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Despite substantial experimental and computational efforts, mecha-
nistic modeling remains more predictive in engineering than in
systems biology. The reason for this discrepancy is not fully under-
stood. One might argue that the randomness and complexity of
biological systems are the main barriers to predictive understanding,
but these issues are not unique to biology. Instead, we hypothesize
that the specific shapes of rare single-molecule event distributions
produce substantial yet overlooked challenges for biological models.
We demonstrate why modern statistical tools to disentangle com-
plexity and stochasticity, which assume normally distributed fluctu-
ations or enormous datasets, do not apply to the discrete, positive,
and nonsymmetric distributions that characterize mRNA fluctua-
tions in single cells. As an example, we integrate single-molecule
measurements and advanced computational analyses to explore
mitogen-activated protein kinase induction of multiple stress
response genes. Through systematic analyses of different metrics
to compare the same model to the same data, we elucidate why
standardmodeling approaches yield nonpredictive models for single-
cell gene regulation. We further explain how advanced tools recover
precise, reproducible, and predictive understanding of transcription
regulation mechanisms, including gene activation, polymerase initi-
ation, elongation, mRNA accumulation, spatial transport, and decay.
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Systems biology seeks to integrate quantitative data with
models to predict complex behaviors, such as how cells will

react to environmental perturbations (1, 2), how mutations will af-
fect cell phenotypes (3, 4), or how human diseases will respond to
drug combinations (5). This goal comprises two steps: “Fitting” is
choosing mechanisms and parameters to minimize differences be-
tween models and existing experimental data, and “prediction” is
using previously fixed models to predict outcomes for untested
conditions. Fitting models to data has become commonplace in
systems biology, but unfortunately a good fit to one experiment does
not guarantee good predictions for new biological conditions (6, 7).
Many would argue that predictive modeling is prevented by ines-
capable biological complexity and the prevalence of randomness or
noise (6), while others argue that predictive understanding could be
achieved through quantification of model uncertainties (7).
The first argument focuses on the data and models individually

and has driven rapid single-cell experimental and computational
advances to measure and model individual biomolecules (i.e.,
DNA, RNA, and protein) in single cells with outstanding spatio-
temporal resolution (8–19). Such experiments have characterized
many intriguing aspects of biological complexity and variation (3),
while capturing these phenomena with stochastic models has
improved insight into gene regulation mechanisms and their
parameters (1, 20–23). Despite these experimental and computa-
tional advances, most biological models still underperform ex-
pectations when used to predict new behaviors (6). By attributing
such failures to “poor models” or “insufficient data,” systems bi-
ology has traditionally sought to elucidate more detailed mecha-
nisms or to collect higher-resolution data. However, success in

predictive modeling may be limited not only by the quantity and
quality of data and the appropriateness of the model but also by
the rigor of comparison between models and measurements.
The second argument promotes more rigorous use of Bayesian

data analyses to estimate uncertainty and quantify the value of a
model given available data (7). Such approaches have attracted
growing attention in biological investigations (7, 22), but model
inference techniques that suffice in other fields may be inappro-
priate when applied to biological data. Specifically, most data–
model integration techniques assume that measurement errors are
continuous Gaussian random variables (24). For example, mini-
mizing the logarithm of Gaussian errors is the theoretical basis for
fitting a line to data by minimizing the sum-of-squared differences
(least squares fit). For most engineered systems, this Gaussian
assumption is justified by the Central Limit Theorem (CLT),
which states that if one takes enough quantitative observations
from the same underlying distribution, then the average of those
observations would be normally distributed with a deviation given
by the standard error of the mean (SEM) (25). Practical examples
demonstrate that 20 observations are enough to invoke the CLT,
but only if the underlying distribution is not extremely asymmetric
(25). However, unlike most engineered systems, biological fluc-
tuations are dominated by rare, discrete, and stochastic events (8–
20, 23, 26), even to the extent that a single molecule of DNA,
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RNA, or protein can change the fate of an organism (4, 26–28).
These single-molecule events can lead to positive and discrete
distributions that are far from Gaussian (8–20, 23, 26), and sat-
isfying the CLT for such highly nonsymmetrical data sets may
require far more measurements than are standard practice for
modern single-cell imaging or sequencing experiments.
The disconnect between single-cell data and standard model-

inference techniques raises the possibility that combinations of
sufficient data and good models may fail only because they have
not been integrated with the right data–model comparison met-
rics. We hypothesize that more appropriate treatment of discrete
biological fluctuations could solve the data–model integration
dilemma, reduce uncertainty (i.e., the spread of parameters that
match equally well to the data) and bias (i.e., the difference be-
tween the best-fit parameters and the true values), and achieve
predictive modeling without the need to collect more data or
generate new models. For example, in previous work, we dem-
onstrated that the right analyses could systematically examine a
large class of models with varying complexity and objectively select
the best model to make quantitative predictions (23). Our present

goal is not to identify a new model for a new biological system but
rather to understand why specific single-cell analyses succeed in
the exact same circumstances (i.e., same models, same conditions,
and same data) under which standard (mean, variance, and higher
moment) analyses yield excellent fits but meaningless predictions.
We seek to characterize and resolve the disconnect between

good model fits and poor model predictions. Therefore, we
adopt an existing model (Fig. 1A) already proven capable to
predict precise aspects of Saccharomyces cerevisiae transcription in
novel combinations of environmental and genetic conditions (23).
We expand this model to include additional mRNA dynamics
including transcript elongation and intracellular transport. We
collect a very large set (>65,000 individual cells) of single-cell and
single-molecule data for a different yeast cell line, and we fit the
model to these data using many different analytical approaches.
All approaches produce excellent fits (Fig. 2), yet standard (mean,
variance, and higher moments) data-fitting techniques yield pre-
dictions that are wrong by many orders of magnitude (Fig. 1D). To
explain these errors, we quantify model estimation errors in terms
of parameter uncertainty and bias. We then demonstrate why
standard single-cell modeling approaches, which assume contin-
uous and normally distributed fluctuations or enough data to in-
voke the CLT (25) (Methods and SI Appendix), lead to
nonintuitive biases and poor predictions (Fig. 1D), especially
when mRNA expression is very low. In contrast, we show that
improved computational analyses of full single-cell RNA distri-
butions, which do not rely on the CLT, can yield far more pre-
cisely constrained, less-biased, more reproducible, and more
predictive models (Fig. 1D). We also discover important in-
formation contained in the intracellular spatial locations of RNA
(Fig. 1B and SI Appendix, Figs. S4 and S5), enabling quantitative
predictions for dynamics of gene regulation at multiple scales,
including transcription initiation and elongation rates, fractions of
actively transcribing cells, and the average number and distribu-
tion of polymerases per active transcription site (TS) versus time
(Figs. 1–4), which have not been, and could not otherwise be,
measured simultaneously in endogenous cell populations.

Results
To elucidate the importance of the data–model integration ap-
proach, rather than just the data or model alone, we analyzed
single-cell transcription activation under the control of hyper-
osmotic stress in S. cerevisiae (Fig. 1A and SI Appendix, Fig. S1).
Specifically, we analyzed the high-osmolarity glycerol kinase
Hog1, which is a well-characterized homolog of the human p38
kinase that helps regulate differentiation and apoptosis. Under
osmotic stress, Hog1 is phosphorylated and translocated to the
nucleus, where it activates several hundred genes (29). We used
a fluorescent protein reporter and time-lapse fluorescence mi-
croscopy to quantify Hog1p dynamics at 1-min resolution
throughout the stress-adaptation response (SI Appendix, Fig. S1).
We then quantified transcription activity for two Hog1p-activated

genes: STL1, a glycerol proton symporter of the plasma membrane,
and CTT1, the cytosolic catalase T. For both genes, we used single-
molecule RNA FISH (8, 9), along with a nuclear stain, and custom
image processing software to quantify simultaneously the number of
individual mRNA primary transcripts at the site of transcription, in
the nucleus, and in the cytoplasm, all at temporal resolutions of 1 to
5 min, at two osmotic stress conditions (0.2 M and 0.4 M NaCl), in
multiple biological replicas, and for more than 65,000 cells (Fig. 1 B
and C and SI Appendix, Figs. S2 and S3). With these datasets of
unprecedented spatial and temporal detail, we built histograms to
quantify the marginal and joint distributions of the nuclear and cy-
toplasmic mRNA (Fig. 2 D and E and SI Appendix, Figs. S2–S5).
The resulting distributions are demonstrably nonnormal and non-
symmetric (SI Appendix, Figs. S2 and S3).
In previous work, we searched hundreds of different model to-

pologies to find and validate a simple model that consists of four
states in a linear chain and which captured and quantitatively
predicted Hog1-activated gene expression for several yeast genes
including CTT1 and STL1 and in multiple genetic and environmental
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Fig. 1. Discovering stochastic models to predict single-cell gene regulation.
(A) Scope of the model, including quantitative analysis of MAPK induction
and translocation, chromatin reorganization, polymerase initiation and
elongation, and mRNA transcription, export, and nuclear/cytoplasmic decay.
RNAs in the cytoplasm (yellow) and nucleus (green) are used to constrain
parameters. RNAs are predicted at the TS (cyan). Parameterization of the ki-
nase signaling dynamics and the number of chromatin states were previously
identified (23) (purple). (B) Collection of single-cell spatiotemporal RNA
transcription data to fit the model. Cytoplasmic and nuclear transcription
quantification for expression of two mRNA species (CTT1 in red and STL1 in
green). DAPI-stained nucleus in blue. The white line is the nuclear border, and
the gray line is the cell boundary after automated segmentation. Represen-
tative images of cells exposed to 0.2 M NaCl; 65,454 cells in total have been
imaged at 16 time points. (Scale bar: 5 μm.) (C) Intensely bright spots within
some cell nuclei are identified as TS. TS data are used to determine the
number of nascent transcripts and validate model predictions. (Scale bar:
1 μm.) (D) Model validation comparing measured (red, experiment) to
predicted average number of nascent STL1 RNA per TS using the same model
and same training data but under different modeling assumptions. Non-
spatial analyses (blue) use the statistics (means, means and variances, or
distributions) of the total number of RNA per cell. Spatial analyses (yellow)
use the joint statistics of nuclear and cytoplasmic number of RNA per cell.
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conditions (23). Our current study considers these specific genes
and conditions so that we can now explore the robustness and
reproducibility of model parameter estimation even when ap-
plied to different cell lines and utilizing different sets of labo-
ratory and microscopy equipment. To test the ability of our
approach to capture and predict transcription regulation mech-
anisms on different scales, we also extended our previous model
to consider transport of mRNA from nucleus to cytoplasm, nu-
clear and cytoplasmic mRNA decay, as well as mRNA elonga-
tion dynamics (Fig. 1A) (Methods and SI Appendix).
Our primary goal is to quantify and explain the intricate effects

that different statistical data analyses have on the uncertainty, bias,
and resulting predictive capabilities of gene regulation models.
Toward this end, we considered four approaches to fit the ex-
tended model to the measured gene transcription data (Fig. 2, full
details are given in Methods and SI Appendix). First, we used exact
analyses of the first moments (i.e., population means) of mRNA
levels as functions of time. This is the standard approach to fit
dynamical models to time-varying data (24). Second, we added
exact analyses of the second moments (i.e., variances and covari-
ances). Third, we extended the moments analyses to include the
third and fourth moments. Finally, we used the finite state pro-
jection (FSP; ref. 30) approach to compute the full joint probability
distributions for nuclear and cytoplasmic mRNA. All four ap-
proaches provide exact solutions of the same model as functions of
time during the adaptation response, but with different levels of
statistical detail (Methods and SI Appendix). We used each analysis
to compute the likelihood that the measured mRNA data would
match the model, and we maximized these analysis-dependent
likelihood functions (Methods and SI Appendix). As was the case
for previous studies (22, 31), we note that the moments-based
likelihood computations assume either normally distributed devi-
ations (first and second methods) or sufficiently large sample sizes
such that the first two moments could be captured by a multivar-
iate normal distribution as guaranteed by the CLT (third method)

(ref. 22 and Methods and SI Appendix). In contrast, the FSP ap-
proach (fourth method) makes no assumptions on the distribution
shape and has no requirement for large sample sizes.

Different Exact Analyses of the Same Model and Same Data Yield
Dramatically Different Results. All four approaches produced ex-
cellent fits to the corresponding features in the experimental
training data (Fig. 2). However, the four likelihood functions were
maximized by different parameter combinations (SI Appendix,
Tables S3 and S4), and the resulting models were compared with
the measured mean, variance, ON-fraction (i.e., fraction of cells
with more than three mRNAs per cell), and distributions versus
time for STL1 and CTT1 (Fig. 2 and SI Appendix, Figs. S2 and S3).
When identified using the average mRNA dynamics (Fig. 2A,
red), the model failed to match the variance, ON-fractions, or
distributions of the process (Fig. 2 B–D, red). Fitting the response
means and variances simultaneously (Fig. 2 A and B, blue) failed
to predict the ON-fractions or probability distributions (Fig. 2 C
and D, blue). Extending the moments-based likelihood analysis to
include third and fourth moments led to very poor fits to the
variances (Fig. 2B, magenta) and provided no improvement to the
distribution predictions (Fig. 2D and SI Appendix, Figs. S2 and
S3). In contrast, parameter estimation using the full probability
distributions (Fig. 2, black and SI Appendix, Figs. S2 and S3)
matched all measured statistics. Importantly, key conserved pa-
rameters identified using the FSP approach agree well with pre-
vious studies (23). For example, decay rate estimates for CTT1
(0.0053 s−1) and STL1 (0.0021 s−1) changed only 5% and 8%
compared with our previously reported values (SI Appendix, Ta-
bles S3 and S4). This agreement, which indicates strong re-
producibility of both experiments and analyses, provides more
confident predictions for new transcriptional mechanisms as dis-
cussed below. In contrast, the moment-based analyses led to far
less consistent results, in many cases overestimating these rates by
multiple orders of magnitude (SI Appendix, Tables S3 and S4).

Standard Modeling Identification Procedures Fail due to Bias in
Moment Estimation. We considered three explanations for why
standard moment-based parameter estimation approaches failed:
(i) The model parameters could be unidentifiable from the con-
sidered moments; (ii) the parameters could be too weakly con-
strained by those moments; or (iii) the moments analyses could
have introduced systematic biases due to a failure of the CLT. To
systematically evaluate these three explanations, we quantified the
posterior uncertainty and bias in parameters after fitting to single-
cell data under each modeling approach and for different aspects of
quantified single-cell data (Figs. 3 and 4 and SI Appendix, Figs. S9–
S11). To eliminate the first explanation, we computed the Fisher
information matrix (FIM) defined by the moments-based analyses
(Methods and SI Appendix). Because the computed FIM has full
rank, we conclude that the model should be identifiable. If the
second explanation were true (i.e., if the moments analyses had
produced weakly constrained models), then the FSP parameters
would lie within large parameter confidence intervals identified by
the moments-based analyses. However, using the experimental
STL1 data, we computed that the FSP parameter set was 102,750
less likely to have been discovered using means and 1014,500 less
likely to have been discovered using means and variances (SI Ap-
pendix, Table S5). In other words, the means-based analysis resulted
in the worst-case scenario of a high confidence estimate of poor
parameters, and inclusion of variances in the analyses only exac-
erbated the issue. Thus, we conclude that failure of the moments-
based analyses to match the distributions in Fig. 2 and SI Appendix,
Figs. S2 and S3 cannot be explained by model uncertainty alone.
To test the third explanation for parameter estimation failure

(i.e., systematic bias), we used the FSP parameters and generated
simulated data for the mean (Fig. 3A), SD (Fig. 3B), ON-fraction
(Fig. 3C), and distributions (Fig. 3D) versus time for STL1
mRNA under an osmotic shock of 0.2 M NaCl and for the other
combinations of genes and conditions (SI Appendix, Fig. S7).
Each panel shows the exact theoretical prediction (black), 20 sets
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Fig. 2. Different computational analyses result in matches to different data
statistics. (A) Mean number, (B) SD, (C) ON-fraction (cells with more than
three mRNAs), and (D) temporal distributions of STL1mRNA copy number. In
each panel, data for 0.2 M NaCl (two biological replicas) and 0.4 M NaCl
(three biological replicas) are shown in top and bottom rows, respectively.
Data range is shown in gray. Colors denote models identified using analyses
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pression fits are shown in SI Appendix, Figs. S2–S5.
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of independent 200-cell population simulations (gray), the
overall median statistic from these simulations (magenta), and
experimental results for biological replicas (red and cyan). As
shown in Fig. 3 A and B, the median of the simulated datasets
(magenta) matches the experimental data (red and cyan) at all
times, but at later times (>20 min) both are consistently less than
the theoretical value (black). This mismatch is due to finite sampling

from highly asymmetric distributions, particularly at later time points
(Fig. 3D). The Gaussian assumption applied to the first two mo-
ments analyses (Methods and SI Appendix), which does not account
for asymmetry, imposes narrow and nearly symmetric likelihood
functions for the sample mean and sample variance (cyan lines in
Fig. 3 E and F, respectively). These moment-based likelihood
functions are inconsistent with the actual sample statistic distribu-
tions (Fig. 3F, compare cyan and black lines). Because the mRNA
distributions are very broad at late time points (Fig. 3D), one would
need to measure 105 or 107 cells to estimate the variance within 10%
or 1%, respectively (Fig. 3G). Furthermore, because the mRNA
distributions are asymmetric, measurements are likely to repeatedly
underestimate the mean summary statistics (Fig. 3 A and B; compare
magenta lines or red/cyan triangles to the black line). Moreover,
when the moment-based likelihood functions were constrained to
match underestimated mRNA expression at late time points, the
analyses resulted in excessively confident overestimation of the
mRNA decay rate (SI Appendix, Table S3). In principle, if exact third
and fourth moments were known a priori, then the extended mo-
ments analysis would have been able to capture the correct likeli-
hood function for the sample statistics. However, in practice, higher
moments are even more difficult to measure, and all moments had
to be computed by the same model. Thus, the extended moment
analyses led to much greater uncertainty (SI Appendix, Fig. S6).

Full Distribution Analyses Substantially Reduce Model Uncertainty
and Bias. To confirm the trade-off between uncertainty and bi-
as, we applied the Metropolis–Hastings algorithm (MHA) to
analyze parameter variation for the different likelihood functions
and to estimate parameter uncertainty and bias (Fig. 4 A–C,
Methods, and SI Appendix, Figs. S9–S11). Comparing the pa-
rameter variations for the transcription initiation rate, ki3, and
the mRNA decay rate, γ, illustrates that extending the analysis
from the means to means and variances affected the parameter
identification bias much more than the parameter uncertainty
(Fig. 4A). Moreover, this effect could be deleterious; analysis of
variances led to substantially increased parameter bias for STL1
(compare red and blues ellipses in Fig. 4 A and C and see SI
Appendix, Fig. S9) and relatively little change for CTT1 (SI Ap-
pendix, Figs. S10 and S11). Although extension to third and
fourth moments improved estimation of ki3 and γ (Fig. 4A), the
higher moments led to an increase in overall uncertainty (Fig.
4B). In contrast, analyses using the FSP consistently reduced
both uncertainty and bias for both STL1 and CTT1 analyses (Fig.
4 A–C and SI Appendix, Figs. S9–S11).

A B

C

ED

Fig. 4. Stochastic and spatial fluctuation information reduce uncertainty and bias in parameter estimation to enable precise quantitative predictions. (A) Ninety
percent confidence ellipses for the decay rate (γ) and the maximal transcription initiation rate (ki3) using the means only [μ(t), red], means and variances [μ(t),Σ(t)
blue], extended moment analyses (fourth, magenta), or the full FSP distributions [P(t), black]. Arrows show the effect of adding spatial information to the
analyses. The dashed black lines show the fit parameters for the spatial FSP STL1model. (B) Total parameter uncertainty and (C) bias for the four analyses using
nonspatial (blue) and spatial (yellow) analyses. The red regions show the difference between independent MHA chains. (D) FSP predicted (black) and measured
(magenta, green, and blue crosses) fractions of cells with active STL1 TS versus time at 0.2 M (Top) NaCl and 0.4 M (Bottom) NaCl osmotic shock. (E) FSP predicted
(black) and measured (magenta, green and blue) distributions of nascent STL1 mRNA per TS at different times following 0.2 M (Top) NaCl and 0.4 M (Bottom)
NaCl osmotic shock. Magenta, green, and blue horizontal lines correspond to the minimum detection limit (1/Nc, where Nc is the number of cells measured at
that time for the corresponding biological replica). All predictions are made using fixed parameters estimated previously from the mature, spatial mRNA
distributions.
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Fig. 3. Violation of the CLT due to discrete positive distributions leads to failure
of moment estimation. (A) Mean, (B) SD, (C) ON-fraction, and (D) full distribu-
tions of STL1 mRNA versus time for an osmotic shock of 0.2 M NaCl applied at
time t = 0. Theoretical values are in black, representative simulated samples of
200 cells each are in gray, median statistics of the simulated samples are in
magenta, and experimental biological replica data are in red and cyan. (E and F)
Expected distribution of sample mean (E) and sample variance (F) for STL1 at 35
min computed using a Gaussian approximation (cyan), an extended moment
analysis with exact knowledge of the third and fourth moments (magenta), or
exact sampling from the FSP (black) for population sizes of 1, 100, 300, 1,000,
and 3,000 cells. (G) Expected number of cells required to estimate the mean
(Top) or variance (Bottom) within SEs of 10% (red) or 1% (black) for STL1. The
dependence on time is due to the changing distribution shapes shown in D.
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Using Spatial Fluctuations Improves Model Identification. Having
established that different stochastic fluctuation analyses attain
different levels of uncertainty and bias, we asked if more in-
formation could be extracted from spatially resolved data. We
then extended the model and our analyses to consider the joint
cytoplasmic and nuclear mRNA distributions (SI Appendix, Figs.
S4 and S5). From these analyses, we observed that spatial data
reduced parameter bias and uncertainty for the models, despite
the addition of new parameters and model complexity (Fig. 4 A–
C and SI Appendix, Figs. S9–11).

Measuring and Predicting Transcription Site Dynamics. We next ex-
plored how well the identified models could be used to predict the
elongation dynamics of nascent mRNA at individual STL1 or
CTT1 TS (Fig. 1 B and C). We quantified the TS intensity for
CTT1, and we used an extended FSP model for CTT1 regulation to
estimate the polymerase II elongation rate to be 63 ± 13 nt/s
(Methods and SI Appendix), a value consistent with published rates
of 14–61 nt/s (32, 33). We assumed an identical rate for the STL1
gene, and we used the FSP model for STL1 gene regulation to
predict the STL1 TS activity (Figs. 1D and 4D). The spatial
(nonspatial) FSP model predicts an average of 7.0 (9.3) full-length
STL1 mRNA per active TS, a value that matches well to our
measured value of 4.2–7.5 STL1 mRNA per active TS. However,
predictions using parameters identified from moments-based
analyses were incorrect by several orders of magnitude (Fig. 1D).
In addition to predicting the average number of nascent mRNAs
per active TS, the FSP model also accurately predicts the fraction
of cells that have an active STL1 TS versus time (Fig. 4D) as well as
the distribution of nascent mRNA per TS versus time (Fig. 4E).

Discussion
Integrating stochastic models and single-molecule and single-cell
experiments can provide valuable information about gene regu-
latory dynamics (20). We previously discussed the importance of
choosing the right model to match the single-cell fluctuation
information and achieve predictive understanding (23). Here we
showed why and how important it is to choose the right com-
putational analysis with which to analyze single-cell data. We
showed that model identification based solely upon average be-
haviors can lead to substantial parameter uncertainty and bias,
potentially resulting in poor predictive power (Figs. 1–4). We
showed how single-molecule experiments often yield discrete,
asymmetric distributions that are demonstrably non-Gaussian
(Figs. 2 D and E and 3 and SI Appendix, Figs. S2 and S3), and
how model extensions to include hard-to-measure variances and
covariances may exacerbate biases (Fig. 4C), leading to greatly
diminished predictive power (Fig. 1D). By taking into account the
full distribution shapes, one can correct these deleterious effects
and obtain parameter estimates and predictions that are improved
by orders of magnitude, even when applied to the same model and
same data (Figs. 1D, 2, and 4). We stress that this concern occurs
even for models for which exact equations are known and solvable
for the statistical moment dynamics. For more complex and
nonlinear systems or for models where cellular communication or
selective growth induce non-Markovian dynamics (34), approxi-
mate analyses are required, and these effects are likely to be ex-
acerbated further. These issues are expected to be even more
relevant in mammalian systems, which exhibit greater bursting (8,
9, 28) and for which data collection may be limited to smaller sizes
(e.g., by increased image processing difficulties for complex cell
shapes or by small numbers of cells, as available from an organ, a
tissue from a biopsy, or for a rare cell-type population).
Most biological modeling investigations to date have used only

means or means and variances from finite datasets to constrain
models, so it is not surprising that many models fail to realize
predictive capabilities. Conversely, our full consideration of the
single-molecule distributions enabled discovery of a comprehensive
model that quantitatively captures transcription regulation with bi-
ologically realistic rates and interpretation for transcription initia-
tion, transcription elongation, and mRNA export and nuclear and

cytoplasmic mRNA decay (Fig. 1A). We argue that the solution is
not to collect increasingly massive amounts of data but instead to
develop computational tools that utilize the full, unbiased spa-
tiotemporal distributions of single-cell fluctuations. By addressing
the limitations of current approaches and relaxing requirements for
normal distributions or large sample sizes, such approaches should
have general implications to improve mechanistic model identifi-
cation for any discipline that is confronted with nonsymmetric
datasets and finite sample sizes.

Methods
Yeast Strain, Growth Condition, and Sample Preparation. S. cerevisiae BY4741
(MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0) was used for FISH experiments,
and Hog1 was tagged on the C terminus with YFP for live-cell imaging (2, 35).
Cells were grown in a flow chamber or in a culture flask in the presence
of minimal media (CSM) with or without 0.2 M or 0.4 M NaCl. For RNA-FISH,
cells were fixed between 0–55 min after osmotic stress in time intervals of 1, 2,
and 5 min and spheroplasted, RNA-FISH probes were hybridized, and cells
were imaged.

Microscopy Setup, Image Acquisition, and Image Analysis for Time-Lapse and
Single-Molecule RNA-FISH Imaging. Cells were imaged with a Nikon Ti-E
epifluorescent microscope. Live-cell time-lapse microscopy was performed
in flow chambers by taking bright-field and YFP fluorescent images. These
images are used to track cells over time and to segment cells automatically.
The final time-lapse microscopy dataset consists of 246 (0.2 M NaCl) and 167
(0.4 M NaCl) cells containing biological duplicates or triplicates. Single-
molecule RNA-FISH microscopy was done in z-stacks of fixed yeast cells, for
which the nucleus and cell boundary was segmented and the fluorescent RNA
spots were counted automatically. The total RNA-FISH dataset consists of a
total of 65,454 single cells (25,511 at 0.2 M NaCl and 39,943 at 0.4 M NaCl)
with cells expressing STL1 and CTT1mRNA. From these datasets the marginal
distributions, the joint probability distributions of nuclear and cytoplasmic
RNA, and the fraction of cells with more than three mRNA molecules (ON-
cells) and the number of nascent transcripts were determined.

Hog1-Kinase Model. Parameters of an existing model (23) were fit to the
measured Hog1p nuclear enrichment levels as functions of time and osmo-
lyte concentrations (SI Appendix, Fig. S1 and Table S2). This time-varying
signal was used as an input to the gene regulation models.

Gene Regulation Model. To capture the spatial stochastic expression of STL1 or
CTT1 mRNA, an existing four-state Hog1p-activated gene expression model
(23) was extended to account for spatial localization of mRNA in the nucleus
or cytoplasm (Fig. 1A). In total, there are 13 nonspatial or 15 spatial pa-
rameters in the model.

Computation of Moments. Moment dynamics were analyzed using sets of
coupled linear time-varying ordinary differential equations, which provide
exact expressions for the dynamics of the model’s means, variances, covari-
ances, and higher moments (36). All reaction rates are all linear, these mo-
ment equations are closed, and the moments can be computed exactly.

Computation of Full Distributions. Distributions were computed using the FSP
approach (30) to solve the chemical master equation. The FSP is a finite set of
linear, time-varying ordinary differential equations, whose solutions provide
guaranteed bounds on the model-predicted probability distributions at all
finite times.

Computation of Moment-Based Likelihood Functions. Three approaches were
derived to compute the likelihood of observed moments. First, to estimate
likelihoods of the average data, fluctuations were assumed to be Gaussian,
with the model-generated means and the measured sample (co)variances.
Second, to estimate likelihoods of measured sample variance (nonspatial) or
covariance matrix (spatial), the χ2 distribution (nonspatial) or Wishart dis-
tribution (spatial) was used to approximate the likelihood of the measured
sample means and variances, given the model (37). Third, the CLT and the
first four model moments were used to approximate the joint likelihood for
joint sample means and sample covariance matrix (22).

Computation of the Full Distribution Likelihood. The log-likelihood of the full
distribution data was computed using the FSP approach (23, 38), using the
formula log(L) =

P
 diPi, where di and Pi are the measured number and FSP-

generated probability of cells with i mRNA at the appropriate time.
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Parameter Searches to Maximize Likelihood. Local and global parameter
searches to maximize likelihood functions used multiple starting parameter
guesses and totals of >4 × 107 evaluations of the means and moments
analyses, >5 × 106 evaluations of the nonspatial FSP distributions, and >5 ×
105 evaluations for the extended moments and the spatial FSP distributions.

Quantification of Parameter Uncertainties. The MHA (39) was used to quantify
parameter uncertainties. All parameter explorations were conducted in log-
arithmic parameter space, and all analyses (with moments or distributions,
both spatial and nonspatial) used the same proposal distributions as described
in SI Appendix. MHA chain lengths were >1 million (means and simpler mo-
ments), >120,000 (extended moment analyses), >250,000 (nonspatial FSP),
and >15,000 (spatial FSP). SI Appendix, Fig. S8 shows the similarity of distri-
butions of likelihood values for two independent MHA runs for each gene
and analysis. The total bias and total uncertainty (Fig. 4 B and C and SI Ap-
pendix, Fig. S11 B and C) were computed as described in SI Appendix. Cross-
validation was applied to verify that the most important parameters identi-
fied using the FSP were insensitive to specific biological replica data and that
the MHA results applied to all data were consistent with parameter variations
under biological replica studies (SI Appendix, Fig. S12).

Predictions of TS Activity. Two analyses were developed to predict TS activity:
a simplified theoretical analysis of average active TS activity and an extended
FSP analysis of distributions of polymerases on a given TS. In the simplified
analysis, it was assumed than an active TS would correspond to one gene at
steady state with the maximum transcription rate, ki-max. Under this as-
sumption, the average number of elongating polymerases is given by
<npol> = ki-maxτelong = ki-maxL/kelong. The average nascent mRNA was as-
sumed to be half the length of a mature mRNA, and the average nascent
mRNA was assumed to exhibit half the brightness of a mature mRNA. An
extended FSP approach (40) was used to compute the distribution for the
number of polymerases at the TS as described in SI Appendix. The distribu-
tion of TS spot intensities with Npoly polymerases was found through the

convolution of Npoly independent random variables, each with a uniform
distribution between zero and one. The FSP analysis was confirmed using
stochastic simulation as described in SI Appendix, Fig. S13. TS sites were la-
beled as ON if their predicted or measured intensities were greater than
twice the intensity of a single mature mRNA.

Identification of mRNA Elongation Rate. The transcription elongation rate was
found by computing the TS intensity distribution for CTT1 at each point in
time for 0.2 M and 0.4 M NaCl osmotic shock using the previously identified
parameters (SI Appendix, Table S4) and one free constant to describe the
average elongation rate, kelong. The probability that the observed distribu-
tions of CTT1 TS intensities could have originated from this model was
computed for all time points and conditions, and as a function of kelong. This
likelihood was maximized for the different biological replicas and NaCl
concentrations to determine the uncertainty in this parameter. The simpli-
fied theoretical model, which does not account for transitions between ac-
tive and inactive periods, provided an upper bound on the CTT1 elongation
rates to be 91 ± 9 nt/s. The more detailed spatial FSP approach determined
the CTT1 elongation rates to be 63 ± 14 nt/s. For both cases, the uncertainty
is given as the SEM using the five experimental replicas (two for 0.2 M NaCl
and three for 0.4 M NaCl). The elongation rate was then fixed to be 63 nt/s,
and this rate was used in conjunction with the previously identified pa-
rameters to predict the TS intensity distributions for CTT1 and STL1 as
functions of time in both osmotic shock conditions (Figs. 1D and 4 D and E
and SI Appendix, Fig. S11 D–H).
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