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ABSTRACT
Background Polypharmacy interventions are resource- 
intensive and should be targeted to those at risk of 
negative health outcomes. Our aim was to develop and 
internally validate prognostic models to predict health- 
related quality of life (HRQoL) and the combined outcome 
of falls, hospitalisation, institutionalisation and nursing 
care needs, in older patients with multimorbidity and 
polypharmacy in general practices.
Methods Design: two independent data sets, one 
comprising health insurance claims data (n=592 456), 
the other data from the PRIoritising MUltimedication in 
Multimorbidity (PRIMUM) cluster randomised controlled 
trial (n=502). Population: ≥60 years, ≥5 drugs, ≥3 chronic 
diseases, excluding dementia. Outcomes: combined 
outcome of falls, hospitalisation, institutionalisation and 
nursing care needs (after 6, 9 and 24 months) (claims 
data); and HRQoL (after 6 and 9 months) (trial data). 
Predictor variables in both data sets: age, sex, morbidity- 
related variables (disease count), medication- related 
variables (European Union- Potentially Inappropriate 
Medication list (EU- PIM list)) and health service utilisation. 
Predictor variables exclusively in trial data: additional 
socio- demographics, morbidity- related variables 
(Cumulative Illness Rating Scale, depression), Medication 
Appropriateness Index (MAI), lifestyle, functional status and 
HRQoL (EuroQol EQ- 5D- 3L). Analysis: mixed regression 
models, combined with stepwise variable selection, 10- 
fold cross validation and sensitivity analyses.
Results Most important predictors of EQ- 5D- 3L at 6 
months in best model (Nagelkerke’s R² 0.507) were 
depressive symptoms (−2.73 (95% CI: −3.56 to −1.91)), 
MAI (−0.39 (95% CI: −0.7 to −0.08)), baseline EQ- 5D- 3L 
(0.55 (95% CI: 0.47 to 0.64)). Models based on claims data 
and those predicting long- term outcomes based on both 
data sets produced low R² values. In claims data- based 
model with highest explanatory power (R²=0.16), previous 
falls/fall- related injuries, previous hospitalisations, age, 
number of involved physicians and disease count were 
most important predictor variables.
Conclusions Best trial data- based model predicted 
HRQoL after 6 months well and included parameters of 

well- being not found in claims. Performance of claims 
data- based models and models predicting long- term 
outcomes was relatively weak. For generalisability, future 
studies should refit models by considering parameters 
representing well- being and functional status.

BACKGROUND
Currently, up to 80% of primary care consul-
tations involve patients with multiple chronic 
conditions (multimorbidity).1 A multiplicity 
of disorders in patients is associated with 
polypharmacy. Both multimorbidity and 
polypharmacy are recognised as a major 
challenge facing healthcare systems.2–5 Poly-
pharmacy can increase the risk of mortality, 
hospitalisation6 7 and falls and fall- related 
injuries with resulting disability and loss of 
autonomy.8 9 It can also reduce cognitive and 

Strengths and limitations of this study

 ► We developed our predictive models using two com-
pletely different data sets—claims data and data 
primarily collected in a cluster- randomised trial.

 ► The claims data contained a large number of cases, 
enabling our models to include many possible pre-
dictors without any convergence issues.

 ► The trial data provided a rich set of potential pre-
dictor variables of high data quality and included 
data on patient- reported outcome measures, such 
as well- being and functional status.

 ► Both data sets have their own methodological lim-
itations, such as imprecise claims data (collected 
for reimbursement purposes) and the trial’s small 
sample size.

 ► The nature of the data meant neither data set could 
be used to validate a predictive model based on the 
other.
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physical function, as well as health- related quality of life 
(HRQoL).2 10

The number of drugs increases the probability of adverse 
drug reactions, but the relationship is inconsistent, 
suggesting that the number of medications alone may not 
adequately indicate the quality of an individual’s medica-
tion regimen.11 12 The kind of drugs prescribed plays an 
important role in the type of reaction, with certain medi-
cation classes, such as benzodiazepines, demonstrating 
a significant association with falls, and medications 
with anti- cholinergic properties being associated with 
impaired cognitive and physical function in elderly indi-
viduals.13 14 At a physician level, the cause of these negative 
health outcomes of polypharmacy may be inappropriate 
prescribing, including undertreatment.15–18 At a patient 
level, a high number of drugs and the complexity of a 
drug regimen is often associated with poor adherence,19 
which may be exacerbated by the presence of depression 
and/or cognitive impairment.20 Moreover, polypharmacy 
may also result in an accumulation of potentially inappro-
priate medications (PIMs).

Several complex interventions have been developed 
to optimise (inappropriate) polypharmacy. However, 
despite their evidence- based rationale, they have led to 
inconsistent improvements in process parameters of 
care and failed to impact patient- relevant outcomes.21 22 
One possible reason for this is that the included popu-
lations are too heterogeneous in terms of their baseline 
risk and potentially achievable intervention effects. For 
example, the majority of the study population included 
in the PRIMUM (PRIoritising MUltimedication in Multi-
morbidity) trial showed very good quality of life and func-
tional status at baseline, even though participants had at 
least three chronic conditions affecting more than two 
organ systems, five or more chronic drug prescriptions 
and were 60 years of age or older. The authors therefore 
concluded that there was not enough room for improve-
ment.23 This highlights current difficulties in defining 
inclusion criteria in polypharmacy trials in such a way that 
selected populations have a considerable baseline risk 
and can be expected to benefit from the intervention. 
Moreover, as polypharmacy interventions tend to address 
inappropriate prescribing, healthcare coordination, and 
so on, they are generally complex.21 22 As the complex 
interventions are also resource- intensive, it would be pref-
erable for a stratified approach to address patients that 
are at high risk of negative health outcomes and most 
likely to benefit from them.24

The course of multimorbidity (and associated poly-
pharmacy) has been characterised by a decline in well- 
being (eg, functional decline or worsening of quality of 
life due to inappropriate prescriptions and/or deterio-
ration in one or more chronic diseases), interrupted by 
adverse events (eg, exacerbations of chronic diseases or 
adverse drug reactions).25 26 In order to identify a popula-
tion at high risk, it is therefore necessary to predict a wide 
array of possible negative health outcomes. Several prog-
nostic models have predicted single outcomes, mainly 

mortality or unplanned hospital (re- )admission and to 
a lesser extent a future decline in quality of life, but no 
studies have investigated the risk for the above- mentioned 
combined endpoints, or involved polypharmacy- related 
predictors.27

The aim of this exploratory study was to develop and 
internally validate prognostic models to predict the risk 
of adverse events or a decline in well- being in general 
practice patients with multimorbidity and polypharmacy, 
and to operationalise these negative health outcomes in 
terms of hospitalisation, falls, level of required nursing 
care, institutionalisation and HRQoL. The models were 
based on morbidity and medication- related variables, as 
well as socio- demographic characteristics and parameters 
of healthcare utilisation.

METHODS
We developed and internally validated prognostic models 
to identify key health problems linked with multimor-
bidity and associated polypharmacy (decline in well- being 
and adverse events: figure 1). (1) Based on claims data, 
we predicted the combined endpoint of hospitalisation, 
falls/fall- related injuries, need for nursing care, deteri-
oration in the required level of care (nursing level) or 
institutionalisation, after 6, 9 and 24 months. (2) We 
predicted HRQoL after 6 and 9 months based on data 
from a cluster- randomised trial.23

Design and setting/study samples
Two data sets were used in modelling:

Claims data obtained from the Techniker Krankenkasse 
(TK) statutory health insurance company between 
January 2012 and December 2014. TK is the largest stat-
utory health insurer in Germany and provided health 
insurance to 8.1 million persons in 2012.28 In accor-
dance with Social Code book V, all statutory health 
insurance companies in Germany collect basic data on 
socio- demographics, details of pharmacological and non- 
pharmacological prescriptions and information on other 
health services utilisation and data on morbidity.

Trial data from the cluster- randomised PRIMUM trial23 
conducted in general practices in Hesse, Germany, from 
August 2010 to February 2012.

Population
Claims- based models: We aimed to use the same inclusion 
criteria for both data sets as far as possible. We therefore 
included health insurance claims data of older patients 
(≥60 years) with multimorbidity (at least three docu-
mented chronic diseases, from a list of 46 diagnoses and 
conditions, from 01 January 2012 to 31 December 2012)29 
and polypharmacy (at least five documented and concur-
rent prescriptions from 01 July 2012 to 31 December 
2012). Included patients had to have been continuously 
insured by TK from 01 January 2012 to 31 December 2014 
(except in case of death at any time after 31 December 
2012) and had to have contacted a primary care provider 
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at least once in 2012. Patients were excluded if they were 
diagnosed with dementia (International Classification of 
Diseases, 10th Edition (ICD-10): F00-03, F05.1, G30-31, 
R54) or under guardianship from 01 January 2012 to 31 
December 2012.

Trial data- based models: We included data from patients 
that participated in the cluster- randomised PRIMUM 
trial (n=502, intervention group: n=252, control group 
n=250).23 Patients with multimorbidity and polypharmacy 
were included in the study if they were at least 60 years 
old, had at least three chronic diseases from two or more 
chapters of ICD-10 and at least five prescriptions. Patients 
were excluded if they were cognitively impaired (defined 
as a score lower or equal to 26 on the Mini- Mental Status 
Exam30), had an alcohol or drug addiction or were not 
able to participate in telephone interviews, fill in ques-
tionnaires or express their own free will. Four out of the 
502 patients (0.79%) died during the 9- month follow- up 
period.

Outcomes
Models based on claims data: We predicted the combined 
endpoint of hospitalisation, falls/fall- related injuries or 
institutionalisation in a long- term care facility, or if the 
need for nursing care was recognised, or the level of 
care (‘Pflegestufe’) had worsened at 6- month, 9- month, 
24- month follow- up. We treated the parameters of health 
service use (hospitalisation, level of nursing care and 
institutionalisation) as surrogate parameters for a decline 
in functional status and well- being, as details of these are 
not included in German claims data. Outcomes were 
operationalised as follows:

 ► Hospitalisation: We included all- cause hospitalisa-
tions, as our data did not permit us to differentiate 
between unplanned and elective hospitalisations.

 ► Falls and fall- related injuries: We included all frac-
tures and injuries coded in ICD-10 chapters ‘S’ and 
‘T’. We excluded ICD codes for severe body injuries 
such as S31 (‘open wound of abdomen, lower back 
and pelvis’), which we assessed as related to severe 
bodily impact, rather than drug- related falls (see 
online supplemental additional file 1 for all excluded 
ICD codes). We also excluded osteoporosis- related 
fractures (ICD-10 M80).

 ► Institutionalisation was defined as the admission of a 
patient to a long- term care facility for at least 28 days 
(in Germany, this is the maximum length of time 
considered as ‘short- term care’ in such facilities).

 ► Level of (nursing) care (‘Pflegestufe’) referred to 
dependency on care. In the period under review, the 
German nursing care insurance system recognised 
four levels of care (‘1’ – lowest level to ‘3’ – highest 
level, and ‘H’, which was mainly used for people with 
mental illnesses who are in need for support). The 
onset of care and any increase in care level were taken 
into consideration.

Models based on trial data: We predicted HRQoL 6 and 
9 months after baseline. HRQoL was measured using the 
EQ- 5D- 3L index score.31–33 The EQ- 5D- 3L index score 
is a weighted summary score of five different dimen-
sions of health (mobility, self- care, usual activities, pain/
discomfort and anxiety/depression). Each dimension has 
three levels. The index score is calculated based on time 

Figure 1 Predicted outcomes with regard to general trajectories of well- being and quality of life over time. HRQoL, health- 
related quality of life.
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trade- off (TTO) norm values and ranges from 0 to 1, with 
‘0’ signifying death and ‘1’ in full health. Patients who 
died during follow- up were assigned the value ‘0’.

Potential predictors
The potential predictors that were initially used in the two 
modelling approaches were available in both claims and 
trial data (‘core predictors’, see figure 2): To compare the 
two models, we first used these ’core predictors’ (all vari-
ables were continuous variables, if not stated otherwise).

 ► Socio- demographics: Age (in years), sex (male/
female, binary)

 ► Morbidity- related (excluding dementia): Number 
of chronic diseases (based on a modified list of 46 
diagnoses and conditions),29 Charlson comorbidity 
index,34 number of specific chronic conditions 
according to Diederichs’ list35 consisting of 17 chronic 
diseases identified in a systematic review of existing 
comorbidity indices. As dementia was excluded, the 
final list contained 16 diagnoses. (All instruments 
including ICD-10 codes are provided in online supple-
mental additional file 2)

 ► Medication: Number of prescriptions (defined as 
Anatomical Therapeutic Chemical (ATC) agents 
using fifth- level coding, ATC version 2011 to 2014), 
excluding drugs for topical applications and drug 
groups that were irrelevant to our research question, 
for example, contrast agents (ATC V-08, three- digit 
level).

 ► Potentially inappropriate medication: We constructed 
two patient co- variables: (1) exposure to any PIM 
(yes/no) and (2) number of PIMs between 01 July 
2012 and 31 December 2012 (claims- based models) 
and at baseline (trial data- based models). We used the 
following two lists to identify PIMs:

 – Modified EU- PIM list36: The list of PIMs for the elder-
ly contains 282 chemical substances or drug classes 
divided into 34 therapeutic groups.

 – Modified PRISCUS list37: The German list of PIMs for 
the elderly includes 83 chemical substances from a 
total of 18 drug classes.

We excluded from the lists PIMs that referred to 
specific doses, treatment duration and disease se-
verity, as valid information on these could not be 
obtained from the claims data. (All instruments in-
cluding ATC codes are provided in online supple-
mental additional file 3)

 ► Anticholinergic drug burden: Scores were calculated 
based on all prescribed drugs with anticholinergic 
properties per patient. Despite substantial differences 
between existing scales, associations with adverse 
clinical outcomes, such as hospital admissions, fall- 
related hospitalisations, length of stays in hospital, 
and general practitioner (GP) visits, have been found 
for all of them.38 As the evidence does not support 
the preferred use of any particular scale, we tested the 
following (all instruments including ATC codes are 
provided in online supplemental additional file 3):
 – Anticholinergic Drug Scale (ADS)39 : The ADS weights 

anticholinergic properties per drug from ‘0’ – no 
anticholinergic activity, ‘1’ – mild, ‘2’ – moderate 
and ‘3’ – strong anticholinergic activity. The overall 
anticholinergic burden per patient was calculated 
as a sum score for the entire medication regimen.

 – Modified Anticholinergic Drug Burden Index (DBI)13 
: The DBI comprises drugs with sedative effects 
(which form the sedative burden (BS)), and drugs 
with anticholinergic or both sedative and anti-
cholinergic effects (which form the anticholiner-
gic burden (BAC)). As claims data do not provide 

Figure 2 Models and sensitivity analyses with regard to data source and predictor set. CRT, cluster- randomised controlled 
trial; †Best Model.
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dosages, the cumulative number of sedative and 
anticholinergic drugs was calculated (modified 
DBI score).

 ► Healthcare utilisation: For each patient, we obtained 
information on all- cause hospitalisations (yes/
no), falls and fall- related injuries (yes/no) and the 
number of physicians involved in ambulatory health-
care, between 01 January 2012 and 31 December 2012 
for models based on claims data, and in the 6 months 
previous to baseline for models based on trial data.

Additional potential predictor variables were used exclusively 
to re- fit models based on trial data, as they were only available in 
these data (‘additional predictors’, see figure 2; all variables 
were continuous variables unless stated otherwise):
1. Socio- demographics: Education (CASMIN40) and 

number of persons living in the household.
2. Lifestyle: Alcohol consumption (audit- C, categorical 

variables on number of drinking occasions and amount 
of alcohol consumed),41 smoking status (smoker/non- 
smoker, binary) and body mass index.

3. Inappropriateness of medication: MAI consists of 10 
items (indication, effectiveness, correctness of dos-
age, correctness of direction, practicality of direction, 
drug–drug interactions, drug–disease interactions, 
unnecessary drug duplications, correctness of treat-
ment duration and costs).42 The MAI item on cost was 
omitted because variable discount contracts between 
pharmaceutical companies and statutory health insur-
ers preclude cost comparisons in Germany. The med-
ication reviews were conducted by a trained clinical 
pharmacologist (SH), who rated nine items for each 
prescription. Values ranged from ‘0’ (appropriate) to 
‘2’ (inappropriate) whereby ‘1’ represented a middle 
rating of uncertain appropriateness. The assigned val-
ues were summed to give an MAI score between 0 and 
18 for each prescription and across the entire medica-
tion regimen of the patient.23

4. Morbidity- related: Severity of multimorbidity, as mea-
sured using the CIRS (the CIRS differentiates between 
14 organ systems, which are assessed on a 5- point 
Likert scale according to severity of impairment, with 
the ratings ranging from no impairment to extreme 
impairment),43 with scores calculated as the total sum 
score, the number of affected organ systems and the 
HRQoL- CI (HRQoL- CI consists of a mental and a 
physical subscale, whereby the presence of certain dis-
eases are assigned weights from ‘1’ to ‘3’, see online 
supplemental additional file 2).44

5. Depressive symptoms, as measured using the GDS with 
15 items.45

6. HRQoL at baseline, as measured using the EQ- 5D- 3L 
index score.31–33

Missing values and imputation
There were no missing values in the claims data, so no 
imputation was carried out in models that were based 
on them. In models based on trial data, imputation of 
missing values in predictors and outcomes was conducted 

using multiple imputation via chained equations.46 47 We 
used a fully conditional specification approach by setting 
up an appropriate conditional density for each variable. 
In the imputation process, we included all variables that 
were used in each model. We imputed m=50 data sets and 
combined the results using ‘Rubin’s rules’.46

Statistical analyses
In both models, we first investigated the core predictors 
that were available in both data sets, including socio- 
demographics, morbidity- related and medication- related 
variables and variables for healthcare utilisation. We then 
refitted the trial data- based models using the additional 
predictors that were exclusively available for trial data, 
such as variables for lifestyle and well- being (figure 2).

Models based on claims data: In order to develop a predic-
tion model for the binary combined outcome (containing 
all- cause hospitalisation, falls/fall- related injuries, insti-
tutionalisation or level of (nursing) care required) at 
6- month, 9- month and 24- month follow- up, we performed 
multiple logistic regression analyses with the occurrence 
of at least one of the components at 6- month, 9- month 
and 24- month follow- up as the dependent variable. As 
patients were not always assigned a single general prac-
tice,48 we did not perform cluster analysis on the claims 
data.

Models based on trial data: In order to develop a predic-
tion model for the continuous outcome HRQoL at 
6- month and 9- month follow- up, we performed multiple 
linear regression analyses using the EQ- 5D- 3L index 
score at 6- month and 9- month follow- up as the depen-
dent variable. The cluster structure of the data was taken 
into account by including a random intercept to produce 
a mixed regression model. We assumed a compound 
symmetry structure when estimating the covariance 
matrix.

Univariate analyses in both claims and trial data: Prior to 
conducting regression analyses, we performed univariate 
analyses to identify any associations between our potential 
predictors (at baseline) and the outcomes (at 6- month, 
9- month and 24- month follow- up).

Regression analyses and variable selection: To find out which 
predictor variables influence the outcome variables, we 
used a stepwise variable selection procedure (combining 
forward and backward steps). We started with the full 
model and all potential predictor variables. After this, we 
used a selection procedure based on p values.49 In the 
backward selection step, we deleted the variable with the 
highest p value from the model if its p value was greater 
than 0.157. In the forward selection step, the variable 
with the lowest p value was included in the model if its p 
value was less than 0.156. As long as each covariate had 
only one df, the use of these boundaries led to the same 
results as variable selection using the Akaike Informa-
tion Criterion.50 The resulting models are presented by 
providing the estimated regression coefficients (models 
based on trial data) or ORs (models based on claims) 
with 95% CIs and corresponding p values. As we expected 

https://dx.doi.org/10.1136/bmjopen-2020-039747
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the large sample size of claims- based models to result in 
low p values, we calculated additional z values and contin-
uous net reclassification indices to gain information on 
the predictive power of each variable.51 Multi- collinearity 
was assessed using the variance inflation factor (VIF).52 In 
the models based on trial data, we did not account for the 
clustering structure when we calculated the VIF.

Performance of the models
We calculated R2 for linear models based on trial data 
(according to Nakagawa and Schielzeth53), and Nagelk-
erke’s R2 for logistic models (according to Steyerberg 
and Nagelkerke54 55) based on claims data. Furthermore, 
in order to assess performance more realistically and to 
internally validate the models, we used the AUC (area 
under the receiver operator curve, equivalent to the 
concordance index) to validate the logistic regression 
model based on claims data, and R2 to validate the linear 
regression model based on randomised controlled trial 
data, in combination with 10- fold cross- validation.56 R2 
and Nagelkerke’s R2 are measures of the overall model’s 
ability to assess explained variance. The AUC provides a 
measure of the model’s discriminatory ability to distin-
guish patients at risk from those that are not.

Sensitivity analyses
Using sensitivity analysis, we applied two further model-
ling approaches (at first separately and then in combina-
tion): (1) modelling without multiple imputation and (2) 
modelling without variable selection.

Software: We made use of different statistical packages to 
analyse the data in R.47 57–63

We used TRIPOD reporting guidelines (Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis) in the preparation of this 
manuscript.64

Patient and public involvement statement
Neither patients nor the public were involved in this study.

RESULTS
Participants
Claims data
The total sample of those ≥60 years that were continu-
ously insured by TK from 01 January 2012 to 31 December 
2014, and had at least one primary care contact during 
2012, amounted to 1 377 917 persons. Overall, 592 456 
patients met the pre- specified criteria and were included 
in the analyses (see study flow- chart, online supplemental 
additional file 4).

Trial data
Of the 505 patients that participated in the PRIMUM 
trial, all but 3 were 60 years or older. The final analyses 
therefore included 502 patients.

Key characteristics of study participants are shown in 
table 1.

Univariate analyses
In the claims data, univariate analyses revealed significant 
associations between the combined outcome and the 
following predictors: Age, sex, disease count, Charlson 
Comorbidity Index, EU- PIMs, ADS, DBI, previous hospi-
talisations, previous falls and number of physicians 
involved in the patient’s care at all follow- ups (after 6, 9 
and 24 months) (online supplemental additional file 5). 
In the trial data, HRQoL was significantly correlated with 
the shared predictor variables disease count, number 
of chronic prescriptions, previous falls and sex and the 
additional predictors depression and HRQoL at baseline 
(online supplemental additional file 6).

Prognostic models
Claims data
The model predicting the combined endpoint at 6 months 
had the highest C- statistic (AUC with 10- fold cross valida-
tion: 0.71, see table 2), but a low explanation of variance 
(Nagelkerke’s R2 without cross validation: 0.16). Vari-
ables in the model with the highest predictive power were 
previous falls/fall- related injuries and previous hospital-
isations, as well as age, number of involved physicians, and 
number of chronic diseases (‘disease count’) (table 3). 
The models predicting the combined outcome at 9 and 
24 months had AUCs calculated with 10- fold cross valida-
tion of 0.68 (R² without cross validation: 0.15) and 0.69 
(R² without cross validation: 0.13) respectively. The VIF 
(to assess any multi- collinearity) showed moderate values 
(maximum 7.5).

Trial data
All results presented in this section are based on the 
modelling approach and involve multiple imputation 
of missing values and the variable selection procedure. 
Models predicting the HRQoL endpoint at 6 months that 
were based on core predictors available in both claims and 
trial data showed low predictive accuracy (R2 with 10- fold 
cross validation: 0.111) (table 3, model 2.4). HRQoL at 
6 months was best predicted when additional predictors 
that were exclusively available in the trial data were also 
included (R2 with 10- fold cross validation: 0.507). The 
variables with the highest predictive power were depres-
sive symptoms (GDS) and EQ- 5D- 3L Index Score (Base-
line). MAI was also predictive (table 3, model 3.4). The 
VIF showed small values (maximum 2.2).

Comparison of model quality and sensitivity analyses
The shorter the time span of the prediction, the better 
the explained variance and hence, the performance of 
the model. However, model performance remained fair 
to poor when it only included predictor variables that 
were available for both claims and trial data. Sensitivity 
analyses confirmed these results (table 2).

https://dx.doi.org/10.1136/bmjopen-2020-039747
https://dx.doi.org/10.1136/bmjopen-2020-039747
https://dx.doi.org/10.1136/bmjopen-2020-039747
https://dx.doi.org/10.1136/bmjopen-2020-039747
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Table 1 Characteristics of study participants

Characteristic
Claims data*
n=592 456

CRT data*
n=502

Data collection period January 2012 to December 2014† August 2010 to February 2012

Study design Cohort study Cluster- randomised controlled trial

Setting Claims data from the TK health insurance 
fund. TK serves about 10 million people 
in Germany

72 general practices in Hesse, Germany

Inclusion criteria ≥60 years ≥60 years

≥3 chronic diseases ≥3 chronic diseases

≥5 prescriptions ≥5 prescriptions

≥1 GP visit
Continuously insured (except in case of 
death in follow- up period)

≥1 GP visit

Exclusion criteria Person under legal guardianship
Diagnosed dementia

Person under legal guardianship
Cognitive dysfunction including dementia 
(MMSE ≤26)

Outcomes to be predicted Combined‡ binary outcome after 
6- month, 9- month, 24 month follow- up

HRQoL (continuous outcome) after 
6- month and 9- month follow- up

Potential predictors in both samples at baseline¶

Age (years) 71.3 (7.06) 72.2 (6.86)

Male sex (n, %) 319 453 (54) 240 (48)

Morbidity

  Disease count 9.7 (3.75) 9.6 (3.25)

  No. of specific chronic diseases 
(Diederichs)

4.3 (1.97) 4.1 (1.60)

  CCI 3.0 (2.54) 2.6 (1.92)

  HRQoL- CI, mental 2.8 (2.12) 2.1 (1.81)

  HRQoL- CI, physical 8.0 (3.57) 7.6 (3.12)

Medication

  No. of drugs 8.6 (3.80) 8.1 (2.57)

  No. of PIM (EU- PIM) 1.1 (1.15) 0.9 (0.96)

  ACh burden (ADS) 1.0 (1.45) 0.8 (1.21)

  Modified Drug Burden Index 0.8 (1.03) 0.5 (0.77)

No. of involved physicians 9.95 (5.26) 2.6 (1.77)

Previous hospitalisation:

  Patients that have undergone hospital 
treatment (n, %)

194 984 (33) 81 (16)§

  No. of hospitalisations 1.67 (1.25) 1.5 (0.86)§

  No. of days in hospital 14.5 (18.20) 17 (12.66)§

Patients with previous falls/fall- related 
injuries (n, %)

163 387 (28) 83 (17)§

Patients requiring nursing care

  Any nursing level (n, %) 28 310 (5) –

  Nursing level 1 (n, %) 19 030 (3) –

  Nursing level 2 (n, %) 7968 (1) –

  Nursing level 3 (n, %) 1273 (0.2) –

  Nursing level H (n, %) 39 (0.007) –

Additional predictor variables in CRT data at baseline¶

Socio- demographics

Continued
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DISCUSSION
Main results
Our best overall prognostic model predicted HRQoL 
after 6 months in older general practice patients with 
multimorbidity and polypharmacy. It performed well, 
was based on trial data and explained more than half 
of the variance. The most important predictors were 
depressive symptoms, the initial level of HRQoL and 
MAI—all of which were only available as ‘additional 
predictors’ in trial data. Prognostic models in trial data, 
which were exclusively developed from ‘core predictors’ 
(available in both data sets) performed worse, as well as 
claims based models and models based on both data sets 
that had longer forecast periods (9 months or more). In 
both trial data- based and claims- based models, outcome 
components at baseline had a relatively high impact (ie, 
HRQoL at baseline in the trial data- based model and 
previous hospitalisation and previous falls/fall- related 
injuries in claims- based models). Although this is unsur-
prising and is often the case in prognostic models,65 it 
nonetheless seems reasonable to retain the variables in 
the model. Furthermore, we identified further predic-
tors, such as depressive symptoms and medication 
appropriateness, which had a relatively high predictive 
power.

Comparison with the literature
The presented results are consistent with results from 
other studies. The AUC values in our claims- based models 
(AUC 0.68 to 0.71) are comparable to those of 23 prog-
nostic models for Case Finding conducted in elderly 
patients in primary care. These models predicted (re)
hospitalisation, functional impairment, institutionalisa-
tion and death.65 The quality of models with a low risk of 
bias was AUC 0.60 to 0.78, but no explanation of variance 
was provided. The best model for predicting death within 
4 years (AUC: 0.82) included 12 predictors comprising 
age, sex, body mass index, chronic diseases, smoking status 
and functional parameters.65 Models that included addi-
tional trial data (eg, clinical data) predicted endpoints 
better than models based only on claims data.65–67 In many 
models described in other studies, healthcare utilisation 
parameters, and especially previous hospitalisations, were 
predictive of (re)hospitalisations, emergency admissions 
and functional impairment.66 68 69 The predictive power of 
sex is inconsistent: in 18/27 risk models, sex was included 
in the final model;66 in 7/23 risk models, male sex was 
predictive,65 while a further 25 studies found sex to have 
no influence.68 69 Model quality also improved in studies 
that included multimorbidity and polypharmacy parame-
ters.66 68 70 However, the parameters and instruments used 

Characteristic
Claims data*
n=592 456

CRT data*
n=502

  Educational level (CASMIN) – 1.4 (0.66)

  No. of persons living in household – 1.8 (0.70)

Lifestyle

  Alcohol intake (AUDIT C) – 1.9 (1.96) (mv: 39)

  Smoker (n, %) – 46 (10) (mv: 25)

  Body mass index – 30.1 (6.58)

Morbidity

  CIRS sum score 7.7 (4.56)

  CIRS, no. of organ systems 4.5 (2.35)

  Depressive Symptoms (GDS) 2.4 (2.29) (mv: 8)

Medication

  MAI – 4.7 (5.56)

HRQoL

  EQ- 5D- 3L Index Score – 74.3 (23.72) (mv: 24)

*Values are arithmetic means and SD unless otherwise indicated.
†The anamnestic period for baseline data ran from 01 January 2012 to 31 December 2012, except for medication data, for which it ran from 
01 July 2012 to 31 December 2012. The follow- up period started on 01 January 2013.
‡Combined outcome included hospitalisation, fall/fall- related injuries, institutionalisation and care level.
§6 months before study entry.
¶Number of patients with missing values (mv) is zero unless indicated in square parentheses.
ACh burden, anticholinergic drug burden; ADS, Anticholinergic Drug Scale; AUDIT, Alcohol Use Disorders Identification Test (WHO); CASMIN, 
Comparative Analysis of Social Mobility in Industrial Nations; CCI, Charlson Comorbidity Index; CIRS, Cumulative Illness Rating Scale; CRT, 
cluster- randomised controlled trial; GDS, Geriatric Depression Scale; GP, general practitioner; HRQoL, health- related quality of life; HRQoL- 
CI, HRQoL comorbidity index; MAI, Medication Appropriateness Index; MMSE, Mini- Mental Status Exam; PIM, potentially inappropriate 
medication; TK, Techniker Krankenkasse.

Table 1 Continued
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in modelling (eg, CIRS, Charlson Comorbidity Index 
and disease count, as reported here) varied considerably 
among studies. They were neither consistently predictive, 
nor were certain parameters or instruments better than 
others.66 69 70

Most published models were developed to predict the 
risk of hospitalisation.66 68–74 Other models predicted 
functional outcomes,70 while four models predicted 
adverse drug reactions.74 So far, little is known about the 
predictive power of polypharmacy parameters and the 

appropriateness of prescriptions, especially the MAI has 
never been used in prognostic models. Furthermore, 
no models have yet been developed to predict HRQoL 
in patients with multimorbidity and polypharmacy in 
general practice.27 70

Strengths and limitations
One strength of our study is that we could use two data 
sources with differing advantages in our exploratory anal-
ysis: claims data contained a large number of cases, and 

Table 2 Comparison of models

Models based on claims data: core predictors AUC* R2

1.1 Combined outcome after 6 months 0.71 (0.70) 0.16 (0.16)

1.2 Combined outcome after 9 months 0.69 (0.69) 0.15 (0.14)

1.3 Combined outcome after 24 months 0.68 (0.68) 0.13 (0.12)

Models based on CRT data: core predictors* AIC R2 R2 (10x)

EQ- 5D- 3L after 6 months

2.1 No imputation, no variable selection 4138.86 (4069.41) 0.155 (0.159) 0.112 (0.103)

2.2 No imputation, with variable selection 4138.81 (4068.69) 0.150 (0.155) 0.129 (0.122)

2.3 With imputation, no variable selection 4582.30 (4507.71) 0.159 (0.163) 0.094 (0.108)

2.4 With imputation, with variable selection 4583.15 (4507.47) 0.919 (0.925) 0.111 (0.128)

EQ- 5D- 3L after 9 months

2.5 No imputation, no variable selection 3917.75 (3917.75) 0.150 (0.150) 0.030 (0.030)

2.6 No imputation, with variable selection 3921.95 (3921.95) 0.146 (0.146) 0.053 (0.053)

2.7 With imputation, no variable selection 4540.58 (4505.52) 0.156 (0.152) 0.090 (0.093)

2.8 With imputation, with variable selection 4546.42 (4511.10) 0.221 (0.218) 0.107 (0.106)

Models based on CRT data: core predictors and 
additional predictors*

EQ- 5D, after 6 months

3.1 No imputation, no variable selection 3205.13 (3205.13) 0.034 (0.034) 0.442 (0.442)

3.2 With imputation, no variable selection 4308.94 (4308.94) 0.538 (0.538) 0.481 (0.481)

3.3 No imputation, with variable selection 3197.37 (3197.37) 0.526 (0.526) 0.483 (0.483)

3.4 With imputation, with variable selection† 4307.47 (4307.47) 0.677 (0.677) 0.507 (0.507)

Models with ‘fixed variables’

3.5 No imputation, no variable selection 3208.58 (3208.58) 0.514 (0.514) 0.468 (0.468)

3.6 With imputation, with variable selection 4308.90 (4308.90) 0.665 (0.665) 0.499 (0.499)

EQ- 5D, after 9 months

3.7 No imputation, no variable selection 3061.06 (3113.53) 0.042 (0.028) 0.411 (0.409)

3.8 With imputation, no variable selection 4307.28 (4361.36) 0.498 (0.477) 0.433 (0.404)

3.9 No imputation, with variable selection 3062.03 (3108.61) 0.490 (0.485) 0.448 (0.443)

3.10 With imputation, with variable selection 4309.88 (4360.32) 0.453 (0.346) 0.455 (0.431)

Models with fixed variables

3.11 No imputation, no variable selection 3064.76 (3113.08) 0.490 (0.485) 0.439 (0.434)

3.12 With imputation, with variable selection 4310.92 (4363.62) 0.113 (0.071) 0.447 (0.423)

(sensitivity analyses)
*Models based on randomised controlled trial data: fixed effects.
†Best overall model.
AIC, Akaike Information Criterion; AUC, area under the curve after 10- fold cross validation; R², Nagelkerke’s R²; R2 (10x), Nagelkerke’s R² with 
10- fold cross validation.
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trial data provided additional high- quality patient data 
including functional status and HRQoL. Both data sets 
also have their limitations, since claims are documented 
for billing purposes and are therefore imprecise, whereas 
our trial data set consisted of only a limited number of 
observations. Thus, each data set allows its own endpoints 
to be modelled. Risk modelling is especially complex in 
multimorbid patients with polypharmacy, as predictor 
variables in this patient collective are often associated 
with one another (eg, diagnoses and prescriptions). 
In addition, comparable risk situations can lead to 
different endpoints, as risk often depends on context. 
For example, a drug- induced fall may have no health- 
related consequences or may lead to impairment and 
institutionalisation.

Further to these key limitations, our results need 
careful interpretation for several reasons: First, the 
combined endpoint in the claims- based models yielded 
a high event rate, which may have resulted in overopti-
mistic results in our logistic regression. However, other 
approaches would not have resolved this problem to suit 
our purposes either. Additionally, we still have enough 
cases in both categories of the dependent variable to 
conduct a valid model estimation. Nonetheless, the low 
performance of the claims model may have been because 
predictors acted in different ways on the different 
elements of the combined outcome, thus resulting in 
greater heterogeneity.75 Second, the small sample size 
of the trial population may have led to some overfitting 
of the model. At the same time, the VIF (to assess any 

Table 3 Best performing models per data set and set of predictors

Best model based on claims data: core 
predictors (model 1.1) OR (95% CI) P value z- value NRI

Age (years) 1.02 (1.02 to 1.02) <0.001 45.4 0.11

Sex (female) 0.99 (0.97 to 1.00) 0.025 −2.2 −0.03

Disease count 1.02 (1.02 to 1.03) <0.001 19.2 0.05

CCI 1.03 (1.03 to 1.04) <0.001 22.7 0.02

No. of specific chronic diseases (Diederichs) 1.01 (1.00 to 1.01) <0.001 3.9 0.01

No. of PIM (EU- PIM) 1.03 (1.02 to 1.03) <0.001 8.9 0.02

ACh burden (ADS) 1.04 (1.03 to 1.05) <0.001 14.9 0.04

Modified Drug Burden Index 1.08 (1.07 to 1.08) <0.001 20.1 0.08

Previous hospitalisations 1.67 (1.65 to 1.70) <0.001 82.3 0.34

Previous falls/fall- related injuries 3.29 (3.25 to 3.34) <0.001 188.6 0.55

No. of involved physicians 1.02 (1.02 to 1.02) <0.001 29.0 0.08

Best model based on CRT data: core predictors 
(model 2.4)

Coefficient (95% CI) P value

Intercept 101.18 (93.11 to 109.25) <0.001

Sex (female) −11.26 (−15.59 to −6.94) <0.001

No. of specific chronic diseases (Diederichs) −2.18 (−3.64 to −0.73) 0.004

No. of drugs −1.28 (−2.23 to −0.32) 0.010

Modified Drug Burden Index −5.19 (−8.26 to −2.12) 0.001

Previous falls −6.11 (−12.07 to −0.15) 0.045

Best model based on CRT data: core predictors 
and additional predictors (model 3.4, best overall 
model)

Coefficient (95% CI) P value

Intercept 51.74 (38.91 to 64.57) <0.001

Sex (female) −3.61 (−6.96 to −0.27) 0.036

No. of specific chronic diseases (Diederichs) −1.03 (−2.08 to 0.01) 0.055

No. of involved physicians 0.80 (−0.13 to 1.74) 0.093

Body mass index −0.28 (−0.53 to −0.03) 0.031

Medication Appropriateness Index −0.39 (−0.70 to −0.08) 0.015

Depressive symptoms (GDS) −2.73 (−3.56 to −1.91) <0.001

EQ- 5D Index Score (baseline) 0.55 (0.47 to 0.64) <0.001

ACh burden, anticholinergic drug burden; ADS, Anticholinergic Drug Scale; CCI, Charlson Comorbidity Index; GDS, Geriatric Depression 
Scale; NRI, continuous net reclassification index; PIM, potentially inappropriate medication.
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multi- collinearity) showed only up to moderate values. 
The application of shrinkage methods would have 
been a possible alternative to address this limitation.76 
However, there is an ongoing debate whether it solves 
such problems, and a recent study has suggested that 
although shrinkage can result in improved calibration, 
it may not be superior in terms of reducing overfitting.77 
Furthermore, shrinkage models lead to biassed estimates 
of the regression coefficients, thus making results more 
difficult to interpret. Third, in our modelling approach 
we tested disease- based indicators such as the Charlson 
Comorbidity Index and CIRS that were developed and 
validated for other purposes. However, we chose indica-
tors that showed a strong association with negative health 
outcomes.35

Relevance for primary care and research implications
As the models derived in our study have not been exter-
nally validated and our methods have some limitations, 
we do not claim to have developed comprehensive prog-
nostic models to identify older general practice patients 
with multimorbidity and polypharmacy at risk of negative 
health outcomes. For this reason, we plan to conduct 
an individual patient data- based meta- analysis to further 
develop and externally validate the models presented 
here (PROSPERO ID: CRD42018088129).

It is, however, very likely that baseline components of 
our predicted endpoints are important predictors, espe-
cially considering these results are unsurprising and 
entirely plausible. A decline in HRQoL, a previous hospi-
talisation and a previous falls/fall- related injury can there-
fore be seen as a warning parameter ('red flag') that may 
help general practitioners in recognising older patients 
with multimorbidity and polypharmacy at high risk of 
adverse health outcomes. These patients are therefore 
more likely to benefit from an intervention than others 
with low or no risk.24 Hence, researchers evaluating poly-
pharmacy interventions, such as medication reviews, may 
like to consider our models when deciding on selection 
and inclusion criteria for a study population.

CONCLUSIONS
This study provides prognostic models to identify older 
general practice patients with multimorbidity and poly-
pharmacy at high risk of deterioration in HRQoL, hospi-
talisation, falls/fall- related injuries, institutionalisation 
and a need of nursing care. Outcome components, such 
as previous falls, hospital stays, reduced HRQoL and 
depression, were important predictors of these negative 
health outcomes in our models. They can be seen as 
warning signs of future worsening and an indication that 
these patients are likely to benefit from interventions to 
optimise their medication. Future studies should exter-
nally validate the models and evaluate the effectiveness of 
polypharmacy interventions in high- risk patients.
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