 min.
After the addition of RBC buffer, samples were loaded on a RNeasy MinElute spin column
and centrifuged. Finally, RNA was eluted using 30 µL RNase-free water, and quantified
with Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA).
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2.7. Transcriptomic Analysis Using the PCR Array “Human Retinoic Acid Pathway”

Three micrograms of total RNA were reverse transcribed using the RT2 First Strand
Kit (Qiagen), following the manufacturer’s instructions. The expression of 96 genes was
analyzed using the RT2 Profiler “Human Retinoic Acid Pathway” PCR Array 96-well format
(cat no. 330231 PAHS-180Z; Qiagen) in combination with the RT2 SYBR Green PCR Master
Mix (Qiagen), according to the manufacturer’s protocol. Of these 96 genes, 84 genes belong
to the human RA-related pathways, and 12 genes are either housekeeping genes (i.e., ß-actin
(ACTB), ß-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
hypoxanthine phosphoribosyltransferase 1 (HPRT1), and ribosomal protein lateral stalk
subunit P0 (RPLP0)) or internal controls (i.e., human genomic DNA contamination, reverse
transcription control, positive PCR control). The AriaMx Real-time PCR system (Applied
Biosystems, Waltham, MA, USA) was used and the three steps of the cycling program were:
95 ◦C for 10 min for 1 cycle, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. The
expression levels of each gene were quantified and reported as relative quantity (RQ) with
respect to the calibrators represented by the housekeeping genes, according to the 2−∆∆Ct

method. Data analyses were performed using the Agilent AriaMx 1.71 software (Thermo
Fisher Scientific) and the GeneGlobe software (Qiagen). The analysis of the differentially
expressed genes (DEGs) between the healthy and PTC thyroids was performed using Venn
diagrams (Bioinformatics & Evolutionary Genomics, http://bioinformatics.psb.ugent.be/
webtools/Venn/; accessed on 13 January 2022). Visualization, interpretation, and analysis
of the biomolecular pathways were performed using Reactome (https://reactome.org;
accessed on 13 January 2022), a free, open-source, open-data, curated, and peer-reviewed
knowledgebase [19].

2.8. Quantitative Real-Time Reverse Transcription–Polymerase Chain Reaction (qRT-PCR)

Total RNA was reverse transcribed and amplified with a GoTaq 2-step RT-qPCR
system (Promega, Madison, WI, USA), following the manufacturer’s instructions. The
cDNA obtained was then amplified for the following transcripts: CRABP2 (forward:
5′-AGTGTCCAGTGCTCCAGCCTA-3′; reverse: 5′-CTGCAGCCACAGCAATCTTC-3′),
CYP26B1 (forward: 5′-AGCTAGTGAGCACCGAGTGG-3′; reverse: 5′-GGGCAGGTAGCTC
TCAAGTG-3′), DHRS3 (forward: 5′-CGTTGCTGGCAATCAGATCG-3′; reverse: 5′-CGCGG
TTTCAAAGTGCAAGA-3′), RARγ (forward: 5′-CAGAGCAGCAGTTCTGAAGAGATA-3′;
reverse: 5′-GACACGTGTACACCATGTTCTTCT-3′), RDH10 (forward: 5′-TGGGACATCAA
CACGCAAAGC-3′; reverse: 5′-TGCAAGTTACAGTGGGGCAGA-3′), RET (forward: 5′-
CGCGACCTGCGCAAA-3′; reverse: 5′-CAAGTTCTTCCGAGGGAATTCC-3′), RXRβ (for-
ward: 5′-AGCTCCCCCAGGATTCTC-3′; reverse: 5′-CAGGGAGTGACACTGTTGAGTTA-
3′). The amplifications were performed using the SYBR Green system and the Rotor Gene
RG-6000 Real-Time Thermocycler (Corbett Research, Qiagen GmbH), using the following
thermal cycling conditions: 95 ◦C for 2 min followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C
for 1 min. The data were reported as RQ with respect to a calibrator sample (i.e., ACTB),
according to the 2−∆∆Ct method.

2.9. Biochemical Analysis

The frozen thyroids were weighted, homogenized, and sonicated in lysis buffer (20 mM
Tris-HCl pH 8.0, 137 mM NaCl, 10 mM EDTA, 10% glycerol (v/v), 1% Triton™ X-100 (v/v),
and protease inhibitors). Fifteen micrograms of protein extracts, previously quantified
with the Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA), were resolved by
SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes (Bio-Rad
Laboratories). As reported elsewhere [20], after blocking with 3% BSA (w/v) dissolved
in TBS buffer/0.5% Tween-20 (v/v), the membranes were probed overnight at 4 ◦C with
the following antibodies purchased from Santa Cruz Biotechnology (Dallas, TX, USA):
anti-catalase (CAT; sc-365738), anti-glutathione peroxidase-4 (GPx-4; sc-166570), anti-heme
oxygenase-1 (HO-1; sc-136960), anti-NADPH oxidase 4 (NOX4; sc-518092), anti-NAD(P)H
quinone dehydrogenase 1(NQO1; sc-32793), anti-oxoguanine glycosylase 1 (OGG1; sc-
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376935), anti-superoxide dismutase-1 (SOD-1; sc-271014), anti-vinculin (sc-73614), anti-ß-
actin (sc-47778), and anti-γH2AX (sc-517348). The membranes were then incubated for 1 h
at room temperature with an anti-mouse HRP-conjugated secondary antibody (Bio-Rad
Laboratories). All the experiments were technically repeated at least twice. Blots were
acquired and processed using the ChemiDoc™ Imaging system (Bio-Rad Laboratories) [21].
Protein quantification was performed using the Image Lab software (version 6.0.1, Bio-Rad
Laboratories).

2.10. Immunohistochemistry Analysis

At the time of surgery, the removed specimens were immediately submitted unfixed
to the Pathology Unit at Fondazione Policlinico Universitario Campus Bio-Medico (Rome,
Italy) in an appropriately labelled container. After gross evaluation, the specimens were
formalin fixed, sampled, and processed for paraffin embedding. Four-micron sections from
the paraffin block of the formalin-fixed specimens were used for immunohistochemical
stain. Immunohistochemistry was performed with an automatized instrument (Dako Om-
nis, Agilent, Santa Clara, CA, USA) using an anti-SR-B1 rabbit monoclonal (clone EP1556Y,
Abcam, Cambridge, UK) and revealed with peroxidase development. Negative controls
were obtained by omitting the primary antibody; the positive control consisted of liver
tissue. The thyroid lesions were subjected for SR-B1 immunohistochemistry. For each
lesion, the section comprised both pathological tissue and normal parenchyma. Immuno-
histochemical evaluation was conduct in a blind way by two pathologists. Images were
acquired using a Nikon Eclipse Ni microscope equipped with a Nikon Digital Camera
DS-Fi3. The original magnification was 20× (Nikon, Tokyo, Japan).

2.11. Gene Expression Analysis of External Database Repository

Gene expression normalized data (RNAseq) of the 474 PTC cases of the Cancer Genome
Atlas (TGCA) project were downloaded from cBioPortal (https://www.cbioportal.org/
datasets; accessed on 26 January 2022) [22]. The data were trimmed +1 to eliminate 0
values before statistical analyses. The gene expression data were median centered and
log2 transformed. Hierarchical clustering and heatmap analyses were performed using
Cluster 3.0 for Mac OS X (C Clustering Library 1.56; http://bonsai.hgc.jp/~mdehoon/
software/cluster/software.htm; accessed on 26 January 2022) and Java Tree View (Version
1.1.6r4; http://jtreeview.sourceforge.net; accessed on 26 January 2022). The uncentered
correlation and centroid linkage clustering method was used. Statistical analyses (including
contingency plot) were performed using JMP 16 (SAS Institute S.R.L., Milano, Italy).

2.12. Statistical Analysis

The data were analyzed using GraphPad Prism 6 (version 6.01, GraphPad Software
Inc., San Diego, CA, USA). The data were expressed as mean values ±standard deviations
(SD). The statistical significance of differences was tested using the Student’s two-tailed
t-test (df: degree factor). p values of less than 0.05 were considered statistically significant.

3. Results

As previously reported, the Raman spectra of PTC tissues differ from those collected
from both healthy thyrocytes and cells affected by other types of cancer [4]. In Supple-
mentary Figure S1 is reported an exemplificative Raman spectrum derived from the TIR48
PTC patient. In the fingerprint region, the Raman spectra of PTC tissues are dominated,
compared to the healthy counterpart, by intense bands at 1003, 1155, and 1515 cm−1. These
bands are due to the resonance effect of free carotenoids when excited at 532 nm. Other
bands at 2155, 2301, and 2652 cm−1, also related to carotenoids, are visible, along with
bands at 1444, 1655, and 2848 cm−1. The latter three bands are ascribed to fatty acid
vibrational modes, namely CH2 wagging, CC asymmetric stretching, and CH2 symmetric
stretching, respectively. With the aim of dissecting the molecular effects of carotenoid
accumulation in PTC patients, here we performed a combination of analyses (i.e., HPLC,

https://www.cbioportal.org/datasets
https://www.cbioportal.org/datasets
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net
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transcriptomic, oxidative stress analysis, and metanalysis) to clarify whether carotenoids
are required to provide increased retinoic acid (RA) synthesis and signaling and/or to
sustain antioxidant functions.

3.1. Determination of Carotenoids Content in Healthy and PTC Thyroids by HPLC

The presence of carotenoids in PTC patients was corroborated using the HPLC analyses
of thyroids (Figure 1A). α-carotene, β-carotene, lutein, and lycopene were detected in the
thyroids of all the four patients analyzed, together with five unidentified peaks attributable
to molecules with absorbances measured at 450 and 472 nm (Figure 1B and Supplementary
Table S1). The obtained results indicated that β-carotene (139.5± 67.6 and 147.0± 50.6 ng/g
in healthy lobes and PTCs, respectively) is the most prevalent carotenoid found in healthy
and PTCs thyroid lobes of the four analyzed patients (Figure 1B). Overall, for all the
identified carotenoids, no significant differences were found between healthy thyroid lobes
and the PTC counterparts of the analyzed patients (Figure 1B). Notably, no significant
differences were scored between the total amount of the identified carotenoids (i.e., α-
carotene, β-carotene, lutein, and lycopene) (242.5 ± 100.2 and 253.4 ± 87.6 ng/g in healthy
lobes and PTCs, respectively) and the unidentified carotenoids (i.e., unknown 1 to 7)
(217.1 ± 86.3 and 217.7 ± 53.9 ng/g in healthy lobes and PTCs, respectively) (Figure 1B
and Supplementary Table S1).
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Figure 1. HPLC profiles of carotenoids recorded in the healthy and tumoral thyroid lobes of PTC
patients. (A) Representative carotenoids HPLC chromatogram: (1) lutein; (2) unknown 1; (3) unknown
2; (4) unknown 3; (5) unknown 4; (6) α-carotene; (7) β-carotene; (8) unknown 5; (9) unknown 6;
(10) unknown 7; (11 and 12) lycopene. (B) Mean values of α-carotene, β-carotene, lutein, and
lycopene concentrations (ng/g of thyroid tissue) quantified in the healthy and pathological lobes
of the thyroids derived from four PTC patients (i.e., TIR22, TIR54, TIR77, and TIR94), together with
seven unidentified peaks attributable to molecules with absorbances measured at 450 and 472 nm.

Of note, the carotenoids are Raman resonant only as free molecules and not when
they are bound to other biomolecules, and HPLC measures the total amount of carotenoids
irrespective of their binding status. Therefore, the discrepancy between the Raman and the
HPLC analyses could be ascribed to the free/bound state of carotenoids in healthy versus
PTC samples.
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3.2. Evaluation of Carotenoids Metabolism in Healthy and PTC Thyroids

To further investigate the reason why the Raman spectra showed a marked increase
in the band corresponding to free carotenoids and considering that β-carotene was the
prevalent compound among the carotenoids identified by HPLC in the four analyzed
patients, we tested the possibility that the different distributions of carotenoids between
the healthy and the PTC counterparts could be due to a different metabolism of provitamin
A carotenoids and more in the detail of the RA biosynthesis and related metabolism.

The gene expression profile related to the human RA pathway was performed in
matched healthy and PTC counterparts by the RT2 Profiler PCR Array “Human Retinoid
Acid Pathway”. The Supplementary Table S2 shows the complete list of the genes signifi-
cantly modulated (fold change (FC)| >1.5|) in each analyzed patient (i.e., TIR48, TIR50,
TIR70, and TIR94). Supplementary Figures S2 and S3 show the heatmaps and the scatter
plot, respectively, of the gene expression profile in each patient. Overall, compared to
the control, 23 differentially expressed genes (DEGs) were found significantly modulated
in all four patients and further 27 DEGs were found modulated in at least three patients
(FC| >1.5|) (Figure 2A). Of these, five genes were downregulated in all the four analyzed
patients and 18 were downregulated in at least three out of the four patients (Figure 2B).
Only one gene was commonly upregulated in three out of four PTC patients (Figure 2C).

To validate the RT2 Profiler PCR Array results, RT-qPCR and immunoblot experiments
were performed on selected DEGs. CRABP2, CYP26B1, DHRS3, RARγ, RDH10, RET, and
RXRß were validated by RT-qPCR in the same patients tested by the RT2 Profiler PCR
Arrays (Figure 2D). In addition, the ALDH1A, CRABP2, DH10, and RARα protein levels
were checked by immunoblots performed using the healthy and pathological lobes of the
thyroids of three further PTC patients (i.e., TIR45, TIR46, TIR48) (Figure 2E). The results
obtained confirmed the downregulation of selected DEGs in the PTC lobes compared to
the matched healthy ones.

To perform an unsupervised discovery analysis of the pathways significantly modu-
lated because of gene expression modulation in the analyzed patients, we used the Reac-
tome software. The obtained results showed that both the overall significantly modulated
DEGs as well as the significantly downregulated DEGs were enriched in several biological
pathways, as reported in Supplementary Tables S3 and S4. In particular, “Signaling by
RA”, “RA biosynthesis pathway”, “Signaling by nuclear receptors”, “BMAL1:CLOCK,
NPAS2 activates circadian gene expression”, and two pathways related to HOX genes
expression (“Activation of anterior HOX genes in hindbrain development during early
embryogenesis” and “Activation of HOX genes during differentiation”) were significantly
downregulated and displayed low false discovery rate (FDR) values in PTCs compared to
their relative counterparts (Supplementary Table S4). Protein–protein interaction networks
involving the DEGs significantly modulated in the PTC patients were identified using
the STRING database ([23]). A PPI network with 22 interaction pairs of the DEGs was
identified (Figure 2F).

Mammalian scavenger receptors class B type 1 (SR-B1) expression is essential for the
cellular uptake of carotenoids [24,25]. The immunohistochemistry analysis of the SR-B1
receptor showed that all the examined lesions, as well as the normal parenchyma, did not
show any SR-B1 expression in thyrocytes (Supplementary Figure S4). This suggests that the
increase in carotenoids levels as detected by RS [4,5] was not due to an increased uptake
but possibly by a different carotenoid metabolism between the healthy and PTC lobes.

Overall, the obtained results indicate that despite HPLC analysis showed a comparable
content of carotenoids in heathy and matched PTC thyroid lobes, the precursors of vitamin
A in animals (i.e., α-carotene, β-carotene, and γ-cryptoxanthin) were converted to RA to a
lower extent in PTC compared to healthy matched lobes [10]. This may explain the higher
levels of free carotenoids detected by RS in PTC compared to the healthy counterparts [4,5],
also considering that we did not observe an increased expression of the carotenoids receptor
SR-B1.
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diagram of the differentially expressed genes (DEGs) that were found significantly modulated
in the four PTC patients analyzed. Twenty-three DEGs were found significantly modulated in
all four of the patients, and a further 27 DEGs were found modulated in at least three patients
(foldchange (FC)| >1.5|). (B) Venn diagram of the significantly down-regulated DEGs. Among
the overall 23 transcripts significantly downregulated, five were found downregulated in all the
three PTC analyzed patients and 18 were downregulated in at least three out of four PTC patients.
(C) Venn diagram of the only significantly up-regulated DEG. Venn diagrams were calculated
and drawn using the software available at the Bioinformatics & Evolutionary Genomics website
(http://bioinformatics.psb.ugent.be/webtools/Venn/; accessed on 13 January 2022). (D) To validate
DEGs, RT-qPCR experiments were performed using the RNA extracted from the healthy and PTC
lobes of TIR48, TIR50, TIR70, and TIR94 patients. The expression levels of CRABP2, CYP26B1, DHRS3,
RARγ, RDH10, RET, and RXRß genes have been reported as relative quantity in the PTC lobe with
respect to the healthy one for each patient analyzed, according to the 2−∆∆Ct method. Data are
reported as mean ±SD of experiments repeated at least three times (Student’s t-test, **** p < 0.0001,
*** p < 0.001, with respect to the relative healthy lobe). (E) To validate DEGs, immunoblot experiments
were performed using the protein lysates derived from the healthy and PTC lobes of TIR45, TIR46,
and TIR48 patients. The expression levels of ALDH1A, CRABP2, DH10, and RARα proteins in the
PTCs lobes have been normalized to the healthy lobe of each patient analyzed. Both representative
images of the immunoblot and their quantification are reported. Graphs illustrate the mean ± SD of
experiments repeated at least three times (Student’s two-tailed t-test, * p < 0.05; ** p < 0.01; *** p < 0.001,
with respect to the relative healthy lobe). (F) Protein–protein interactions network involving the
DEGs significantly modulated in the PTC patients were identified using the STRING database. A PPI
network with 22 interaction pairs of the DEGs was identified.

3.3. Impact of Retinoid Acid-Signature in a Cohort of Patients with Papillary Thyroid Cancer

Because the study may suffer due to the low number of available patients, to further
investigate the biological and pathological significance of our identified “Human Retinoid
Acid Pathway” signature we evaluated the expression of 84 RA-related genes derived from
the 96-well PCR array in the framework of the Cancer Genome Atlas (TGCA) project [22]
(Supplementary Table S5). An unsupervised hierarchical clustering analysis was performed
to investigate the human RA pathway gene signature (n = 84) in the TCGA-PTC dataset
(Figure 3). The obtained results revealed that within the 474 PTC available cases, the 84 gene
RA pathway signature allowed the identification of two main clusters (i.e., Cluster 1 and 2)
characterized by a heterogenous gene expression pattern (Figure 3A). Cluster 1 includes 225
PTC cases, whereas Cluster 2 includes 248 PTC cases. Besides PTC, the other two categories
of TC with a larger incidence are the follicular variant of PTC (FV-PTC) and the follicular
thyroid carcinoma (FTC). Intriguingly, FV-PTC (n = 99) failed predominantly in Cluster 1
(n = 86) compared to Cluster 2 (n = 13) (Figure 3B). Conversely, Cluster 2 was characterized
mainly by the classical (n = 190) and tall cell (n = 29) PTC subtypes (Figure 3B). The analysis
of the gene expression FC between Cluster 1 and Cluster 2 revealed that among the 84
genes belonging to the “Human Retinoid Acid Pathway”, 58 were significantly modulated
(p < 0.05). Among these, 42 genes (72.4%) were significantly downregulated in Cluster 1
compared to Cluster 2 (p < 0.05, Welch’s t-test) (Supplementary Table S6).

Overall, these analyses allow the speculation that the subset of PTCs in which the
RA-related pathways result in being significantly downregulated correlates more with
FV-PTC, which was reported to have an intermediate clinical behavior between classical
PTC (C-PTC) and FTC [26].

http://bioinformatics.psb.ugent.be/webtools/Venn/
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3.4. Antioxidant Response in Healthy and PTC Thyroids

Carotenoids are known to be potent scavengers of reactive oxygen species (ROS), thus
providing protection against oxidative damage to photosynthetic and non-photosynthetic
organisms at all levels of complexity [9,10,27–30]. However, newly formed carotenoids
radical products can undergo further transformations, leading to a variety of secondary
carotenoid derivatives that may no longer act as efficient antioxidants but rather as poten-
tially harmful pro-oxidant agents. For instance, the carotenoid radical cation has strong
oxidizing properties, has a relatively long lifetime (milliseconds) [31,32], and thus is able to
interact with biological macromolecules [30].

To assess whether the possible fate of the carotenoids accumulated in the PTC is
associated with the oxidative stress response, we analyzed the expression of oxidative stress
markers and of enzymes involved in ROS scavenging in the thyroids of three patients (i.e.,
TIR45, TIR46, and TIR48). The immunoblot analysis of the H2AX histone phosphorylated
at Ser19 (the phosphorylated form being named γH2AX) and of oxoguanine glycosylase
1 (OGG1) showed a significant increase of both these well-known markers of genomic
oxidative stress in the tumors compared to the healthy counterparts of the three analyzed
PTC patients (γH2AX: 4.2-mean fold increase; t = 10.321, df = 2, p < 0.01; OGG1: 1.3-mean
fold increase; t = 5.564, df = 2, p < 0.05) (Figure 4A). The Supplementary Figure S5 reports
the results obtained in each analyzed patient.

Next, we analyzed in the same patients the expression of the antioxidant enzymes. The
obtained data indicate a significant reduction in the analyzed proteins in the tumor lobe
compared to the relative healthy counterparts. In particular: (i) catalase (CAT) (0.2-mean
fold decrease; t = 11.72, df = 2, p < 0.01); (ii) glutathione peroxidase-4 (Gpx-4) (0.4-mean fold
decrease; t = 11.13, df = 2, p < 0.01); (iii) heme oxygenase-1 (HO-1) (0.4 mean fold-reduction
decrease; t = 12.96, df = 2, p < 0.01); (iv) NADPH oxidase 4 (NOX-4) (0.2-mean fold decrease;
t = 7.341, df = 2, p < 0.05); (v) NAD(p)H quinone dehydrogenase-1 (NQO-1) (0.3-mean fold
decrease; t = 3.666, df = 2, not significant); (v) superoxide dismutase-1 (SOD-1) (0.3-mean
fold decrease; t = 7.294, df = 2, p < 0.05) (Figure 4B). The Supplementary Figure S6 reports
the results obtained in each patient analyzed.

Overall, these data indicate an increased oxidative stress status and a reduced antioxi-
dant defense response in PTCs compared to healthy thyroids.
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Figure 4. Oxidative stress and antioxidant response in PTCs. To evaluate the oxidative stress levels
and the antioxidant response, protein lysates obtained from patients TIR45, TIR46, and TIR48 were
analyzed by immunoblot. (A) Representative immunoblots are reported together with the relative
quantification of pSer139-H2AX (γH2AX) and OGG1 proteins expression normalized to β-actin.
Violin plots represent the mean value ±SD of the expression of each protein normalized to the
healthy counterparts, in the three analyzed patients (Student’s t-test, * p < 0.05; ** p < 0.01 with
respect to healthy lobes). (B) Representative immunoblots are reported together with the relative
quantification of CAT, GpX-4, HO-1, NOX-4, NQO-1, and SOD-1 proteins expression normalized
to β-actin. Violin plots represent the mean value ± SD of expression of each protein normalized to
the healthy counterparts, in the three analyzed patients (Student’s t-test, * p < 0.05; ** p < 0.01 with
respect to healthy lobes).

3.5. Dissecting the Metabolic Status of PTCs

With the aim of enriching the molecular characterization of PTCs and to evaluate
whether PTC metabolism may be somehow differentiated from that of other TC subtypes
considering the reported carotenoid accumulation [4,5], we inspected the DepMap datasets
(https://depmap.org/portal/; accessed on 31 January 2022). This resource enables unbi-
ased association analysis linking the cancer metabolome to genetic alterations, epigenetic
features, and gene dependencies. In detail, we extrapolated from the DepMap portal the
profile of 225 metabolites in 12 thyroid cancer cell lines (Figure 5). Three PTC (i.e., SW579,
BCPAP, and BHT101), four FTC (i.e., CGTHW1, FTC238, ML1, TT2609C02), four anaplastic
(i.e., 8305C, 8505C, CAL62; FTC133), one medullary (i.e., TT), and one thyroid sarcoma
(i.e., S117) cell lines were profiled in the database. The data revealed that some of the
metabolites involved in tryptophan metabolism were significantly higher in PTC cells com-

https://depmap.org/portal/
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pared to all the other thyroid cancer cell lines. In particular, the metabolites significantly
modulated were: (i) anthranilic acid (3.8-fold increase; p < 0.05), a precursor to the amino
acid tryptophan via the attachment of phosphoribosyl pyrophosphate to the amine group;
(ii) NAD (3.2-fold induction; p < 0.05), an intermediate in the tryptophan-nicotinamide
pathway [33]; (iii) 6-phosphogluconate (2.6-fold induction; p < 0.05), an intermediate in the
pentose phosphate pathway that serves as an intermediate (e.g., erythrose 4-phosphate)
and a cofactor in tryptophan biosynthesis [34]; and (iv) adenine (3.8-fold increase; p < 0.05),
a nitrogen-containing base (Figure 5). Interestingly, the increased levels of anthranilic
acid and NAD support a metabolism addressed toward glycolysis, as further reinforced
by the statistically significant increase in phosphoenolpiruvate (PEP) observed in PTC
cell lines compared to all the other thyroid cancer cells lines (2.4-fold increase; p < 0.05)
(Figure 5). Notably, these results appear of interest because it has been reported that a high
carotenoid content correlates with an increased biosynthesis of phenylalanine, tyrosine,
and tryptophan ([35] (Supplementary Tables S7 and S8)). Therefore, it can be speculated
that the reported accumulation of carotenoids in PTCs might possibly be linked with the
increased tryptophan metabolism, which is increasingly being recognized as an important
microenvironmental factor that suppresses antitumor immune response [36].
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Figure 5. Dissection of the metabolic status of PTCs. We extrapolated from the DepMap portal
(https://depmap.org/portal/; accessed on 31 January 2022) the profile of 225 metabolites in 12
thyroid cancer cell lines (i.e., three PTC (i.e., SW579, BCPAP, and BHT101), four FTC (i.e., CGTHW1,
FTC238, ML1, TT2609C02), four anaplastic (i.e., 8305C, 8505C, CAL62; FTC133), one medullary (i.e.,
TT), and one thyroid sarcoma (i.e., S117)). Some of the metabolites involved in tryptophan metabolism
(i.e., anthranilic acid, NAD, 6-phosphogluconate, adenine, and PEP) were found significantly higher
in PTC cells compared to all the other thyroid cancer cell lines. Each dot in the plots represents the
measured value of the indicated metabolite in one single thyroid cancer cell line (Student’s t-test,
* p < 0.05 with respect to healthy lobes). Crude and analyzed data are given in Supplementary
Tables S7 and S8.
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4. Discussion

Carcinogenesis is a multi-step process that results from an accumulation of injuries
at several biological levels, which can include genetic and biochemical changes within
cells. Our group has demonstrated that both PTC and FV-PTC are characterized by higher
carotenoid levels compared to their healthy counterparts, as clearly detectable by RS [4,5].
The significant correlation between the subtype of TC and the carotenoids presence makes
it possible to distinguish with the 90% of accuracy healthy tissues from and cancerous ones,
as well as to discriminate between the three main high-incidence thyroid cancer variants
(i.e., PTC, FTC, and FV-PTC) [4–6].

As Raman analysis does not allow us to distinguish which specific type of carotenoid
accumulates in TC, here we performed HPLC analysis to dissect the profile of the carotenoids
recorded in patients diagnosed with PTC. Surprisingly, the obtained results have shown
that the carotenoids levels were comparable between the matched healthy and PTC lobes
of all the analyzed patients. Although these findings are in contrast with the data obtained
by RS, this difference can be reconciled considering the different experimental procedures
of the two methods. Indeed, on one hand, RS is conducted on frozen tissue sections and
allows the identification of free intracellular carotenoids. Due to their hydrophobic nature,
the carotenoids released from the food matrix are dispersed into the gastrointestinal tract
with the support of dietary lipids, bile-derived phospholipids, and bile salts. Thereafter,
carotenoids are solubilized in the mixed micelles consisting of phospholipids, free fatty
acids, monoacylglycerols, and bile salts. These solubilization steps represent a critical factor
in carotenoids bioavailability and for the subsequent uptake by the intestinal cells [37].
Only once the carotenoids have been taken up by the cells does the RS analysis allow their
detection in a carrier-free form into tissue sections. On the other hand, HPLC analysis
requires a sample preparation in which the whole thyroid is lysed, and the proteins bound
to carotenoids are degraded. Consequently, both the carotenoids localized into the vessels
and those localized intracellularly can be analyzed by HPLC [38]. This implies that HPLC
analysis allowed us to analyze a larger fraction of carotenoids compared to RS, indicating
that their overall content in the extracellular and intracellular compartments does not
differ, as expected, between the healthy and cancer thyroid lobes the same patients. On the
contrary, the fraction of intracellular free carotenoids, as detected by RS, increases in PTC
and FC-PTC patients [4–6].

As one of the major carotenoid normally found in human plasma and tissues is β-
carotene [9,39], as also confirmed by the HPLC analyses of PTC patients performed here,
we tested the possibility that the difference in carotenoids levels between the healthy and
the PTC lobes could be due to a different metabolism of provitamin A [40]. The homeostasis
of RA, which is the vitamin A derivative, is controlled by a complex metabolic pathway con-
sisting of multiple reactions and enzymes. Briefly, dietary carotenoids such as β-carotene
can be either converted to retinaldehyde (RAL) by β-carotene-15,15′-monooxygenase-1
within the enterocyte or absorbed unmodified by cells. Then, RAL can be either converted
to RA by retinaldehyde dehydrogenases (RALDHs) or to retinol (ROL, also named vitamin
A) by renital reductases [13,41]. Remarkably, all the above-mentioned reactions are re-
versible. As many tissues and organs, including the thyroid [42], express enzymes involved
in the RA pathway, the β-carotene molecules delivered to these tissues can be converted
in situ to retinoids [13]. Thyroid glandular cells specifically express the enzyme xanthine
dehydrogenase (XDH) that, through a cellular retinoid-binding protein (CRBP)-dependent
mechanism, directly oxidizes ROL to RA [42,43]. Importantly, some evidence supports a
link between the thyroid gland and retinoids: both vitamin A deficiency and excess affect
thyroid gland volume by affecting thyroid hormone synthesis in vivo [42,44,45]. Taking
into consideration these complex pathways, if β-carotene is metabolized to RA its levels
should be lower than if this metabolic pathway is inactive. Interestingly, the transcriptomic
analysis performed here revealed that in all the analyzed PTC patients the overall path-
ways related to RA metabolism are significantly downregulated in PTC lobes compared to
their healthy counterparts. This result suggests that the higher levels of carotenoids, and
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specifically that of β-carotene, found by RS and HPLC analyses in PTC patients, are not
due to the increased uptake of carotenoids but rather to a different intracellular metabolic
fate. This hypothesis is also sustained by the lack of expression of the SR-B1 receptor in
PTC patients.

The beneficial and deleterious roles of the dietary carotenoids on human health may
be due to several factors, but antioxidant and pro-oxidant processes seem to be particularly
important. Under normal cellular conditions, carotenoids are powerful antioxidants [46,47]
that act as efficient physical and chemical quenchers of singlet oxygen and as potent scav-
engers of other ROS [9,10,27–30]. However, the high levels of ROS that accumulate in
cancer cells determine the possibility that carotenoids may act as prooxidants, causing
ROS-mediated apoptosis. Indeed, the carotenoids radical products formed during the
antioxidant processes can undergo further transformations, leading to a variety of sec-
ondary carotenoid derivatives that may no longer act as efficient antioxidants but rather
as harmful pro-oxidant agents [30,31,48,49]. Accordingly, the well-known protective func-
tion of β-carotene and lycopene has been challenged by clinical trials where β-carotene
supplementation in male smokers resulted in a significantly increased incidence of lung can-
cer [50]. Animal studies showed that diet influences the carcinogenic response to β-carotene
and that β-carotene, per se, is pro-carcinogenic in UV carcinogenesis [51]. Interestingly,
β-carotene has been shown to exhibit either limited antioxidant protection or to behave
as a pro-oxidant under oxidative stress conditions [52]. Based on these considerations,
we evaluated whether carotenoid accumulation in PTC patients could affect the oxidative
status and the antioxidant response. Oxidative DNA damage caused by intracellular ROS
is important in the pathology of a range of human diseases, including cancer [53–55]. The
evaluation of the DNA damage levels performed here revealed the presence of significantly
higher levels of DNA double-strand breaks (marked by γH2AX) in PTCs compared to the
healthy counterparts. A frequently occurring mutagenic base lesion produced by ROS is
8-oxo-2′-deoxyguanosine (8-oxo-dG), which is repaired by OGG1. We found that OGG1
levels were also markedly increased in the PTC lobes of all the patients analyzed compared
to the relative healthy lobes. These results agree with the observation that oxidant levels
are significantly increased in patients with TC compared to the controls [56]. This high
oxidative stress status agrees with data reporting increased levels of malondialdehyde
(MDA) in PTCs, one of the final products of polyunsaturated fatty acid peroxidation in
cells [57]. To evaluate the antioxidant response in PTC patients, the expression of six
antioxidant molecules (i.e., CAT, GPx-4, HO-1, NOX-4, NQO-1, and SOD-1) was analyzed.
The results obtained showed that all these antioxidant proteins and enzymes were down-
regulated in the PTC lobes compared to the healthy counterparts. Overall, these results
agree with the oxidative stress status [58–60] and the decreased expression of glutathione
peroxidase [60] and catalase [58,59] observed in TC, possibly contributing to the increase in
the imbalance of the oxidant/antioxidant system in PTCs [61]. Interestingly, the unsuper-
vised hierarchical clustering analysis of the gene expression profiles of the 474 PTC cases
published in the framework of the TGCA project [22] indicate that the RA-related pathways
resulted in being significantly downregulated in PTCs and in being associated with a worse
prognosis. As we reported an increased oxidative stress status and a reduced antioxidant
defense response in PTCs compared to matched healthy thyroids, it is possible to speculate
that the downregulation of RA-related pathways causes carotenoid accumulation and, in
turn, prooxidant effects in an oxidant microenvironment such as that present in cancer
cells [30,31,48,49]. This may explain the worse prognosis of PTC patients in which the
RA-related pathways result in being significantly downregulated.

To further dissect the metabolic status of PTCs that possibly correlates with the in-
creased levels of carotenoids, we inspected the DepMap datasets to profile 225 metabolites
in 12 thyroid cancer cell lines). With this aim, three PTC (i.e., SW579, BCPAP, and BHT101),
four FTC (i.e., CGTHW1, FTC238, ML1, TT2609C02), four anaplastic (i.e., 8305C, 8505C,
CAL62; FTC133), one medullary (i.e., TT), and one thyroid sarcoma (i.e., S117) cell lines
were analyzed. Tryptophan catabolism in cancer is increasingly being recognized as an
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important microenvironmental factor that suppresses antitumor immune responses. In-
deed, tryptophan catabolism creates an immunosuppressive milieu by inducing T-cell
anergy and apoptosis through the accumulation of immunosuppressive tryptophan catabo-
lites [62]. In PTCs, the increased levels of tumor-associated macrophages (TAM) correlate
with lymph node metastasis [63], larger tumor size [64], and reduced survival [65]. Interest-
ingly, the data reported here revealed that some of the metabolites involved in tryptophan
metabolism (i.e., anthranilic acid, NAD, 6-phosphogluconate, and adenine) were signifi-
cantly higher in PTC cells compared to all the other thyroid cancer cell lines analyzed. Of
note, the high levels of anthranilic acid, NAD, and PEP in PTC cell lines compared to all
the other thyroid cancer cell lines support the typical tumoral glycolytic metabolism. In
addition, the high carotenoid content in PTCs correlates with the reported phenylalanine,
tyrosine, and tryptophan biosynthesis [35].

5. Conclusions

Overall, the results obtained here suggest that in addition to the fact that carotenoids
accumulation represents a hallmark of PTCs, the downregulation of RA-related pathways
also appears implicated with PTC progression and severity, possibly representing a further
diagnostic hallmark for this specific type of TC. Among the limitations of this study, the
relatively low number of patients enrolled should be mentioned. Therefore, this was
intended as a pilot study providing novel possible markers and possible therapeutic targets
for PTC diagnosis and therapy. For the future, a larger study including a higher number of
PTC patients will be necessary to further validate the molecular data reported here.
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