
sensors

Article

DDoS Flood and Destination Service Changing Sensor

Fu-Hau Hsu , Chia-Hao Lee *, Chun-Yi Wang , Rui-Yi Hung and YungYu Zhuang

����������
�������

Citation: Hsu, F.-H.; Lee, C.-H.;

Wang, C.-Y.; Hung, R.-Y.; Zhuang, Y.

DDoS Flood and Destination Service

Changing Sensor. Sensors 2021, 21,

1980. https://doi.org/10.3390/

s21061980

Academic Editor:

Alejandro Linares-Barranco

Received: 10 February 2021

Accepted: 8 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Information Engineering, National Central University, No.300,
Zhongda Rd., Zhongli District, Taoyuan City 320, Taiwan; hsufh@csie.ncu.edu.tw (F.-H.H.);
101582016@cc.ncu.edu.tw (C.-Y.W.); ian955246@gmail.com (R.-Y.H.); yungyu@acm.org (Y.Z.)
* Correspondence: diolee@csie.ncu.edu.tw

Abstract: In this paper, we aim to detect distributed denial of service (DDoS) attacks, and receive a
notification of destination service, changing immediately, without the additional efforts of other mod-
ules. We designed a kernel-based mechanism to build a new Transmission Control Protocol/Internet
Protocol (TCP/IP) connection smartly by the host while the users or clients not knowing the location
of the next host. Moreover, we built a lightweight flooding attack detection mechanism in the user
mode of an operating system. Given that reinstalling a modified operating system on each client is
not realistic, we managed to replace the entry of the system call table with a customized sys_connect.
An effective defense depends on fine detection and defensive procedures. In according with our
experiments, this novel mechanism can detect flooding DDoS successfully, including SYN flood and
ICMP flood. Furthermore, through cooperating with a specific low cost network architecture, the
mechanism can help to defend DDoS attacks effectively.

Keywords: DDoS attack; live migration; TCP three-way handshake; network security; loadable
kernel module

1. Introduction

According to Kaspersky, there were approximately 250 distributed denial of service
(DDoS) attacks every day in first quarter (Q1) 2019 [1]. DDoS attacks usually involve
gigantic commercial losses worldwide. Business services online have naturally become
prime targets. Given that services online are provided for general external users, an edge
gateway is the channel of the internet service and external users. We must confirm that
these critical places are stable and available. Thus, it is inevitable to set a solid detection
mechanism on edge servers for security of their services. A DDoS attack usually arranges
a huge number of internet bots, which can launch attacks on one specific target, such as
an internet service or a network edge server. An attacker may start a DDoS attack from
exploiting vulnerability of a specific system. For example, the Mirai botnet exploits the
vulnerability of a default password [2]. If an attacker has compromised enough numbers of
bots, the attacker can launch DDoS attacks by a command-and-control (C&C) system. We
have a specific network security research environment that is based on the movement of
the server to achieve the effect of protecting a service from a DDoS attack. In this paper, we
call it the Method for Moving Virtual Machine (MVM), since a host that is under a DDoS
attack cannot establish any new connection. While encountering a DDoS attack, those
users who would like to establish new connections to the attacked server will also become
participants in the attack, although they are not intentional. To overcome this shortcoming,
we propose a new concept to detect flood attacks and establish a Transmission Control
Protocol/Internet Protocol (TCP/IP) connection by the host that is under attack. First,
we build this mechanism through Loadable Kernel Module (LKM) in order to replace the
system call table entry with a customized sys_connect function. Moreover, this mechanism
can transfer a request to establish a new connection to another proxy that is not under attack.
When a proxy is under a strong DDoS attack, the proxy cannot tell which synchronize

Sensors 2021, 21, 1980. https://doi.org/10.3390/s21061980 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2586-5874
https://orcid.org/0000-0001-6351-0727
https://orcid.org/0000-0002-9246-3322
https://doi.org/10.3390/s21061980
https://doi.org/10.3390/s21061980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21061980
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/6/1980?type=check_update&version=1

Sensors 2021, 21, 1980 2 of 17

(SYN) packet is regular. Thus, we design a mechanism which responds to a SYN packet
with a chosen probability for the proxy. If a SYN packet is chosen, the proxy responds to the
sender with a SYN_ACK packet. If the proxy receives a corresponding acknowledgment
(ACK) packet, the sender is an existing host. Next, we set a flood detection mechanism,
which is lightweight, effective, and easy-to-use to detect DDoS attacks.

In subsequent sections, we introduce the Client Connection Handler and discuss the
continuous connection when the destination of a service changes; moreover, we review the
entire scenario and describe each component in detail, including a practical environment
where this sensing system can be applied. In Section 2, we conduct a thorough literature
review. In Section 3, we introduce the background of our system. In Section 4, we provide
an overview of our system. In Section 5, we describe the mechanism that can defend
against DDoS attacks in detail. We show the efficacy of our system in Section 6 and present
a discussion in Section 7, before concluding.

2. Related Work

This methodology can be used in a non-virtual machine environment and a virtual
machine environment (we used both in experiments). In regards to virtual machine
technology, two research studies on the prototype are the VM Turntable demonstrator by
Travostino et al. in 2006 [3] and by Bradford et al. in 2007 [4]. VM Turntable demonstrates
a prototype of live migrating for virtual machines on a wide area network (WAN). VM
Traffic Control is used to determine the target and control the process of live migration.
The path of live migration is based on a special lightpath. In addition, the source machine,
destination machine, and the clients can stay connected under a same subnet by the
mechanism of an IP tunnel. Travostino et al. proved the possibility of live migration.
However, it must modify all of the switches on the path to build a lightpath, and the
control system is too vulnerable. It is not appropriate to deploy this prototype in the
real world. In addition, to save costs, and for the ease of management and maintenance,
many users prefer virtual machines to physical hosts. Infrastructure as a service (IaaS)
has gradually replaced traditional hosting services, acting as a new alternative for many
enterprises and individuals to set up or to deploy their servers. Similar to the Amazon
Elastic Compute Cloud (Amazon EC2) [5] and Google Cloud Platform (GCP) [6], IaaS has
experienced explosive growth, becoming popular in recent years. On the other hand, in
cyber architecture, the solutions for current DDoS attack problems adopted by industries
are often through content distribution networks (CDNs), flow cleaning, or even worse,
by just using a firewall. Famous corporations that focus on mitigating DDoS attacks with
CDN are Cloudflare [7], Akamai [8], and Alibaba Cloud [9]. However, to corporations’
disappointment, it is just “mitigation” and not a comprehensive defense. In addition, some
methods that are similar to network traffic cleaning at a lower level can be expensive and
not as effective. Generally speaking, they cannot really resolve the problem effectively.
CDN or load-balance needs to deploy a lot of resources. In regards to flow cleaning, it costs
much higher.

Because our research highlights the concept of dynamic defense to protect services
from DDoS attacks, we investigate and discuss relevant research on this topic. First, when
it comes to DDoS traffic detection, three DDoS detection papers are worth mentioning. One
is by Hussain et al. [10], who claimed to analyze the headers of the packets in the traffic
in a simple way; they summarized their “spectrum” with some mathematical formulas
(it will be effective to filter out the malicious traffic). However, according to our research,
in practice, this way has not been appropriate of late due to heavier traffic; moreover, this
approach seems too slow to act immediately and useless at protecting services against
DDoS attacks. Another (earlier) paper is by Carl et al. [11]. This paper described many
kinds of detection methods, but all of them are, likely, impractical. The authors also
noticed that none of them completely solved the detection problem. The other paper is
by Dainotti et al. [12]; this paper claimed that the “adaptive threshold” and “cumulative
sum” with the continuous wavelet transform provides good results on the detection of

Sensors 2021, 21, 1980 3 of 17

DDoS attacks. However, we suggest that it makes it too complicated, and we can get very
good and efficient results with our concise method, nowadays, in the practical network
environment. Additionally, we refer to mechanisms related to DDoS defense, which have
been proposed academically by researchers in recent years. In 2007, Bradford et al. [4]
proposed a way to keep the connection for live migration in a WAN. After live migration,
the source machine is responsible for forwarding the packets of the old connection, and the
virtual machine uses the destination machine to update dynamic Domain Name System
(DNS) to receive new connections on another network interface. This method is suitable
for the service, which has a short connection time, such as HTTP, to let the source machine
go out as soon as possible.

A moving target DDoS defense mechanism (MOTAG) [13] deploys a group of dynamic
proxy nodes that relay traffic between servers and authenticated clients, providing a moving
target defense mechanism that mitigates internet service DDoS attacks. Each client can
only know the IP address of the proxy node, which is randomly assigned. Moreover, its
authentication server is responsible for important tasks, such as the authentication of all
its clients, the proxy assignation, etc. However, if just one attacker launches a significant
DDoS attack to this authentication server, this defense mechanism will crash easily. Thus,
it is a considerable disadvantage of this design, and the architecture is still fragile under
any DDoS attack. “Catch Me If You Can” [14] is just like a modified version of MOTAG,
which is also a moving target mechanism. It is a cloud-enabled moving target defense
mechanism, and its deployment is across multiple cloud computing domains. The main
idea of this work is to use a DNS server and a coordination server, with cloud content
servers of a large load balance mechanism. Nevertheless, this mechanism has the same
disadvantage of concept: if the DNS server (or the coordination server) is under attack,
this defense structure will be vulnerable and unbearable to an expressive DDoS attack.
Moreover, this mechanism will need substantial resources for construction at first. Finally,
its coordination server (which is the role of a central controller) may have a heavy load,
and may have efficiency issues, in practice.

This kind of attack brings considerable damage to businesses; however, there are still
new mechanisms for mitigation. Gaurav Somani et al. proposed a DDoS attack mitigation
method by lowering the “Resource Utilization Factor” to a minimal value and discussing
the algorithm [15]. Sunny Behal et al. proposed an Internet service provider (ISP) level
distributed and flexible defense system [16]. Patil, R. et al. designed a Protocol Specific
Multi-Threaded Network Intrusion Detection System (PM-NIDS), where the incoming
packets are queued, extracted, and classified [17]. Chenxu Wang et al. proposed a defense
system of detecting and mitigating application layer DDoS attacks, mainly by filtering
mechanisms, including a whitelist and a blacklist [18]. Lei Cheng et al. proposed a moving
target defense technique based on self-adaptive mutation, consisting of a network threat
awareness mechanism based on Sibson entropy and a mutation strategy algorithm [19].

The above defense solutions of DDoS attacks are usually complicated and cannot
really solve the problems—most of them are just for mitigation. The MOTAG mitigation
series requires another specific server, at least to coordinate its processing. Furthermore,
it requires a lot of resources. The mechanism in this paper is “decouple”, and each proxy
server is only activated or built when needed. There is no need for huge hardware resources
to support the system. Our system is novel and the design details are not the same as the
previous work.

3. Background
3.1. Context

The context of changing another destination may be triggered when a service is under
attack by a DDoS attack. Hereafter, we will call this mechanism the Migration Sensor (MS).

Sensors 2021, 21, 1980 4 of 17

3.2. DDoS Attacks

The protection of network services on the internet needs to be discussed. However,
concerning DDoS attacks, for decades, all solutions had no perfect defense mechanism. To
put it bluntly, there is no effective solution to defend against DDoS attacks. Thus, it is still
the biggest challenge to business services on the internet. Reports show that DDoS attacks
have become larger and more powerful in recent years. The most recent and largest DDoS
attack, according to Impera, occurred in 2019. This attack peaked at 580 million packets
per second (PPS), which was an even larger PPS attack on its client, surpassing the January
record of 500 million PPS [20]. In comparison, another famous DDoS attack was launched
in GitHub in 2018, peaking at 129.6 million PPS.

On 28 February, 2018, GitHub, a popular online code management service utilized
by millions of developers, was hit by a DDoS attack at 1.35 terabits per second. After
approximately 8 minutes, GitHub called Akamai, the company tasked with DDoS attack
mitigation for GitHub. This was the largest DDoS attack ever recorded at the time. It was
a memcached DDoS attack: the attackers leveraged the amplification effect of a database
caching system known as “memcached”. By flooding memcached servers with spoofed
requests, the attacks were amplified by a magnitude of about 50,000 times [21].

Another famous (and large) DDoS attack involved the Internet of Things (IoT) in
October 2016. This DDoS attack was caused by Mirai, creating a botnet from compromised
IoT devices, such as cameras, smart TVs, and monitors. The flow of this event was
directed at Dyn (a major DNS provider) and resulted in devastating consequences for many
major sites, including Netflix, PayPal, Visa, Amazon, and GitHub. With Mirai, attackers
can program the compromised devices and send requests to a single victim. After that,
in February 2020, Amazon Web Services (AWS) reported that they defended against a
2.3 terabits per second DDoS attack [22]. This trend will only continue to increase.

According to research from Corero Network Security, DDoS attacks can cost enter-
prises USD $50,000 (£35,000) per attack. The survey showed that individual DDoS attacks
can cost organizations up to $50,000 in terms of lost business, the cost of mitigating attacks,
and lost productivity. Moreover, 69% indicated that their organization experienced between
20 and 50 DDoS attack attempts each month, which is equal to, on average, one attack
per day. DDoS attacks not only immediately—and considerably—impact the revenue of
enterprises (by causing loss of earnings), these attacks also damage the trust and confidence
of customers [23–25].

3.3. Flood Attack

There are other categories of DDoS/DoS attacks, such as a slow DoS attack, but a flood
attack is the most common type of DDoS attack. A flood attack relies on a large number of
packets to paralyze the server by exhausting the bandwidth or by continuously consuming
server resources. The type of flood attack has an obvious feature, such as sending a large
number of packets in a short time, and it is common (meanwhile, a slow attack achieves
the same goal in other tricks, including delaying the delivery of some content). Thus, we
will use the flood attack as a representative type of a DDoS attack.

3.4. Linux System Call

As seen in Figure 1, the original Linux system call process is called by a user process,
and then the execution flow switches to kernel mode. After a system call handler completes
system call preparation, the execution flow jumps to a system call block, in accordance
with a corresponding system call table entry.

Sensors 2021, 21, 1980 5 of 17Sensors 2021, 21, x FOR PEER REVIEW 5 of 17

Figure 1. Original structure of a Linux system call.

4. System
4.1. Method for Moving Virtual Machine (MVM)

The purpose of this work is to defend against network based DDoS attacks. For the
system, it contains a client agent, proxies, and a server. The client agent is responsible for
handle connection migrations on the client side. Proxies forward packets, detect possible
DDoS attacks, and migrate connections. The server is a virtual machine that provides net-
work services. In a system overview, we deploy a client, two proxies, and a server. In the
following sections, we call the proxy given to clients as Proxy 1, which will be attacked;
the other one is Proxy 2, which will receive an immediate notification from Proxy 1.

In normal situations, which means there is no DDoS attack, Proxy 1 works just like a
simple proxy server, as shown in Figure 2.

Figure 2. Moving Virtual Machine (MVM) workflow under normal conditions.

Figure 1. Original structure of a Linux system call.

4. System
4.1. Method for Moving Virtual Machine (MVM)

The purpose of this work is to defend against network based DDoS attacks. For the
system, it contains a client agent, proxies, and a server. The client agent is responsible for
handle connection migrations on the client side. Proxies forward packets, detect possible
DDoS attacks, and migrate connections. The server is a virtual machine that provides
network services. In a system overview, we deploy a client, two proxies, and a server. In
the following sections, we call the proxy given to clients as Proxy 1, which will be attacked;
the other one is Proxy 2, which will receive an immediate notification from Proxy 1.

In normal situations, which means there is no DDoS attack, Proxy 1 works just like a
simple proxy server, as shown in Figure 2.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 17

Figure 1. Original structure of a Linux system call.

4. System
4.1. Method for Moving Virtual Machine (MVM)

The purpose of this work is to defend against network based DDoS attacks. For the
system, it contains a client agent, proxies, and a server. The client agent is responsible for
handle connection migrations on the client side. Proxies forward packets, detect possible
DDoS attacks, and migrate connections. The server is a virtual machine that provides net-
work services. In a system overview, we deploy a client, two proxies, and a server. In the
following sections, we call the proxy given to clients as Proxy 1, which will be attacked;
the other one is Proxy 2, which will receive an immediate notification from Proxy 1.

In normal situations, which means there is no DDoS attack, Proxy 1 works just like a
simple proxy server, as shown in Figure 2.

Figure 2. Moving Virtual Machine (MVM) workflow under normal conditions. Figure 2. Moving Virtual Machine (MVM) workflow under normal conditions.

When Proxy 1 is under a DDoS attack, as shown in Figure 3, Proxy 1 will send
two notifications. The first notification, which contains the current user connections’

Sensors 2021, 21, 1980 6 of 17

information, is sent to the Proxy 2, so Proxy 2 can setup its whitelist, depending on the
notification. The second notification contains the IP address of Proxy 2, which is sent to the
connected clients. After a client receives the notification, the client will start a migration
process. Once the migration process is complete, the client communicates with the server
through Proxy 2. Besides, the IP address of Proxy 2 remains unknown for all clients until the
migration starts. Furthermore, the dispatched Proxy 2 may be more than one destination,
which means there are different machines of Proxy 2 for the connected clients so that the
adversary can never launch a successful DDoS attack to all of the proxies at the same time.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 17

When Proxy 1 is under a DDoS attack, as shown in Figure 3, Proxy 1 will send two
notifications. The first notification, which contains the current user connections’ infor-
mation, is sent to the Proxy 2, so Proxy 2 can setup its whitelist, depending on the notifi-
cation. The second notification contains the IP address of Proxy 2, which is sent to the
connected clients. After a client receives the notification, the client will start a migration
process. Once the migration process is complete, the client communicates with the server
through Proxy 2. Besides, the IP address of Proxy 2 remains unknown for all clients until
the migration starts. Furthermore, the dispatched Proxy 2 may be more than one destina-
tion, which means there are different machines of Proxy 2 for the connected clients so that
the adversary can never launch a successful DDoS attack to all of the proxies at the same
time.

Figure 3. MVM workflow under distributed denial of service (DDoS) attack.

4.2. Sensing System
This paper introduces a simple Ethernet packets flow detection mechanism for the

detection. It monitors the number of packets at the frontier of a server. This flood-detec-
tion module will calculate the volume of the packets of the Ethernet in every second. We
need to set a threshold to the module, manually, on each of the various conditions. If the
volume in a second exceeds the abnormal threshold, the flood-detection module will
judge it as a suspected DDoS attack. According to our experiments, it can detect flooding
DDoS attacks successfully, including SYN flood attacks and ICMP flood attacks. On the
other hand, in this work, we call the process of establishing a new connection by Proxy 1,
which is under DDoS attacks, as “transfer”. The main difference between “transfer” and
“migrate” is whether a connection has been established; “migrate” requires an established
connection, but “transfer” does not as yet.

For MS, the most different functionality from the MVM is that the MS can transfer a
request for establishing a new connection to the proxy that has not been under attack. As
shown in Figure 4, when a proxy is under a strong attack, the proxy is unable to determine
which SYN packet is a regular one. The proxy responds to a SYN packet with a chosen
probability. The proxy responds to the SYN packet of the sender with a SYN_ACK packet
if a SYN packet is chosen. If the proxy receives a corresponding ACK packet, this indicates
that the sender is a real host.

Since the sender is verified as an existing host, we send a transfer notification, which
contains the IP address of Proxy 2, to the sender. Besides, we send a ratify notification,
which contains the information about the client, to Proxy 2, so that we can update the
firewall rules on Proxy 2.

Figure 3. MVM workflow under distributed denial of service (DDoS) attack.

4.2. Sensing System

This paper introduces a simple Ethernet packets flow detection mechanism for the
detection. It monitors the number of packets at the frontier of a server. This flood-detection
module will calculate the volume of the packets of the Ethernet in every second. We need
to set a threshold to the module, manually, on each of the various conditions. If the volume
in a second exceeds the abnormal threshold, the flood-detection module will judge it as a
suspected DDoS attack. According to our experiments, it can detect flooding DDoS attacks
successfully, including SYN flood attacks and ICMP flood attacks. On the other hand, in
this work, we call the process of establishing a new connection by Proxy 1, which is under
DDoS attacks, as “transfer”. The main difference between “transfer” and “migrate” is
whether a connection has been established; “migrate” requires an established connection,
but “transfer” does not as yet.

For MS, the most different functionality from the MVM is that the MS can transfer a
request for establishing a new connection to the proxy that has not been under attack. As
shown in Figure 4, when a proxy is under a strong attack, the proxy is unable to determine
which SYN packet is a regular one. The proxy responds to a SYN packet with a chosen
probability. The proxy responds to the SYN packet of the sender with a SYN_ACK packet
if a SYN packet is chosen. If the proxy receives a corresponding ACK packet, this indicates
that the sender is a real host.

Since the sender is verified as an existing host, we send a transfer notification, which
contains the IP address of Proxy 2, to the sender. Besides, we send a ratify notification,
which contains the information about the client, to Proxy 2, so that we can update the
firewall rules on Proxy 2.

Sensors 2021, 21, 1980 7 of 17Sensors 2021, 21, x FOR PEER REVIEW 7 of 17

Figure 4. Execution flow of Migration Sensor (MS) under DDoS attacks.

4.3. System Overview
The MS system can be divided into three parts: clients, proxies, and servers. A client

has a Connection Handler. A proxy mainly contains a DDoS Detector, a Packet Handler,
a SYN Checker, and an Informer. The server provides network service, such as Secure
Shell (SSH), HTTP/HTTPS service, and so on.

The simplest structure contains a client, two proxies, and a server, as shown in Figure 5.
The most important sensing components of MS are Connection Handler and DDoS Detec-
tor.

Figure 4. Execution flow of Migration Sensor (MS) under DDoS attacks.

4.3. System Overview

The MS system can be divided into three parts: clients, proxies, and servers. A client
has a Connection Handler. A proxy mainly contains a DDoS Detector, a Packet Handler, a
SYN Checker, and an Informer. The server provides network service, such as Secure Shell
(SSH), HTTP/HTTPS service, and so on.

The simplest structure contains a client, two proxies, and a server, as shown in Figure 5.
The most important sensing components of MS are Connection Handler and DDoS Detector.

4.3.1. Connection Handler

Connection Handler is in charge of establishing a new connection. The Handler makes
a three-way handshake first, then tries to receive a transfer notification until timeout. If the
destination host sends a transfer notification back, which contains the secret word and the
IP address of another proxy, the handler rewrites the destination IP of the struct sockaddr
with the IP written inside the transfer notification. After rewriting, the Connection Handler
makes another three-way handshake to establish a new connection. For easy identification,
hereafter, Client Connection Handler will be called CCH.

Sensors 2021, 21, 1980 8 of 17Sensors 2021, 21, x FOR PEER REVIEW 8 of 17

Figure 5. System overview.

4.3.1. Connection Handler
Connection Handler is in charge of establishing a new connection. The Handler

makes a three-way handshake first, then tries to receive a transfer notification until
timeout. If the destination host sends a transfer notification back, which contains the secret
word and the IP address of another proxy, the handler rewrites the destination IP of the
struct sockaddr with the IP written inside the transfer notification. After rewriting, the
Connection Handler makes another three-way handshake to establish a new connection.
For easy identification, hereafter, Client Connection Handler will be called CCH.

4.3.2. DDoS Detector
DDoS Detector is a main module of MS, which is to sense the number of packets at

the frontier of the network architecture, which is in charge of detecting flood traffic. It is
a lightweight detection mechanism against flooding attacks. For friendly use, we develop
it simply in the user mode of an operating system. A network administrator can set the
configurations easily and start immediate protection. Once it detects unusual traffic, the
detector will send a signal to Informer. We will discuss the functions of Informer later.

4.3.3. Packet Handler
Packet Handler is in charge of forwarding packets. Moreover, Packet Handler is in

response to the process connection migrating progress, after a DDoS attack detected by
the DDoS Detector.

Figure 5. System overview.

4.3.2. DDoS Detector

DDoS Detector is a main module of MS, which is to sense the number of packets at
the frontier of the network architecture, which is in charge of detecting flood traffic. It is a
lightweight detection mechanism against flooding attacks. For friendly use, we develop
it simply in the user mode of an operating system. A network administrator can set the
configurations easily and start immediate protection. Once it detects unusual traffic, the
detector will send a signal to Informer. We will discuss the functions of Informer later.

4.3.3. Packet Handler

Packet Handler is in charge of forwarding packets. Moreover, Packet Handler is in
response to the process connection migrating progress, after a DDoS attack detected by the
DDoS Detector.

4.3.4. SYN Checker

After DDoS Detector detects DDoS attacks, Informer sets the firewall, and switches
the callback from Packet Handler to SYN Checker. SYN Checker selects a SYN packet to
respond with chosen probability. That is, it does not respond to all of the SYN packets. If
the client is a normal client rather than a forged source produced by an attacker, it will
respond ACK after it got the SYN_ACK. Since the SYN Checker receives the correspond
ACK, it can ratify the connection, then call Informer to send the transfer notification to
the client and the ratify notification to the next proxy (Proxy 2) to maintain the original
connection of the service from previous proxy (Proxy 1).

4.3.5. Informer

Informer tries to send notifications and manages the firewall rules. When the DDoS
Detector detects DDoS attacks, the DDoS Detector sends a signal to Informer. After Informer

Sensors 2021, 21, 1980 9 of 17

receive the signal, it sends migration notifications to the other proxies and clients that
establish connections.

5. Implementation

For establishing a new connection through our proxy, which is under a DDoS attack,
the mechanism of MS covers the transfer progress. We suppose that MS is under a strong
attack and SYN Checker can accept the connection requests from all clients of this system.
At first, Proxy 1 detects the attack, and Informer sets up the firewall. A client would like to
establish a new connection through Proxy 1 at this point. If SYN Checker collects this SYN
packet, with chosen probability, Informer sends the corresponding SYN_ACK packet to the
client and sets the firewall rule to allow the possible corresponding ACK packet.

Next, it sends an ACK packet to Proxy 1 after the client receives the SYN_ACK packet.
Because the client has been verified as a regular client by SYN Checker, Informer sends
an approval notice to Proxy 2 and a transfer notification to the client. The approval notice
contains the information of the client, which will establish a new connection to Proxy 2,
and then Proxy 2 can set its inner firewall policy to allow this client to communicate; the
transfer notification carries the IP address of Proxy 2 so that the client can establish another
connection with it, which is under a normal situation.

CCH sends the SYN packet with a new destination. The packet will pass through the
Detector and the firewall on Proxy 2, and then Packet Handler sends it to the original server.
Finally, after the server sends the SYN_ACK back to Proxy 2, Packet Handler will forward
it to the client. Once the transfer process finishes, the new proxy (Proxy 2) operates as a new
frontend proxy, while the previous proxy (Proxy 1) is set as a temporary suspension state.

5.1. Design

The important point of the Migration Sensor (MS) system mainly concerns the design
of Detector and CCH. Thus we focus on describing these two significant components.
When there is a malicious DDoS attack, Detector will distinguish it and trigger the next
procedure to notify the migration. Detector will check the volume of flood packets with
the threshold set by the network administrator earlier. Then, CCH takes over the next
processing step. As shown in Figure 6, we insert a table entry with the address of our
customized sys_connect, which is named mod_connect. Thus, we can create a socket and
receive transfer notifications just in the kernel space.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 17

Figure 6. Workflow of Client Connection Handler (CCH).

5.2. Conditions of CCH Workflow
Under a normal situation, the MS system will conduct three-way handshaking twice,

as Figure 7. The first three-way handshake is to check if the proxy intends to conduct the
transfer process. Supposing Proxy 1 is unprotected, a client will not receive any transfer
notification, which is caused by a receive timeout. Moreover, every time the sys_connect
is called, the CCH will conduct this process. Otherwise, the client cannot know the state
of the proxy until the proxy sends a notification.

Figure 7. Workflow of CCH under a normal situation.

For some reason, a client may not get the response from the proxy, as Figure 8. For
instance, the proxy is under a strong DDoS attack, and SYN Checker on the proxy is forced

Figure 6. Workflow of Client Connection Handler (CCH).

Sensors 2021, 21, 1980 10 of 17

5.2. Conditions of CCH Workflow

Under a normal situation, the MS system will conduct three-way handshaking twice,
as Figure 7. The first three-way handshake is to check if the proxy intends to conduct the
transfer process. Supposing Proxy 1 is unprotected, a client will not receive any transfer
notification, which is caused by a receive timeout. Moreover, every time the sys_connect is
called, the CCH will conduct this process. Otherwise, the client cannot know the state of
the proxy until the proxy sends a notification.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 17

Figure 6. Workflow of Client Connection Handler (CCH).

5.2. Conditions of CCH Workflow
Under a normal situation, the MS system will conduct three-way handshaking twice,

as Figure 7. The first three-way handshake is to check if the proxy intends to conduct the
transfer process. Supposing Proxy 1 is unprotected, a client will not receive any transfer
notification, which is caused by a receive timeout. Moreover, every time the sys_connect
is called, the CCH will conduct this process. Otherwise, the client cannot know the state
of the proxy until the proxy sends a notification.

Figure 7. Workflow of CCH under a normal situation.

For some reason, a client may not get the response from the proxy, as Figure 8. For
instance, the proxy is under a strong DDoS attack, and SYN Checker on the proxy is forced

Figure 7. Workflow of CCH under a normal situation.

For some reason, a client may not get the response from the proxy, as Figure 8. For
instance, the proxy is under a strong DDoS attack, and SYN Checker on the proxy is forced
to omit this SYN packet. We will not retry in CCH in this case, but only let the user process
make a decision.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17

to omit this SYN packet. We will not retry in CCH in this case, but only let the user process
make a decision.

Figure 8. Workflow of CCH when no response.

On the other hand, while the MS system is enabled and Proxy 1 encounters a DDoS
attack, SYN Checker of Proxy 1 that is under attack will respond to SYN packets with a
chosen probability as mentioned in subsection 4.3.4. It can check the availability of the
source by a three-way handshake before SYN Checker sends a transfer notification. Proxy
1 sends a transfer notification to the client after the client responds with a corresponding
ACK packet, which means the client is a real user rather than a forged source. Once CCH
receives this notification, CCH rewrites the destination with the IP of another proxy,
which is recorded in the transfer notification. The workflow is depicted as shown in Figure 9.

As a result, CCH makes a three-way handshake with the new destination and estab-
lishes a new connection.

Figure 9. Workflow of CCH when the Proxy 1 is under attack.

Figure 8. Workflow of CCH when no response.

Sensors 2021, 21, 1980 11 of 17

On the other hand, while the MS system is enabled and Proxy 1 encounters a DDoS
attack, SYN Checker of Proxy 1 that is under attack will respond to SYN packets with
a chosen probability as mentioned in Section 4.3.4. It can check the availability of the
source by a three-way handshake before SYN Checker sends a transfer notification. Proxy 1
sends a transfer notification to the client after the client responds with a corresponding
ACK packet, which means the client is a real user rather than a forged source. Once CCH
receives this notification, CCH rewrites the destination with the IP of another proxy, which
is recorded in the transfer notification. The workflow is depicted as shown in Figure 9.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17

to omit this SYN packet. We will not retry in CCH in this case, but only let the user process
make a decision.

Figure 8. Workflow of CCH when no response.

On the other hand, while the MS system is enabled and Proxy 1 encounters a DDoS
attack, SYN Checker of Proxy 1 that is under attack will respond to SYN packets with a
chosen probability as mentioned in subsection 4.3.4. It can check the availability of the
source by a three-way handshake before SYN Checker sends a transfer notification. Proxy
1 sends a transfer notification to the client after the client responds with a corresponding
ACK packet, which means the client is a real user rather than a forged source. Once CCH
receives this notification, CCH rewrites the destination with the IP of another proxy,
which is recorded in the transfer notification. The workflow is depicted as shown in Figure 9.

As a result, CCH makes a three-way handshake with the new destination and estab-
lishes a new connection.

Figure 9. Workflow of CCH when the Proxy 1 is under attack. Figure 9. Workflow of CCH when the Proxy 1 is under attack.

As a result, CCH makes a three-way handshake with the new destination and estab-
lishes a new connection.

6. Evaluation

In this section, we evaluate the performance overhead under selected common situa-
tions. Each experiment includes evaluated benchmarks. The micro benchmark measures
the time consumption of establishing a new connection for 1000 times and gets the average
value. The macro benchmark measures the time consumption, also repeated for 1000
times. Nevertheless, the macro benchmark is closer to the real world. We measure the time
consumption of downloading a 760 kilobytes picture from a server. In order to ensure that
the download process works properly, we compare the MD5 value of each image.

6.1. Experimental Specification

The system specifications of the client and the two proxies are shown in Table 1.

Table 1. System specification.

Client Proxy 1 Proxy 2

Operating system Ubuntu 18.04 AMD64
(Desktop)

Ubuntu 18.04 AMD64
(Server)

Ubuntu 18.04 AMD64
(Server)

CPU Intel Core 2 Quad
Q9400 @ 2.66 GHz

Intel Core i7-2600
@ 3.40 GHz

Intel Core i5-4460
@ 3.20 GHz

RAM DDR2 4 G DDR3 16 G DDR3 16 G
Type of system disk HDD HDD HDD

Sensors 2021, 21, 1980 12 of 17

6.2. Testing Existing Functionality

When it comes to detecting DDoS attacks, Detector of MS can always detect the flood
of DDoS attacks, with an appropriate threshold. In conclusion, the success rate is 100%
when attackers launch flood DDoS attacks. The other experiment focuses on functionality.
Though we have modified the behavior of sys_connect, the original functionality should
still work (as the same as before). In this case, we took the website of the White House
as a destination, measured the time consumption of a three-way handshake, and then
downloaded an image by HTTP protocol. As mentioned, each test was repeated 1000 times.
Testing existing functionality also means that MVM does not perform together on this
experimental architecture, which is a pure functional test for the MS system.

In comparison with the operating system without MS, the one with MS comes with
almost the same performance, as shown in Table 2, and Figures 10 and 11. It shows that the
MS system can keep the original functionality with acceptable overhead.

Table 2. Testing existing functionality.

Without MS With MS

Test Case New Connection Download Data New Connection Download Data
Success rate 100% 100% 100% 100%

Average (ms) 6.5 121.9 6.7 124.3
Medium (ms) 5.5 117.3 5.5 118.1

Standard Deviation 5.5 20.7 5.8 26.2
Overhead of MS 3.1% 1.9%Sensors 2021, 21, x FOR PEER REVIEW 14 of 18

Figure 10. Average time and medium time of testing existing functionality—new connection.

Figure 11. Average time and medium time of testing existing functionality—download data.

6.3. Connecting to Protected Server under a Normal Situation

We need to consider when MS will be used in practice. In order to defend against

DDoS attacks and protect a server, the MS system must work together with MVM to

complete the defense procedures. This experiment focuses on the overhead of a client in

the MS system under a normal situation; that is, it is combined with MVM and is not

under attack. In the experiment, we assume that Proxy 1 is protected. In addition, to

consider in the next experiment, we simulate a DDoS attack on Proxy 1, we deploy the

whole system in an isolated local network. As a proof of concept, the IP address of Proxy

1 was hardcoded in current CCH in the test. Nonetheless, the IP address of Proxy 2 can

still be changed or selected at any time.

Moreover, since the HTTP functionality of the MVM system is a work in progress,

we download the image by SSH in this test. As shown in Table 3, the overhead of

establishing a new connection after installed MS came to almost 200%. However, as shown

in Table 4, the overhead of downloading an image only came to 2.8%. We also give some

figures for immediate understanding of the result, as see in Figures 12 and 13. It shows

Figure 10. Average time and medium time of testing existing functionality—new connection.

Sensors 2021, 21, 1980 13 of 17

Sensors 2021, 21, x FOR PEER REVIEW 14 of 18

Figure 10. Average time and medium time of testing existing functionality—new connection.

Figure 11. Average time and medium time of testing existing functionality—download data.

6.3. Connecting to Protected Server under a Normal Situation

We need to consider when MS will be used in practice. In order to defend against

DDoS attacks and protect a server, the MS system must work together with MVM to

complete the defense procedures. This experiment focuses on the overhead of a client in

the MS system under a normal situation; that is, it is combined with MVM and is not

under attack. In the experiment, we assume that Proxy 1 is protected. In addition, to

consider in the next experiment, we simulate a DDoS attack on Proxy 1, we deploy the

whole system in an isolated local network. As a proof of concept, the IP address of Proxy

1 was hardcoded in current CCH in the test. Nonetheless, the IP address of Proxy 2 can

still be changed or selected at any time.

Moreover, since the HTTP functionality of the MVM system is a work in progress,

we download the image by SSH in this test. As shown in Table 3, the overhead of

establishing a new connection after installed MS came to almost 200%. However, as shown

in Table 4, the overhead of downloading an image only came to 2.8%. We also give some

figures for immediate understanding of the result, as see in Figures 12 and 13. It shows

Figure 11. Average time and medium time of testing existing functionality—download data.

6.3. Connecting to Protected Server under a Normal Situation

We need to consider when MS will be used in practice. In order to defend against
DDoS attacks and protect a server, the MS system must work together with MVM to
complete the defense procedures. This experiment focuses on the overhead of a client in
the MS system under a normal situation; that is, it is combined with MVM and is not under
attack. In the experiment, we assume that Proxy 1 is protected. In addition, to consider in
the next experiment, we simulate a DDoS attack on Proxy 1, we deploy the whole system in
an isolated local network. As a proof of concept, the IP address of Proxy 1 was hardcoded
in current CCH in the test. Nonetheless, the IP address of Proxy 2 can still be changed or
selected at any time.

Moreover, since the HTTP functionality of the MVM system is a work in progress, we
download the image by SSH in this test. As shown in Table 3, the overhead of establishing
a new connection after installed MS came to almost 200%. However, as shown in Table 4,
the overhead of downloading an image only came to 2.8%. We also give some figures for
immediate understanding of the result, as see in Figures 12 and 13. It shows that, except
for the overhead of the new connection of Proxy 1, the overhead of the whole system
(including MVM) was little, which is always less than 3% on average.

Table 3. Establishing a new connection under a normal situation.

Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2
Success rate 100% 100% 100% 100%

Average (ms) 15.8 14.1 47.4 14.3
Medium (ms) 14.5 13.1 45.6 13.1

Standard Deviation 7.2 6.6 9.9 8.8
Overhead 199.9% 1.4%

Sensors 2021, 21, 1980 14 of 17

Table 4. Downloading a 760 KB image under normal situation.

Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2
Success rate 100% 100% 100% 100%

Average (ms) 1902.3 1776.2 1956.0 1789.0
Medium (ms) 1899.3 1763.2 1947.9 1760.7

Standard Deviation 35.1 87.1 45.3 56.1
Overhead 2.89% 0.7%

Sensors 2021, 21, x FOR PEER REVIEW 15 of 18

that, except for the overhead of the new connection of Proxy 1, the overhead of the whole

system (including MVM) was little, which is always less than 3% on average.

Table 3. Establishing a new connection under a normal situation.

 Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2

Success rate 100% 100% 100% 100%

Average (ms) 15.8 14.1 47.4 14.3

Medium (ms) 14.5 13.1 45.6 13.1

Standard Deviation 7.2 6.6 9.9 8.8

Overhead 199.9% 1.4%

Table 4. Downloading a 760 KB image under normal situation.

 Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2

Success rate 100% 100% 100% 100%

Average (ms) 1902.3 1776.2 1956.0 1789.0

Medium (ms) 1899.3 1763.2 1947.9 1760.7

Standard Deviation 35.1 87.1 45.3 56.1

Overhead 2.89% 0.7%

Figure 12. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—new connection.

Figure 13. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—downloading image.

The reason why there is a dramatic difference between the two benchmark is that

once the three-way handshake finishes, the sys_connect will not be called again until a

new connection is required. In other words, there are many data transmissions after a

three-way handshake for a real scenario, causing the client to spend more time on data

transmissions. As a result, MS comes with a significant overhead in establishing a new

connection, but it is not a big issue in a functional case.

Figure 12. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—new connection.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 18

that, except for the overhead of the new connection of Proxy 1, the overhead of the whole

system (including MVM) was little, which is always less than 3% on average.

Table 3. Establishing a new connection under a normal situation.

 Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2

Success rate 100% 100% 100% 100%

Average (ms) 15.8 14.1 47.4 14.3

Medium (ms) 14.5 13.1 45.6 13.1

Standard Deviation 7.2 6.6 9.9 8.8

Overhead 199.9% 1.4%

Table 4. Downloading a 760 KB image under normal situation.

 Without MS With MS

Destination Proxy 1 Proxy 2 Proxy 1 Proxy 2

Success rate 100% 100% 100% 100%

Average (ms) 1902.3 1776.2 1956.0 1789.0

Medium (ms) 1899.3 1763.2 1947.9 1760.7

Standard Deviation 35.1 87.1 45.3 56.1

Overhead 2.89% 0.7%

Figure 12. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—new connection.

Figure 13. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—downloading image.

The reason why there is a dramatic difference between the two benchmark is that

once the three-way handshake finishes, the sys_connect will not be called again until a

new connection is required. In other words, there are many data transmissions after a

three-way handshake for a real scenario, causing the client to spend more time on data

transmissions. As a result, MS comes with a significant overhead in establishing a new

connection, but it is not a big issue in a functional case.

Figure 13. Average time of Proxy 1 and Proxy 2 when defending against DDoS attacks—downloading image.

The reason why there is a dramatic difference between the two benchmark is that
once the three-way handshake finishes, the sys_connect will not be called again until a new
connection is required. In other words, there are many data transmissions after a three-way
handshake for a real scenario, causing the client to spend more time on data transmissions.
As a result, MS comes with a significant overhead in establishing a new connection, but it
is not a big issue in a functional case.

6.4. Connecting to Protected Server under Simulate DDoS Attacks

In this section, we assume that Proxy 1 is under a DDoS attack. To simulate the SYN
flooding attack, we took hping3 as an attack launcher. The attacker host sent SYN packets
with a random source every 1000 microseconds.

As seen in Table 5, the result shows that it is possible to establish a new connection
through the proxy being attacked. It also shows that the successful rate can be increased
by retries, which were made by the user process. Unfortunately, this novel mechanism is
mostly different from the previous related work, so there is no way to do similar functional
comparisons.

Sensors 2021, 21, 1980 15 of 17

Table 5. Successful rate of three-way handshaking and downloading a 760 KB image.

Accept Probability 1 0.75 0.5 0.25

Three-way handshaking 2.4% 2.2% 1.3% 0.3%
Download an image 3.7% 3.1% 2.1% 0.9%

7. Discussion

In this work, we use a firewall as an extra traffic filter, which reduces the traffic load so
that SYN Checker can deal with it. The reason why we designed this additional component
is that we would like to adapt an existing system MVM to our solution, but the existing
MVM implementation came with serious performance issues during our pressure tests. As
a stable solution, we deployed a firewall to deal with performance issues. On the other
hand, SYN Checker can also be a traffic filter, which picks up a SYN packet randomly
to respond and drop others. In the future, we have to improve the performance of the
components on the proxy to make SYN Checker work with an attack traffic. We search
the system call table from an exported symbol sys_close to the other exported symbol
loops_per_jiffy, and we add the size of the pointer with the accumulator, which is a register
in a computer’s central processing unit (CPU). It works properly on Ubuntu 18.04 with
the kernel Linux Ubuntu 4.15.0-29-generic, but this LKM usually cannot install on Ubuntu
18.04 with the updated kernel Linux Ubuntu 4.15.0-54-generic.

Essentially, if we combine MS system with MVM, the entire system will be superior to
previous defense solutions, as it can transfer the service to another public IP address, in
this way, at any time, and also notify both old users and new users, at a low cost. Previous
work lacks this mechanism and cannot move the server to another public IP address.
Moreover, solutions nowadays usually need a lot of resources. Even more, their system
usually depends on a few more vulnerable servers that handle their defense mechanisms.
Once these servers are crashed by malicious behaviors, including a DDoS attack, the whole
defensive mechanism still shuts down.

8. Conclusions

In this paper, we propose a kernel module based mechanism to establish a new TCP/IP
connection by the host that is under attack (the clients did not know the location of the
host at first). In addition, it combines a module to monitor the number of packets at the
frontier of its network architecture to detect DDoS attacks. This novel mechanism is called
Migration Sensor (MS). When a flood attack occurs, MS will trigger a series of procedures
to set up another location and change the service destination to the new location. Although
it takes almost 200% overhead on three-way handshaking, the overall overhead only takes
2.8%, which is so low that it can be seen as an error. The simulation also shows that MS can
improve the availability of the server, which is available for established connections under
the Method for Moving Virtual Machine (MVM). Thus, we consider that MS is a successful
proof of our design.

When it comes to the function of DDoS attack detection, we consider some previous
work makes it too complicated and we propose a concise lightweight DDoS Detector
module, which has very efficient results in the general network environment. We designed
a novel component, Client Connection Handler (CCH), to make another three-way hand-
shake to establish a new connection for the destination transferring. Besides CCH, we also
discuss a whole practice scenario where this sensing system can be applied, and depict each
component. If the MS mechanism runs in the MVM environment, the entire system can
transfer the service to another public IP address at any time and also notify both old users
and new users without service disconnection. Previous work lacked this novel mechanism
and usually required more resources than our system, were often complicated, and either
had huge hardware resources or a few fragile servers to support the system.

Author Contributions: Conceptualization, F.-H.H.; methodology, F.-H.H. and C.-H.L.; software,
F.-H.H., C.-H.L., and R.-Y.H.; validation, C.-H.L., C.-Y.W., R.-Y.H., and Y.Z.; formal analysis, F.-H.H.

Sensors 2021, 21, 1980 16 of 17

and C.-H.L.; investigation and experiment, F.-H.H., C.-H.L., C.-Y.W., and R.-Y.H.; drawing, R.-Y.H.;
writing—review and editing, F.-H.H. and C.-H.L.; supervision, F.-H.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kupreev, O.; Badovskaya, E.; Gutnikov, A. DDoS Attacks in Q1. 2019. Available online: https://securelist.com/ddos-report-q1-2

019/90792/ (accessed on 27 January 2021).
2. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;

Kallitsis, M.; et al. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium, Vancouver, BC,
Canada, 16–18 August 2017.

3. Travostino, F.; Daspit, P.; Gommans, L.; Jog, C.; de Laat, C.; Mambretti, J.; Monga, I.; van Oudenaarde, B.; Raghunath, S.; Wang, P.Y.
Seamless Live migration of virtual machines over the MAN/WAN. Future Gener. Comput. Syst. 2006, 22, 901–907. [CrossRef]

4. Bradford, R.; Kotsovinos, E.; Feldmann, A.; Schioberg, H. Live wide-area migration of virtual machines including local per-sistent
state. In Proceedings of the 3rd International Conference on Virtual Execution Environ-ments; San Diego, CA, USA, 13–15 June 2007,
pp. 169–179.

5. Amazon.com: Amazon EC2. Available online: https://aws.amazon.com/cn/ec2/ (accessed on 8 February 2021).
6. Google: Google Compute Engine. Available online: https://cloud.google.com/ (accessed on 8 February 2021).
7. Cloudflare. Available online: https://www.cloudflare.com/ (accessed on 8 February 2021).
8. Akamai. Available online: https://www.akamai.com/ (accessed on 8 February 2021).
9. Alibaba Cloud. Available online: https://www.alibabacloud.com/ (accessed on 8 February 2021).
10. Hussain, A.; Heidemann, J.; Papadopoulos, C. A framework for classifying denial of service attacks. In Proceedings of the

2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM ‘03),
Association for Computing Machinery, New York, NY, USA, 25 August 2003; pp. 99–110.

11. Carl, G.; Kesidis, G.; Richard, R.; Suresh Rai, B. Denial-of-Service Attack-Detection Techniques. IEEE Internet Comput. 2006, 10,
82–89. [CrossRef]

12. Dainotti, A.; Pescapé, A.; Ventre, G. A Cascade Architecture for DoS Attacks Detection Based on the Wavelet Transform. J. Comput.
Secur. 2009, 17, 945–968. [CrossRef]

13. Wang, H.; Jia, Q.; Fleck, D.; Powell, W.; Li, F.; Stavrou, A. A moving target DDoS defense mechanism. Comput. Commun. 2014, 46,
10–21. [CrossRef]

14. Jia, Q.; Wang, H.; Fleck, D.; Li, F.; Stavrou, A.; Powell, W. Catch Me If You Can: A Cloud-Enabled DDoS Defense. In Proceedings
of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA, USA, 23–26
June 2014; pp. 264–275.

15. Somani, G.; Gaur, M.S.; Sanghi, D.; Conti, M.; Rajarajan, M. Scale Inside-Out: Rapid Mitigation of Cloud DDoS Attacks. IEEE
Trans. Dependable Secur. Comput. 2018, 15, 959–973. [CrossRef]

16. Behal, S.; Kumar, K.; Sachdeva, M. D-FACE: An anomaly based distributed approach for early detection of DDoS attacks and
flash events. J. Netw. Comput. Appl. 2018, 111, 49–63. [CrossRef]

17. Patil, R.; Dudeja, H.; Gawade, S.; Modi, C. Protocol Specific Multi-Threaded Network Intrusion Detection System (PM-NIDS) for
DoS/DDoS Attack Detection in Cloud. In Proceedings of the 2018 9th International Conference on Computing, Commu-nication
and Networking Technologies (ICCCNT 2018), Bengaluru, India, 10–12 July 2018.

18. Wang, C.; Miu, T.T.N.; Luo, X.; Wang, J. SkyShield: A Sketch-Based Defense System against Application Layer DDoS Attacks.
IEEE Trans. Inf. Forensics Secur. 2018, 13, 559–573. [CrossRef]

19. Lei, C.; Ma, D.-H.; Zhang, H.-Q.; Yang, Y.-J.; Wang, L.-M. Moving Target Defense Technique Based on Network Attack Sur-face
Self-Adaptive Mutation. Chin. J. Comput. 2018, 41, 1109–1131.

20. Shani, T. Updated: This DDoS Attack Unleashed the Most Packets Per Second Ever. Here’s Why That’s Important. Imperva
Blog. Available online: https://www.imperva.com/blog/this-ddos-attack-unleashed-the-most-packets-per-second-ever-heres-
why-thats-important/ (accessed on 27 January 2021).

21. Famous DDoS Attacks Cloudflare. Available online: https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
(accessed on 27 January 2021).

22. Crane, C. Re-Hash: The Largest DDoS Attacks in History. Hashed Out by The SSL Store™. Available online: https://www.
thesslstore.com/blog/largest-ddos-attack-in-history/ (accessed on 27 January 2021).

https://securelist.com/ddos-report-q1-2019/90792/
https://securelist.com/ddos-report-q1-2019/90792/
http://doi.org/10.1016/j.future.2006.03.007
https://aws.amazon.com/cn/ec2/
https://cloud.google.com/
https://www.cloudflare.com/
https://www.akamai.com/
https://www.alibabacloud.com/
http://doi.org/10.1109/MIC.2006.5
http://doi.org/10.3233/JCS-2009-0350
http://doi.org/10.1016/j.comcom.2014.03.009
http://doi.org/10.1109/TDSC.2017.2763160
http://doi.org/10.1016/j.jnca.2018.03.024
http://doi.org/10.1109/TIFS.2017.2758754
https://www.imperva.com/blog/this-ddos-attack-unleashed-the-most-packets-per-second-ever-heres-why-thats-important/
https://www.imperva.com/blog/this-ddos-attack-unleashed-the-most-packets-per-second-ever-heres-why-thats-important/
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://www.thesslstore.com/blog/largest-ddos-attack-in-history/
https://www.thesslstore.com/blog/largest-ddos-attack-in-history/

Sensors 2021, 21, 1980 17 of 17

23. Lloyd, A. DDoS Attacks Can Cost Organizations $50,000 Per Attack. The DDoS Blog, Corero. Available online: https://www.
corero.com/blog/ddos-attacks-can-cost-organizations-50000-per-attack/ (accessed on 27 January 2021).

24. Here’s How Much Money a Business Should Expect to Lose If They’re Hit with a DDoS Attack—TechRepublic. Available
online: https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-
a-ddos-attack/ (accessed on 27 January 2021).

25. Collateral Damage: 26% of DDoS Attacks Lead to Data Loss Kaspersky. 2015. Available online: https://www.kaspersky.com/
about/press-releases/2015_collateral-damage-26-of-ddos-attacks-lead-to-data-loss (accessed on 27 January 2021).

https://www.corero.com/blog/ddos-attacks-can-cost-organizations-50000-per-attack/
https://www.corero.com/blog/ddos-attacks-can-cost-organizations-50000-per-attack/
https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-a-ddos-attack/
https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-a-ddos-attack/
https://www.kaspersky.com/about/press-releases/2015_collateral-damage-26-of-ddos-attacks-lead-to-data-loss
https://www.kaspersky.com/about/press-releases/2015_collateral-damage-26-of-ddos-attacks-lead-to-data-loss

	Introduction
	Related Work
	Background
	Context
	DDoS Attacks
	Flood Attack
	Linux System Call

	System
	Method for Moving Virtual Machine (MVM)
	Sensing System
	System Overview
	Connection Handler
	DDoS Detector
	Packet Handler
	SYN Checker
	Informer

	Implementation
	Design
	Conditions of CCH Workflow

	Evaluation
	Experimental Specification
	Testing Existing Functionality
	Connecting to Protected Server under a Normal Situation
	Connecting to Protected Server under Simulate DDoS Attacks

	Discussion
	Conclusions
	References

