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Abstract

Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopa-

thology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unre-

solved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-

helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection

model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity

as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection.

Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated

(AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-

alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm sur-

vival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia.

Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immuno-

logical resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitu-

lated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological

resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-

recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demon-

strates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue hel-

minth infection.

Author summary

Helminths parasitize approximately one quarter of the global population. Medically-

important helminths, including filariae responsible for elephantiasis and river blindness,

are targeted for elimination as a public health problem. Currently there are no vaccines or

immunotherapeutics available for filarial worms or other human helminth pathogens.

Here we define a cellular mechanism whereby the interlukin-4 dependent activation of tis-

sue macrophages are essential to sustain the recruitment of larvicidal eosinophil
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granulocytes, leading to immunity against filarial infection at a sterile tissue site of parasit-

ism. This work delineates the relative non-redundant functional roles of both myeloid cell

types in ‘type-2’ immunity to helminth infection. The study represents a mechanistic

advance in our understanding of how immunity operates against metazoan macropara-

sites invading sterile tissues and may be used in the rational design of new therapeutics to

limit helminth disease.

Introduction

Infections by helminth parasites are frequently accompanied by overt eosinophilia at parasitized

tissue niches[1]. In animal models of infection, eosinophils are functionally important in the

immune effector response directed at tissue-invading helminths[2–8] but can also drive pathol-

ogy[2] and are implicated in immune regulation potentially via the provision of T-cell polarizing

signals[9, 10]. Antibody-dependent cellular cytotoxicity (ADCC) and granule-released products

have been implicated as the mechanism by which eosinophils mediate parasite helminth larval

attrition both in vitro[11, 12] and in vivo[4, 7, 8]. Corroborating eosinophilic immunity demon-

strable in rodent models, clinical studies have identified that interleukin-5, a growth factor sup-

porting eosinophilia, is a correlate of resistance to helminth re-infection[13, 14]. Also, tissue IL-5

and eosinophilia at the site of larval establishment have been demonstrated in experimental

human challenge models[15, 16]. Whilst the importance of eosinophils in immunity to tissue-

invading helminth parasites is well-defined, much less is understood about the cellular mecha-

nism by which a tissue eosinophilia in parasitized tissues is coordinated and maintained.

Macrophages (Mϕ), polarised to non-classical ‘alternatively activated’ (AAMϕ) phenotypes, are

an additional cellular hallmark of helminth infection[17]. However, unlike the immune-effector

activity of eosinophils, AAMϕ differentiated from recruited blood monocytes have been identified

as mediators of host-protective, wound-healing T helper 2 (Th2) responses to rapidly repair lesions

caused by helminth larvae as they migrate through barrier sites (the skin, lungs and gut)[18–21].

An associated AAMϕ function of promoting immunoregulation, including during chronic hel-

minth infection, has been demonstrated[9, 20, 22–25]. Thus, a paradigm of AAMϕ function is to

regulate Th2 inflammation and initiate wound healing during parasitological assault.

AAMϕ are also generated at non-barrier, ‘sterile’ sites of infection by tissue helminths, such

as filarial nematodes, where they proliferate from resident Mϕ in response to interleukin (IL)

4 / IL-13 signals[26, 27]. Therefore, at sterile sites of infection, tissue-proliferating AAMϕ may

have distinct immune functions other than wound healing and immunoregulation, during an

initial response to helminth infection.

In this investigation, we delineate the functions of eosinophils and local AAMϕ populations

in immunity against Brugia malayi larvae in a murine, Th2-adaptive immune peritoneal infec-

tion model. We determine that IL-4-dependent alternative activation and expansion of Mϕ are

essential to regulate eosinophil-dependent immunity to filarial helminth infection via amplify-

ing and sustaining CCR3-dependent tissue eosinophilia.

Results

CCR3-dependent tissue eosinophilia is necessary for immunity to B. malayi
invading larvae

Previous studies have highlighted a role of tissue eosinophilia as an important factor in immu-

nity to chronic filarial infections[3, 5]. We examined the eosinophil dependency of immune
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control of B. malayi infections in non-permissive BALB/c mice. In this model, ~90% of infec-

tious larvae do not survive to develop into adult nematodes (+35dpi) and sterile cure is apparent

in most mice before fecund infections establish (+84dpi, at a time point when female B. malayi
are releasing microfilariae; mf). Utilizing mice with disrupted regulation of the GATA-1 gene

(ΔdblGATA-/-), essential for the development of eosinophils from bone marrow precursors[28],

the impact of eosinophil deficiency could be evaluated. Confirming deficiency, SigLecF+ tissue

eosinophilia was absent in ΔdblGATA-/- mice, +14dpi, compared with WT mice (Fig 1A & 1B).

The impact of ablating tissue eosinophilia in ΔdblGATA-/- mice was an increased susceptibility

to developing, immature larvae B. malayi infection, +14dpi, and permissiveness to chronic

adult B. malayi infections, +84dpi (Fig 1C). Murine circulating eosinophils express the chemo-

kine receptor CCR3 and respond to CCR3-specific chemokines to migrate to tissue sites of

inflammation. We utilized a CCR3 neutralising antibody [29] to temporarily deplete CCR3+

cells in WT mice prior to infection. Tissue eosinophilia and B. malayi development was tracked

over the first 35 days of infection. A single treatment of αCCR3 was sufficient to reduce>95%

infection-site tissue eosinophilia (Fig 1D & 1E) and this was concomitant with increased Brugia

Fig 1. CCR3-dependent tissue eosinophilia is required for immunity to B. malayi. Enumeration of peritoneal eosinophils (A,B,D,E,G,H)

and % recoveries of motile B. malayi in BALB/c WT compared with ΔdblGATA deficient mice (C), in BALB/c WT mice treated with

intraperitoneal (ip) rat IgG control or rat anti-CCR3 (αCCR3) (F) or in WT compared with CCR3 deficient mice (I) at indicated time points

post-ip infection with 50 BmL3. Data from individual mice with median and interquartile range are plotted. Significant differences between

naïve or infected WT controls and experimental groups at a given time point is assessed by Mann-Whitney or Kruskal-Wallis + Dunn’s tests

(>2 groups). Data is plotted is either pooled from 2 individual experiments per time-point or from individual experiments with groups of

4–6 mice per group per time-point.

https://doi.org/10.1371/journal.ppat.1006949.g001
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survival +6dpi (Fig 1F). By +14dpi eosinophilia had resumed comparable to IgG control treated

WT mice (Fig 1D & 1E). The resumption of eosinophilia was associated with rapid decline in

susceptibility, where levels of B. malayi larvae were not different from untreated, infected WT

mice (Fig 1F). We further addressed CCR3-dependency of tissue eosinophilia and impact on

immunity to B. malayi by using CCR3 deficient mice where steady state eosinophils in periph-

eral circulation are maintained but their CCR3-dependent tissue recruitment is ablated[30].

CCR3 deficiency rendered a profound, sustained impairment in tissue eosinophilia throughout

the course of B. malayi infection (Fig 1G & 1H). CCR3 deficiency rendered mice susceptible to

the development of chronic B. malayi adult infections (Fig 1I), including permissiveness to

fecund infections able to complete the filarial parasite life cycle +84dpi (S1 Fig).

In situ proliferation and alternative activation of Mϕ occurs coincident

with eosinophilia

Expansion of Mϕ has been described at serous cavities of filarial nematode infection, in a

mechanism of in situ proliferation[26, 27]. At the infection site, time-dependent expansions of

Mϕ were evident from +6–14 dpi (Fig 2A). We examined proliferation and activation status of

infection-site Mϕ. By Ki67 intracellular staining we determined the majority of Mϕ expanded

+6dpi were in an active proliferation cycle (median 70.4%, range 62–84%) (Fig 2B & 2C). By

measuring the AAMϕ product, arginase, we defined that arg1 transcripts and enzymatic activ-

ity within peritoneal cells (PC) from B. malayi (Bm)L3 primary infections were significantly

enhanced compared with naïve mice (Fig 2D & 2E). Elevated Mϕ-specific arg1 transcripts dur-

ing infection were confirmed following purification from PC by FACS (S2 Fig). By intracellu-

lar staining for resistin-like molecule-alpha (RELMα), a helminth-activated Mϕ product[9,

26], we discerned high levels of RELMα protein expression in the expanded pool of peritoneal

Mϕ +14d following BmL3 infection (Fig 2F & 2G).

Development of arginase-producing AAMϕ post-B. malayi infection

requires adaptive-immune IL-4/IL-4Rα signalling but not eosinophilia

Interleukin(IL)-4 and IL-13 can induce alternative activation of Mϕ populations in diverse tis-

sue sites during helminth infections via the IL-4 receptor (IL-4R)[9, 20, 26, 27]. Intra-perito-

neal infections with Brugia larvae induce polarized Th2 responses[31] and we recorded

increased splenic Th2 immune responses +6 dpi with BmL3 (S3 Fig). However, because IL-4R-

independent AAMϕ differentiation has also been demonstrated in helminth infections[26,

32], we examined Mϕ development in either Severe-combined (SCID; no functional T or B

cells) or IL-4Rα deficient (IL-4/IL-13 non-responsive) BALB/c mice. Compared with WT

mice, Mϕ expansions and Mϕ arginase expression, arginase activity and RELMα production

was significantly hindered from SCID or IL-4Rα-/- mice +14-35dpi (Fig 3A–3E). Both severe-

combined and IL-4Rα-specific deficiencies rendered mice susceptible to chronic B. malayi
adult-stage infections at +35dpi with significant differences apparent in the control of larval

establishment from +14dpi (Fig 3F). We delivered exogenous murine recombinant (r)IL-4, as

a long-acting formulation (complexed to rat anti-IL-4) into the peritonea of BALB/c SCID

mice and determined that rIL-4 delivery +BmL3 infection was sufficient to recapitulate Mϕ
expansions and elevate arginase production in severe-combined immunodeficiency (Fig 3G–

3I and S4 Fig). Combined, this data indicates that provision of an adaptive immune IL-4:IL-

4Rα ligating signal transduced either directly within peritoneal Mϕ or via non-lymphocyte lin-

eages intact in SCID mice, is sufficient to support the development of the AAMϕ phenotype

induced by B. malayi infection.
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Eosinophils have diverse immune-regulatory functions and can also influence AAMϕ acti-

vation, potentially by provision of IL-4/IL-13 cytokine delivery[9, 33–35]. We assessed whether

deficiency in tissue eosinophilia affected the development of AAMϕ post-BmL3 infection. The

impaired eosinophilia evident at the infection site using either eosinophil-lineage depleted or

CCR3-/- mice did not impinge on Mϕ expansions post-infection (Fig 4A & 4B). Further,

CCR3-deficiency did not affect initial Mϕ expansions post-infection or their chronic mainte-

nance +35dpi to +84dpi (Fig 4B). Temporary antibody depletion of CCR3 cells similarly did

not impact on initial peritoneal Mϕ expansions +6dpi (Fig 4C & 4D). Arginase production

within the infection-expanded Mϕ pool was not significantly different in tissue BALB/c eosin-

ophilia-deficient mice compared with WT, adjudged by arginase activity or Mϕ-specific arg1
transcripts (Fig 4E & 4F). Infection of CCR3-/- mice also induced a high-level induction of

RELMα expression in expanded peritoneal Mϕ (Fig 4G & 4H). However, the expression levels

of RELMα were subtly, yet significantly, modified compared with WT mice, indicating a

Fig 2. In situ proliferation of macrophages with an alternatively-activated phenotype develop at the site of B.

malayi infection. Expansion of F4/80 peritoneal Mϕ (A), F4/80 peritoneal Mϕ expression levels of Ki67 (B,C),

peritoneal cell (PC) arg1 expression (D) PC arginase activity (E) and F4/80 peritoneal Mϕ expression levels of RELMα
(F,G) in WT BALB/c mice at indicated time points post-infection with 50 BmL3. Data from individual mice with

median and interquartile range are plotted. Significant differences between naïve or infected WT groups at a given

time point is assessed by Mann-Whitney or Kruskal-Wallis + Dunn’s tests (>2 groups). Data is plotted is either pooled

from 2–3 individual experiments per time-point or from individual experiments with groups of 4–6 mice per group

per time-point.

https://doi.org/10.1371/journal.ppat.1006949.g002
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degree of eosinophil ‘help’ in the full induction of RELMα within AAMϕ post-BmL3 infection

(Fig 4G & 4H). These data indicate that whilst adaptive immune provision of an IL-4Rα ligat-

ing signal is critical for AAMϕ development during B. malayi infection, eosinophilia is not

essential for arginase production or AAMϕ expansion.

‘BmL3AAMϕ’ are required for the immune control of B. malayi larvae

We addressed the functional relevance of the expanded pool of tissue AAMϕ post-BmL3 infec-

tion, subsequently termed, “BmL3AAMϕ”, in the immune response to B. malayi by ablating

resident phagocytes by ip administration of clodronate liposomes (CL), prior to infection. Suc-

cess of resident Mϕ ablations were confirmed by observing apoptotic Mϕ cells in cytospin

preparations and >90% reductions in peritoneal F4/80+ Mϕ numbers in infected WT mice,

three days after injection of CL and +2dpi (Fig 5A & 5B). CL administration suppressed the

Fig 3. Development of AAMϕ in response to B. malayi infection requires adaptive-immune IL-4/IL-4Rα signalling and is associated with

resistance to adult parasite establishment. Expansion of peritoneal Mϕ (A) peritoneal cell (PC) arg1 expression (B) PC arginase activity (C)

peritoneal Mϕ arg1 expression (D) Mϕ RELMα expression (E) and recovery of B. malayi (F) at indicated time points post-infection with 50 BmL3

in BALB/c WT, IL-4Rα-/- or SCID mice or in naïve controls. Expansion of peritoneal Mϕ (G,H) or PC arginase activity (I) in BALB/c SCID mice

+6d post-treatment with recombinant murine IL-4+rat anti-mouse IL-4 monoclonal antibody complex (rIL-4c) or rat IgG control ip treatments

with or without infection with 50 BmL3. Data from individual mice with median and interquartile range are plotted. Significant differences

between groups assessed by Mann-Whitney or Kruskal-Wallis + Dunn’s post-hoc tests (>2 groups). Data is from an individual experiment or

pooled from 2–3 experiments per time-point using groups of 4–6 mice per group / time-point.

https://doi.org/10.1371/journal.ppat.1006949.g003
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initial expansion of BmL3AAMϕ, with Mϕ numbers remaining <90% of infection controls at

+6dpi before recovering to 30–40% of WT controls by +14dpi (Fig 5B & 5C). The impact of

CL treatment and concomitant temporal depletion of AAMϕ was a significant increase in B.

malayi larval survival (Fig 5D). CL treatment did not modify immune priming of the larvicidal

Th2 adaptive immune response, as post-CL Th2 splenocyte responses to larval antigen

remained intact (S5 Fig). However, peritoneal eosinophilia was temporarily, yet significantly,

impacted by CL treatment at +6 dpi (approx. 90% reduction in eosinophilia; Fig 5E). In follow

up assessments, as well as the temporal detrimental impact on Mϕ and eosinophilia, we dis-

cerned that the ip administration route of CL also impacted both on circulating monocytes in

WT naïve BALB/c mice (S6 Fig), as well as partial increases in numbers of neutrophils and par-

tial decreases in peritoneal B cells at the infection site in WT mice at +6dpi (S6 Fig).

Fig 4. Eosinophilia does not impact on expansion of arginase-expressing AAMϕ but augments RELMα production. Expansion of

peritoneal Mϕ in BALB/c WT, ΔdblGATA deficient mice or CCR3 deficient mice (A,B) or in WT mice treated ip with rat IgG control or rat

αCCR3 (C,D) at indicated time points post-ip infection with 50 BmL3. Arginase activity in PC cells from BALB/c WT, ΔdblGATA deficient or

CCR3 deficient mice, WT mice treated ip with rat IgG control or rat αCCR3 (E) and expression of arg1 in purified Mϕ from WT mice treated

ip with IgG control or αCCR3 (F) at indicated time points post-ip infection with 50 BmL3. F4/80 peritoneal Mϕ expression levels of RELMα in

BALB/c WT or CCR3-/- mice at +14 day post-infection with 50 BmL3 (G,H). Data from individual mice with median and interquartile range

are plotted. Significant differences between groups assessed by Mann-Whitney or Kruskal-Wallis + Dunn’s tests (>2 groups). Data is from an

individual experiment or pooled from 2–3 individual experiments per time-point using groups of 3–6 mice per group / time-point.

https://doi.org/10.1371/journal.ppat.1006949.g004
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BmL3AAMϕ are not directly larvicidal but are necessary to sustain a

larvicidal tissue eosinophilia

Because of the pleiotropic effects of CL administration on multiple cell types both local and

distal to the site of infection, we sought to isolate the relative roles of BmL3AAMϕ and eosino-

philia in mediating immunity to B. malayi. To directly test the relative requirements of perito-

neal eosinophils recruited by BmL3 infection or BmL3-activated AAMϕ, we performed in vitro

Fig 5. Temporal ablation of peritoneal Mϕ enhances survival of B. malayi larvae coincident with impaired tissue

eosinophilia. Cytospins of peritoneal cells with macrophages (Mϕ) indicated (A), quantification of macrophages and

eosinophils (B,C,E) and recovery of B. malayi larvae (D) at indicated time points post-infection with 50 B. malayi L3

with or without prior treatment with clodronate liposomes (CL) in BALB/c WT mice or naïve controls (d0). Data from

individual mice with median and interquartile range are plotted. Significant differences between groups per time point

assessed by Mann-Whitney. Data is from an individual experiment or pooled from 2–3 individual experiments per

time-point using groups of 4–6 mice per group / time-point.

https://doi.org/10.1371/journal.ppat.1006949.g005
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motility assays whereby groups of 10 BmL3 were co-cultured with either 106 purified perito-

neal recruited eosinophils, 106 BmL3AAMϕ or combination of both cell types, sourced from B.

malayi WT infections by FACS (Fig 6A & 6B). After tracking motility +7d, peritoneal eosino-

phil cultures contained 10% motile larvae compared with 60% in serum-only cultures (Fig

5C). This reduction in motility in the presence of eosinophils was manifest with or without co-

culture with BmL3AAMϕ. Surprisingly, BmL3AAMϕ-only cultures potentiated the motile

phenotype of BmL3 +7d compared with serum only cultures (90% vs 60% motile BmL3), indi-

cating that fully polarised, WT BmL3AAMϕ, producing high levels of arginase and RELMα
protein are not directly larvicidal in vitro. We next examined whether BmL3AAMϕ were nec-

essary in CCR3-dependent tissue eosinophilia during infection. We added back 0.75x106 puri-

fied BmL3AAMϕ from BALB/c WT infections, +3d following CL-treatment and at the point

of infection in BALB/c WT mice. Establishment of adoptively transferred BmL3AAMϕ
was confirmed by increased F4/80+ Mϕ numbers compared with CL treated controls (Fig

6D & S7 Fig). Restoration of BmL3AAMϕ coincided with a vigorous eosinophilia, compa-

rable to infected WT controls (Fig 6D & 6E). To measure subsequent impact on larval sur-

vival, we utilised BALB/c SCID mice in which AAMϕ fail to develop and chronic adult

Fig 6. BmL3AAMϕ are necessary to sustain a larvicidal tissue eosinophilia. Cytospins of FACS-sorted BALB/c WT peritoneal SigLecF

+ eosinophils (A) or BmL3AAMϕ (B) +14 days post-infection with 50 BmL3. Survival analysis of BmL3 (C) throughout 7-days culture with normal

mouse serum (NS) or co-cultured with 106 FACS-sorted eosinophils (Eo), 106 BmL3AAMϕ or combinations of Eo+BmL3AAMϕ, (cells sourced as

for A,B). Data is pooled from two individual experiments evaluating motility of 10 BmL3 per condition. Significance of Kaplein-Meir survival

analysis vs NS serum control is indicated per condition. Eosinophilia (D,E) +6dpi with 50 BmL3 ip in BALB/c WT mice pre-treated with clodronate

liposomes (CL) ip +/- adoptive transfer of 0.75x106 BmL3AAMϕ ip (cells sourced as for B). Time course of peritoneal eosinophilia in BALB/c SCID

mice at indicated time points post infection with 50 BmL3 ip (F). Peritoneal eosinophilia (G,H) or recovery of B. malayi larvae (I) at +14 days post-

infection with 50 BmL3 in BALB/c SCID and E) and pre-treatment with either rat IgG or rat αCCR3 antibody. Data from individual mice with

median and interquartile range are plotted. Significant differences between groups assessed by Kruskal-Wallis + Dunn’s tests. Data is from an

individual experiment or pooled from 2–3 individual experiments per time-point using groups of 4–6 mice per group / time-point.

https://doi.org/10.1371/journal.ppat.1006949.g006
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infections establish [36]. We observed a transient spike in tissue eosinophilia in BALB/c

SCID mice at +6dpi where peritoneal eosinophils had dissipated by +14dpi (Fig 6F). How-

ever, following adoptive transfer of BmL3AAMϕ, tissue eosinophilia was sustained at a den-

sity comparable to WT infections in SCID recipients at +14dpi (Fig 6G & 6H). Engraftment

of transferred BmL3AAMϕ was confirmed both by increased Mϕ number and increased

arginase activity in SCID recipients (S7 Fig). Adoptive transfer of BmL3AAMϕ rendered

SCID mice resistant to B. malayi infection and was dependent on CCR3+ cell recruitment in

SCID recipients because αCCR3 treatment effectively nullified the sustained eosinophilia in

BmL3AAMϕ SCID recipients and reversed the resistant phenotype in controlling larval

establishment (Fig 6G–6I). Because rIL-4, in combination with B. malayi infection, could

recapitulate the WT BmL3AAMϕ phenotype in SCID mice (Fig 2), we examined the impact

of exogenous rIL-4 treatment on tissue eosinophilia in SCID deficiency (Fig 7A). We deter-

mined eosinophilia was dependent on dose of rIL-4 delivered, with low but not high levels

of rIL-4 mediating elevated peritoneal eosinophils in isolation (S4 Fig, Fig 7B, 7C and 7D).

Tissue eosinophilia was significantly bolstered following infection coincident with rIL4

treatment (Fig 7B, 7C and 7D). Using an oral CCR3 inhibitor[37], tissue eosinophilia could

be blocked in the face of rIL-4 treatments and BmL3 infection (Fig 7B & 7D). Together

these data indicate that ligation of IL-4Rα and subsequent BmL3AAMϕ development

Fig 7. Exogenous IL-4 bolsters CCR3-dependent eosinophilia and the eosinophilic larvicidal response in SCID mice via BmL3AAMϕ
development. Schematic of experimental approach (A). Flow cytometric assessments of F4/80 Mϕ or SigLecF eosinophil proportions (B), total

peritoneal cell number (C), eosinophil number (D) at +6dpi or larval parasite recoveries (E) at +14dpi in BALB/c SCID mice pre-treated ip with

either rat IgG, clodronate liposomes (CL) or rat αCCR3 ip, prior to infection with 50 BmL3 and/or up to three doses of rat IgG (25μg), IL-4c

(1μg rIL-4 complexed to 5μg rat anti-IL-4) delivered 0d, +2d, +/- +7d with or without daily oral dosing with CCR3 inhibitor. Data from

individual mice with median and interquartile range are plotted. Significant differences between test groups and appropriate rat IgG treated

controls assessed by Kruskal-Wallis + Dunn’s tests. Data is representative of two individual experiments (B,C) or pooled from 2–3 individual

experiments using groups of 3–6 mice per group / time-point.

https://doi.org/10.1371/journal.ppat.1006949.g007
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augments tissue eosinophilia via CCR3 chemotaxis during the adaptive immune response

to infection. In support of this, via transcript analysis of peritoneal cells we identified a sig-

nificant reduction in CCL11 (eotaxin 1) expression in IL-4Rα deficient mice 6 days after

infection with BmL3 (S8 Fig). Because rIL-4 delivery can induce pleiotropic effects on IL-4

responsive cell types, which could influence tissue eosinophilia, we addressed the specificity

of BmL3AAMϕ by ablating Mϕ prior to rIL-4 delivery and infection. Following depletions

of peritoneal Mϕ mediated by CL, tissue eosinophilia was not significantly elevated +6dpi in

rIL-4 treated SCID mice (Fig 7B & 7D). The parasitological outcome of IL-4/IL-4Rα activa-

tion of BmL3AAMϕ and CCR3-dependent tissue eosinophilia was a significant reduction in

B. malayi larvae in SCID mice +14dpi (Fig 7E). However, temporal ablations of peritoneal

Mϕ or CCR3+ eosinophils (by CL or αCCR3, respectively) nullified the effect of rIL-4 in lar-

val killing (Fig 7E). These data define a role for Th2 adaptive immune induced AAMϕ as

important regulators of filaricidal tissue eosinophilia via CCR3-mediated chemotaxis.

Discussion

Our data demarcates the relative contributions of the hallmark Th2-associated cell types,

eosinophils and AAMϕ, in filarial helminth immunity. Our data reveals a mechanism

whereby eosinophil-dependent immunity to the filarial helminth, B. malayi, is locally coor-

dinated by an in situ proliferating pool of Mϕ, activated by combination of ligation of IL-

4Rα and parasite infection. Mϕ alternative activation and polarisation is a consistent fea-

ture of helminth infection[17], yet a defined role of this cell phenotype in immunity to

worm infection has remained elusive. AAMϕ-mediated immunity has been demonstrated

in situations of Th2 memory and parasite-specific antibody leading to control of gut nema-

tode larvae during secondary infections. In these challenge infection experiments, larval

trapping of H. polygyrus bakeri within the gut mucosa[32, 38] or N. brasiliensis within skin

[39] is impaired if inflammatory AAMϕ recruitment to infection sites are blocked. A direct

mechanism of worm attrition by AAMϕ-released factors within mucosal larval granulo-

mas, including arginase, has been identified, following FcR-antibody-dependent alterna-

tive activation[32] [40]. Further in vitro evidence supports corroboration between AAMϕ
and neutrophil granulocytes in larvicidal activity against the human gut nematode, Stron-
gyloides stercoralis [41].

Our data demonstrates a unique mode of action of AAMϕ-orchestrated, eosinophilic

immunity to filarial nematodes at a non-barrier site of infection. Firstly, we define that a B.

malayi larvicidal response can be induced by targeting IL-4R in antibody-deficient mice, sug-

gesting ADCC is not an absolute requirement for filarial larval killing. However, parasite-spe-

cific antibody may bolster worm killing following FcR engagement on Mϕ, as we observed

more profound larvicidal effects upon transfer of +14 day BmL3AAMϕ generated from WT

infection (where anti-parasite antibody would presumably be bound to Mϕ FcR) compared

with in vivo IL-4R ligation and BmL3AAMϕ development within SCID mice. Secondly, we

demonstrate conservation of arginase production in AAMϕ during eosinophil deficiency,

which are yet insufficient to prevent the establishment of chronic adult filarial infection.

Thirdly, in vitro co-cultures show no deleterious effect of BmL3AAMϕ in isolation on BmL3

motility. These differences may highlight fundamental distinctions in immune-effector pro-

cesses during primary infection between AAMϕ subsets proliferating from local Mϕ popula-

tions in the serous cavities and those recruited from inflammatory blood monocytes via CCR2

at barrier sites of challenge infection[39, 42]. Potentially, it may also indicate inherent differ-

ences in susceptibility of filarial vs gut nematode larvae to Mϕ-specific secreted products such

as arginase.
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We demonstrate that optimum peritoneal Mϕ expansion and alternative activation is IL-

4Rα dependent during B. malayi larval infection and further show that this phenotype can

develop in the absence of functional adaptive lymphocyte lineages via exogenous delivery of

IL-4. One obvious mechanism for this polarization and proliferation is direct ligation of resi-

dent peritoneal macrophage IL-4Rα by IL-4/13 in combination with the complement factor

C1q[27, 43]. However, because Mϕ alternative activation can occur independently of IL4R via

FcR ligation [32] or other polarising signals such as IL-33 [35], we do not rule out a role for

Mϕ alternative activation signals being triggered by non-lymphocyte, IL-4 responsive cell

types in our infection system.

Cross-talk between granulocyte populations and AAMϕ mediates diverse functional out-

comes, including immunity[40],[39], immunomodulation[9], and maintenance of glucose

homeostasis[33, 44]. In certain situations, granulocytes are important cellular sources of polar-

ising signals instructing macrophage alternative-activation. Beyond arginase, RELMα and

Ym-1 are abundantly expressed molecules in helminth-activated Mϕ[17]. We detected a subtle

impact of deficiency in tissue eosinophilia in modifying the level of RELMα expression within

AAMϕ, supporting earlier work in L. sigmodontis infected eosinophil deficient mice[35]. Fur-

ther, Ym-1 production is demonstrably impaired in AAMϕ in response to L. sigmodontis in

the absence of eosinophils[35]. Our in vitro assays indicate that arginase- and RELMα-produc-

ing WT BmL3AAMϕ do not affect larval viability in isolation and our adoptive transfer experi-

ments into SCID recipients further indicate that arginase- and RELMα-producing WT

BmL3AAMϕ do not affect B. malayi larval survival if CCR3 expressing cells and eosinophilia is

effectively ablated. Therefore, we conclude that whilst eosinophil ‘help’ may contribute to the

IL-4Rα-dependent polarisation of BmL3AAMϕ, we find no evidence from these experiments

supporting a direct larvicidal mode of action of AAMϕ in vitro or in vivo against B. malayi,
using the BALB/c ip infection model.

GATA deficiency has latterly defined to disrupt basophil haematopoesis as well as ablating

mature eoinophils [45] whilst mast cells are unaffected in ΔdblGATA1-/- mice [46] and neither

is their recruitment to inflammed tissue compromised in CCR3 deficiency [30]. Murine baso-

phils are recruited to tissue niches in a CCR3-independent mechanism and do not express

CCR3 [47, 48]. Thus, we carefully selected complementary systems (ΔdblGATA deficiency,

CCR3 deficiency and CCR3 depleting antibody) to selectively target eosinophils whilst con-

trolling for potential ‘off-target’ impact on basophilia or mastocytosis during peritoneal Brugia
malayi larval infection.

Recent studies in our laboratories have defined that origin of local tissue macrophage popu-

lations varies with age, gender, strain and infection status. Whilst embryonic self renewing

macrophages predominate in young mice, in aged mice, bone marrow derived monocyte pre-

cursors continually seed the peritoneum during steady state to establish into long-lived self-

renewing macrophages of similar tissue phenotype[49]. Interestingly, during filarial infection

of the pleural cavity of BALB/c mice, the relative proportions CCR2-monocyte recruited mac-

rophages increases relative to resident proliferating populations as chronicity of infection pro-

gresses[50]. Therefore, an increasing heterogeneity in local macrophage populations during

infection may influence magnitude of eosinophil granulocyte influx.

In the absence of adaptive IL-4/IL-13 signalling, a transient spike in innate immune tissue

eosinophilia is apparent during initial B. malayi infection, at day 6, which dissipates on or

before day 14. This kinetic has also been observed in experimental Brugia infections using

SCID mice on a C57Bl/6 background[51]. Our data indicates that expansion and alternative

activation of Mϕ populations within the serous cavity from 6 days post-infection is critical to

amplify tissue eosinophilia to drive immunological resistance during filarial infection. Previ-

ous studies have demonstrated a role for IL-4 responsive AAMϕ in positively regulating

Macrophages orchestrate eosinophil immunity to filarial infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006949 March 16, 2018 12 / 20

https://doi.org/10.1371/journal.ppat.1006949


eosinophil trafficking during situations of Th2 inflammation in the lung or gut[47, 52]. In our

B. malayi BALB/c infection model, CCR3-mediated chemotaxis was fundamental in the

AAMϕ-dependent eosinophilia during Brugia larval infection as blocking CCR3 signalling

ablated eosinophil recruitment to the peritoneum. Post-infection, the CCR3 ligand, CCL11,

was upregulated at the transcript level in peritoneal cells and relative transcripts were signifi-

cantly impaired in BmL3-infected IL-4Rα-/- mice. In previous RNA-seq analysis of AAMϕ
polarised by Brugia adult implantations into BALB/c mice, the CCR3 ligands, CCL8 and

CCL24 have been identified as upregulated transcripts[53]. It is therefore likely that a reper-

toire of CCR3 ligands are produced by the resident pool of Mϕ, possibly with distinct kinetic

expression profiles, as they undergo proliferation and alternative activation during the first

two weeks of infection. Because, as well as eosinophils, Mϕ comprise a major cell type in gran-

ulomas formed around entrapped filarial larvae[54], we suggest that AAMϕ may focally recruit

eosinophils to the nematode cuticle and orchestrate eosinophilic larvicidal granuloma forma-

tion in vivo.

Medically and veterinary important filarial parasites establish in diverse, non-barrier tissues

including the peritoneum. Thus, local Mϕ Th2-induced proliferation and alternative-activa-

tion at these sites of infection may orchestrate diverse eosinophil-associated outcomes in filari-

asis, including sterilising immunity, immune control of circulating mf and acute

immunopathologies induced following the death of filariae in parasitized tissues.

Materials and methods

B. malayi experimental infections

IL-4Rα-/-, CCR3-/- or dblΔGATA-/- mice (BALB/c) were purchased from Jax Labs USA. WT

and SCID BALB/c mice were purchased from Harlan UK. Rodents were maintained in SPF

conditions at the University of Liverpool Biological Services Unit. Infectious stage B. malayi L3

were propagated as previously described[36]. Male mice 6–10 weeks of age were infected with

50 BmL3 i.p. and infections maintained between +6-84d. Motile B. malayi parasites and exu-

date cells were recovered by peritoneal lavage at necropsy and enumerated by microscopy. All

experiments on animals were approved by the ethical committees of the University of Liver-

pool and LSTM, and were conducted according to Home Office Legislation and ARRIVE

guidelines.

Flow cytometry

Single cell suspensions were prepared in FACS buffer (PBS+0.5%BSA+2mMEDTA). Fc recep-

tors were blocked with αCD16/32 (eBioscience). Live/dead cell differentiation was undertaken

with fixable viability dye efluor 450 as per manufacturer’s instructions (eBioscience). Cell

staining was undertaken utilising specific labelled anti-mouse antibodies or their matched iso-

type controls using a fluorescence-minus-one method. Intracellular staining was done follow-

ing permeabilisation buffer treatment (eBioscience). using a zenon Alexa Fluor 488 Rabbit IgG

labelling kit as per manufacturer’s instructions (Invitrogen). All multi-labelled cell samples

were subsequently acquired using a BD LSR II flow cytometer (BD Bioscience) and analysed

on FloJo Software (S9–S11 Figs; also see supplementary methods). OneComp eBeads were

used to optimise antibody staining panels and apply compensation. For compensation con-

trols, we applied optimal PMT voltages for the positive signal to be detected within 10^4 and

10^5 whereas negative signal set to be below 10^2. Compensation matrices were applied in

which there was<40% overlap in any signal combination.
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Fluorescent activated cell sorting

Viable, Anti-F4/80 APC labelled Mϕ or anti-SigLecF+ PE labelled eosinophils, +14d following

BmL3 infection, were sorted to>95% purity using a FACS AriaIII Cell Sorter (BD Bioscience,

Technology Directorate, UoL).

Cytospins

Cell suspensions were washed in Hank’s Balanced Salt Solution (HBSS) before being resuspended

to a density of 1x106 in HBSS+30% FCS. A volume of 0.1ml was placed in cytospin chambers

(Shandon) with poly-l-lysin slides and centrifuged at 450 rpm in a Shandon cytospinner. After air

drying, slides were stained with DiffQuick (Shandon) as per manufacturer’s instructions.

Biochemical & molecular assays

Cellular arginase activities were measured as previously described[55] with the following mod-

ifications: 0.25x106 cell suspensions were determined following lysis and protein extraction by

enzymatic conversion of arginine to urea, quantified by photometric assay at 570nm (VarioS-

kan, Bio-Rad). Arg1 expression levels were determined by RNA extraction of 0.1x106 cell sus-

pensions, reverse transcription and cDNA qPCR transcript analysis using murine TaqMan

primers (Applied Biosystems). Data was normalised to β-act by the ΔΔCt method.

In vivo treatments

Clodronate liposome suspension (5mg/ml) was diluted 1:5 in PBS and administered 100μl ip

1–3 days prior to infection. αCCR3 was purified from hybridoma supernatant by protein G

affinity chromatography (GE Healthcare) and administered at 0.5mg/mouse ip. IL-4c was pre-

pared as previously described [26] and administered at dosages of 1μg rIL-4 ip (unless other-

wise stated) at +0, +2 & +4 dpi. CCR3 inhibitor SB328437 (R&D Systems, UK) was

administered p.o. at 10 mg/kg qd in 1% DMSO PBS between -1-+6dpi.

In vitro cultures

BmL3 were washed in RPMI wash medium containing 1x penicillin, streptomycin and ampho-

tericin B (Life Technologies, UK), before being transferred in batches of 10 BmL3 to 96-well

culture plate wells containing RPMI wash + 10% foetal calf serum and 1% normal mouse

serum. 1x106 purified eosinophils, Mϕ or eosinophils + Mϕ were added to a total volume of

0.2ml. Cultures were incubated for +7d and motility assessed daily by microscopy.

Statistical analysis

Significant differences between groups evaluated by Mann-Whitney or Kruskal-Wallis with

Dunn’s post-hoc tests (>2 groups). Significance is indicated P<0.05� P<0.01�� P<0.001���.

Supporting information

S1 Fig. CCR3 is required to control fecund B. malayi infection. Total peritoneal microfilar-

iae (mf) enumerated from peritoneal lavage (A) or percentage of mice with fecund infections

(B) in BALB/c WT or CCR3-/- mice, 84 days post-ip infection with 50 BmL3. Data from indi-

vidual mice with median and interquartile range are plotted. Significant differences between

infected groups is assessed by Mann-Whitney (A) or Fisher’s Test (B). Data plotted is pooled

from 2 individual experiments and groups of 5–6 mice.

(TIFF)
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S2 Fig. Macrophage-specific arg1 transcription levels increase post-infection with B.

malayi. Data plotted is relative expression (median) levels of arg1 within 0.1x106 FACS puri-

fied F4/80+ peritoneal Mϕ derived from groups of 3 naïve WT BALB/c mice or +6 days post-ip

infection with 50 BmL3. Significant differences between groups is assessed by Mann-Whitney.

(TIFF)

S3 Fig. B. malayi infection induces systemic Th2 responses. Protein levels of IL-4 (A), IL-5

(B) or IL-13 (C) in splenocyte cultures stimulated with soluble BmL3 extract derived from naïve

WT BALB/c mice or +6 days post-ip infection with 50 BmL3. Data from individual mice with

median levels are plotted. Significant differences between naïve or infected WT groups is assessed

by Mann-Whitney. Data is from an individual experiment with groups of 5 mice per group.

(TIFF)

S4 Fig. Dose-dependent and -independent effects of exogenous rIL-4 on peritoneal macro-

phages and eosinophils. Total peritoneal cell (A) macrophage (B) or eosinophil number (C)

and peritoneal cell arginase activity (D) +4 days following rIL-4c treatment ip on d0 and +2d

at indicated doses in BALB/c SCID mice. Data from individual mice with median levels and

IQR plotted. Significant differences between IL4c dosed groups is assessed by Kruskal-Wallis

with Dunn’s tests. Data is from an individual experiment with groups of 4 mice per group.

(TIFF)

S5 Fig. Adaptive Th2 responses remain intact following clodronate liposome treatment.

Protein levels of IL-4 (A), IL-5 (B) or IL-13 (C) in splenocyte cultures stimulated with soluble

BmL3 extract derived from naïve WT BALB/c mice or WT mice either treated or untreated ip

with clodronate liposomes (CL) and subsequent +6 days post-ip infection with 50 BmL3. Data

from individual mice with median levels and interquartile range are plotted. Significant differ-

ences between naïve or infected WT groups is assessed by Kruskal-Wallis + Dunn’s tests. Data

is from an individual experiment with groups of 4–5 mice per group.

(TIFF)

S6 Fig. Clodronate liposomes affect proportions of multiple leukocyte populations local

and distal to the site of B. malayi infection. Flow cytometric determination of peritoneal

neutrophil or B cell numbers in BALB/c WT mice +6dpi following inoculation ip with

50BmL3 with or without prior ip CL treatment (A-D). Proportions of circulating monocytes

in naïve BALB/c WT mice or in BALB/c WT mice +6 days following ip CL treatment (E-F).

Data from individual mice with median levels and interquartile range are plotted. Significant

differences between naïve or infected WT groups is assessed by Mann-Whitney tests. Data is

from an individual experiment with groups of 5 mice per group.

(TIFF)

S7 Fig. Establishment of adoptively transferred BmL3AAMϕ in the peritoneum of clodro-

nate treated WT or SCID mice. Numbers of peritoneal Mϕ at indicated time points in BALB/

c WT mice (A) or SCID mice (B) +/- pre-treatment with clodronate liposomes (CL) and sub-

sequent +/- adoptive transfer of 0.75x106 BmL3AAMϕ coincident with inoculation with 50

BmL3. Cellular arginase activity in BALB/c SCID mice +/- adoptive transfer of 0.75x106 WT

BmL3AAMϕ +14 days post infection with 50 BmL3. Data from individual mice with median

levels are plotted. Significant differences between naïve or infected WT groups is assessed by

Mann-Whitney tests. Data is from an individual experiment or pooled from two experiments,

with groups of 4–6 mice per group.

(TIFF)
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S8 Fig. CCL11 and CCL24 chemokine transcript analysis in peritoneal cells post infection

with B. malayi. Relative transcript levels of ccl11 (A) or ccl24 (B) in BALB/c WT or IL-4Rα-/-

mice + 6 days post-infection with 50 BmL3. Data plotted is relative expression (median +IQR)

levels of specific transcripts within 0.1x106 peritoneal cells derived from groups of 5 mice. Sig-

nificant differences between groups is assessed by Mann-Whitney tests.

(TIFF)

S9 Fig. Schematic of peritoneal eosinophil and macrophage flow cytometric gating strat-

egy.

(TIFF)

S10 Fig. Schematic of peritoneal neutrophil and B-cell flow cytometric gating strategy.

(TIFF)

S11 Fig. Schematic of blood monocyte flow cytometric gating strategy.

(TIFF)

S12 Fig. Graphical summary.

(TIFF)
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