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Depression and anxiety are common, debilitating psychiatric conditions affecting millions

of people throughout the world. Current treatments revolve around selective serotonin

reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving

depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis,

the process by which plasma membrane and extracellular constituents are internalized

into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan,

5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their

therapeutic potential, surprisingly little is known about the endocytosis of the serotonin

receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT

receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding,

while for the majority of 5-HT receptors the endocytic regulation is not known. SERT

internalizes serotonin from the extracellular space into the cell to limit the availability of

serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin

uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing

serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds

directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor

proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and

transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI

non-response. In this review, we detail the endocytic regulation of 5-HT receptors

and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin

signaling through endocytosis. Finally, we will examine the deregulated proteomes in

depression and anxiety and link these with 5-HT receptor and SERT endocytosis.

Ultimately, in attempting to integrate the current studies on the cellular biology of

depression and anxiety, we propose that endocytosis is an important factor in the

cellular basis of depression and anxiety. We will highlight how a thorough understanding

5-HT receptor and SERT endocytosis is integral to understanding the biological basis of
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depression and anxiety, and to facilitate the development of a next generation of specific,

efficacious antidepressant treatments.

Keywords: depression, anxiety, serotonin receptor, serotonin transporter, endocytosis

INTRODUCTION

Depression and anxiety are the first and sixth highest causes
of burden of disability worldwide, respectively (Baxter et al.,
2013; Ferrari et al., 2013; World Health Organisation, 2017).
Selective serotonin reuptake inhibitors (SSRIs) are the main class
of pharmacologic agent used to treat depression and anxiety but
are only moderately effective at relieving symptoms (Davey and
Chanen, 2016; Cipriani et al., 2018). While up to 30% of patients
suffering from depression are resistant to these treatments (Al-
Harbi, 2012; Jaffe et al., 2019), SSRIs also have well-established
acute anxiety-inducing (anxiogenic) effects (Carvalho et al.,
2016). Between 2005 and 2015, the rate of depression and anxiety
increased in line with population growth worldwide (World
Health Organisation, 2017), highlighting the need for developing
more effective new therapeutics for treating these disorders.

Multiple classes of G-protein coupled receptors (GPCRs) have
been implicated in the development of affective disorders such
as depression and anxiety. GPCRs are common neurotransmitter
receptors present on the cell surface throughout the body. GPCRs
are coupled to heterotrimeric G proteins consisting of an α, β,
and γ subunits which are either activating (β,γ) or inhibitory (α)
of downstream signaling responses. Following ligand (such as
neurotransmitter) binding to the GPCR, the α and βγ subunits
dissociate from the receptor to activate/inactivate intracellular
signaling pathways. Dopamine, serotonin, GABA, cholinergic
and glutamate receptors have all implicated in mood and mood
disorders and the antidepressant response (reviewed extensively
in Catapano and Manji, 2007; Senese et al., 2018). Aside from
neurotransmitter-binding GPCRs, the orphan class of GPCRs,
for which no endogenous ligands have yet been identified, have
also been implicated in mood disorders including depression
by genetic association studies in humans and knockout/over-
expression studies in animal models (reviewed in Orlandi and
Watkins, 2020).

Monoamine (neurotransmitters/hormones such as dopamine,
serotonin and noradrenaline) transporters are also implicated in
the treatment of depression and anxiety, with SSRIs targeting the
serotonin transporter (SERT), serotonin noradrenaline reuptake
inhibits (SNRIs) targeting both SERT and the noradrenaline
transporter (NET) and triple uptake inhibitors targeting all three
transporters, preventing the uptake of serotonin, dopamine and
noradrenaline into the cell (Lucki and O’Leary, 2004; Zhou,
2004). Other transporters such as ERICH3, which acts as a
transporter for loading serotonin into vesicles for release from
the cell, have been implicated in antidepressant resistance, with
a single nucleotide polymorphism identified in SSRI resistant
patients that abolished ERICH 3 transport activity (Gupta et al.,
2016; Liu et al., 2020). In this review, we focus on the role the
cellular process of endocytosis, serotonin receptors and SERT in
the development and treatment of depression and anxiety, but

it is likely the endocytic processes we highlight are applicable to
many receptors and transporters implicated in the development
or treatment of these conditions.

Serotonin is a ubiquitous hormone that is responsible for
regulating multiple aspects of mood (Berger et al., 2009) through
its action on the serotonin receptors (5-HT receptors). There are
seven classes of 5-HT receptor: 5-HT1 – 5-HT7. All (except, 5-
HT3) are GPCRs present on the cell surface. Serotonin binding
to 5-HT receptors activates the receptor and induces or inhibits
intracellular signaling through G-protein signaling, as detailed
below. Further regulation of serotonin signaling is exerted by
the serotonin transporter (SERT), which induces cellular uptake
of serotonin, removing it from circulation, thereby limiting its
availability for signaling (Baudry et al., 2019). Changes in or
disruption to the serotonin system correlate with depression,
anxiety, and their treatment (Figure 1). Most classes of serotonin
receptor have been implicated in the development of depression
and/or anxiety (Yohn et al., 2017). In this review, we specifically
examine 5-HT1A, as it has multiple associations with depression
and anxiety pathogenesis (Lanzenberger et al., 2007; Kaufman
et al., 2016). We will also examine 5-HT2A, which is the target
of hallucinogens (López-Giménez and González-Maeso, 2017)
which are promising candidates for antidepressant and anxiolytic
compounds. Finally we will review SERT, the major target of
SSRIs (Baudry et al., 2019) (Table 1).

SEROTONIN RECEPTORS, THE
SEROTONIN TRANSPORTER,
DEPRESSION, AND ANXIETY

5-HT1A Autoreceptors and Heteroreceptors
Have Contrasting Roles in Depression and
Anxiety
Two classes of 5-HT1A receptor exist in the human brain:
autoreceptors and heteroreceptors (Garcia-Garcia et al., 2014).
5-HT1A autoreceptors are present on neurons synthesizing
serotonin (serotonergic neurons) and are responsible for
downregulating the serotonin synthesis that occurs in these
neurons, while 5-HT1A heteroreceptors are present on non-
serotonergic neurons. Developmentally, 5-HT1A autoreceptors
help establish the anxiety response (Donaldson et al., 2014;
Garcia-Garcia et al., 2014). In platelets isolated from patients
withmajor depressive disorder (MDD, a relatively strictly defined
diagnosis for depression), 5-HT1A receptor levels are increased
and serotonin levels are decreased compared to controls, with
the magnitude of these changes correlating with depression
symptoms (Zhang et al., 2014). There is a higher propensity
for the 5-HT1A receptor to bind agonists in the brains of
people with depression (Parsey et al., 2006) and SSRIs can
reduce 5-HT1A receptor binding capacity (Gray et al., 2013).
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FIGURE 1 | Serotonin system involvement in depression and anxiety. (A) 5-HT1A autoreceptors expressed in serotonergic neurons have contrasting roles in

depression and anxiety, with increased 5-HT1A signaling potentially increasing depression and decreased signaling increasing anxiety. (B) 5-HT2A signaling induced by

serotonin and CRF leads to an increased anxiety response in mice, while hallucinogen signaling through 5-HT2A potentially leads to decreased depression and anxiety

symptoms in human patients. (C) SERT transport of serotonin from the extracellular space to inside the cell limits serotonin receptor signaling, with SERT over-activity

potentially being causative of depression. SSRIs block the function of SERT, leading to serotonin accumulation in the extracellular space, enabling enhanced serotonin

receptor signaling and alleviation of depression symptoms.

The SSRI fluoxetine specifically targets 5-HT1A autoreceptors
over heteroreceptors, inducing their cellular internalization (Riad
et al., 2001, 2004), demonstrating that some SSRIs may selectively
induce 5-HT1A autoreceptor internalization in the treatment
of depression.

SSRI treatments are also noted for their acute anxiogenic
effects (Carvalho et al., 2016). In contrast to the brains of
depressed individuals, 5-HT1A receptor agonist binding is
decreased in the brains of people suffering from anxiety without
depressive symptoms (Lanzenberger et al., 2007). Specific
deletion of 5-HT1A autoreceptors in the mouse brain gives
rise an anxiety response following SSRI treatment, indicating
that low or no 5-HT1A autoreceptor signaling is detrimental
for anxiety (Turcotte-Cardin et al., 2019). Further, mice
expressing a mutant, non-functional 5-HT1A receptor displayed

elevated anxiety-like behavior, while also displaying behaviors
associated with antidepressant treatment indicating they were
perhaps resistant to depression while being prone to anxiety
(Heisler et al., 1998). Higher 5-HT1A autoreceptor signaling
therefore appears to be a factor in depression, while lower 5-
HT1A autoreceptor signaling is a potential factor in anxiety
(Figure 1A).

5-HT2A Is Targeted by Hallucinogens in the
Treatment of Depression and Anxiety
5-HT2A function has not been strongly associated with
depression or anxiety, although co-occurring polymorphisms in
the serotonin synthesis enzyme TPH2 and 5-HT2A do correlate
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TABLE 1 | The relationship between the serotonin system, depression, and anxiety.

Component Depression Anxiety Treatment References

5-HT1A Increased receptor binding

in the brain, polymorphism

can reduce risk

Decreased receptor binding

in the brain

SSRIs may decrease

autoreceptor levels,

alleviating depression but

inducing acute anxiety

(Riad et al., 2001, 2004;

Lanzenberger et al., 2007;

Gray et al., 2013; Zhang

et al., 2014; Carvalho et al.,

2016)

5-HT2A Potential interaction with

serotonin synthesis and

depression

Enhances signaling induced

via serotonin and

corticotrophin-releasing

factor induces anxiety in

mice

Hallucinogenic compounds

induce signaling,

antidepressant and

anxiolytic effects

(Magalhaes et al., 2010;

Yang et al., 2019; Fuentes

et al., 2020; Madsen et al.,

2020)

SERT Polymorphisms confer small

risk increase, binding

availability elevated

Polymorphisms associate

with anxiety, binding

availability lowered

SSRIs block function,

antidepressant and

anxiolytic effects

(Meyer, 2007; Reimold

et al., 2008; Caspi et al.,

2010; Shadrina et al., 2018)

Serotonin Decreased in peripheral

circulation (whole blood,

human), increased turnover

in brain

Likely increased based

upon animal studies

SSRIs decrease whole

blood serotonin levels

(human), increase brain

levels (rodent models)

(Barton et al., 2008; Gupta

et al., 2016; Holck et al.,

2019)

with MDD (Yang et al., 2019). Interestingly, increased 5-
HT2A signaling induced by both serotonin and corticotrophin-
releasing factor does induce anxiety in mice (Magalhaes et al.,
2010). The 5-HT2A receptor is also a promising target for
hallucinogenic therapeutic agents aimed at reducing depression
and anxiety. 5-HT2A is potently activated by the hallucinogens
lysergic acid diethylamide (LSD) and psilocybin (Almaula et al.,
1996; López-Giménez and González-Maeso, 2017), which are
emerging as effective antidepressant and anxiolytic treatments in
recent clinical trials (Fuentes et al., 2020; Madsen et al., 2020)
(Figure 1B). Further exploration of the therapeutic benefits of
activated 5-HT2A signaling as a target of depression and anxiety
is thus warranted.

SERT Regulates Extracellular Serotonin
Levels
SERT function and SERT polymorphisms are variably linked
with depression and anxiety. SERT binding availability is reduced
in patients with depression, though reduced binding availability
correlates only with severity of anxiety symptoms (Reimold
et al., 2008). SERT binding potential however, is elevated in
MDD patients (Meyer, 2007), which may indicate that MDD
patients have an increased serotonin binding and uptake capacity.
Corroborating these data is the finding that a well-established
polymorphic region in the SERT promoter region leads to
production of more (long allele) or less SERT (short allele)
transcript. The short polymorphism has been associated with
depression and anxiety, although studies are highly conflicting
(Margoob and Mushtaq, 2011), and at most, the short allele
confers only a small increase in MDD risk (Shadrina et al., 2018).
Interestingly, the association between reduced SERT expression
levels with anxiety is present across multiple species, especially
when environmental interaction are taken into account (Caspi
et al., 2010).

Patients with depression who are SSRI non-responders
have lower baseline serotonin levels than depression patients
who are responders. Non-responders also have a significantly
smaller reduction in whole blood serotonin levels compared to
responders (Holck et al., 2019). Since SSRIs are SERT inhibitors,
it should follow that SSRIs block serotonin uptake into the cell,
raising extracellular levels. However, in peripheral circulation the
converse appears to be true: SSRIs reduce total blood serotonin
levels (Gupta et al., 2016; Holck et al., 2019). In MDD patients,
SSRIs reduce circulating serotonin levels in whole blood, and
this reduction correlates with depressive symptom improvement
(Gupta et al., 2016). This disparity could be explained by the
role that platelets play in serotonin storage. Platelets are a key
component of whole blood and a major reservoir of serotonin.
Inhibiting platelet-specific SERT with SSRI treatment would
likely reduce total serotonin levels in whole blood due to released
platelet uptake and storage, which appears to be the case clinically
(Karege et al., 1994). Whole blood serotonin is therefore not
an adequate indicator of free serotonin available for receptor
binding, and the effect of SSRIs are likely reflecting platelet
SERT inhibition.

Direct sampling of serotonin levels in the human brain is
difficult and impractical. Brain serotonin turnover, as measured
by venous blood serotonin metabolite sampling from the internal
jugular, is higher in MDD patients compared to controls. This
higher turnover was found to be ameliorated by SSRI treatment
(Barton et al., 2008). In mice, SSRIs were also found to decrease
serotonin turnover, which was attributed to decreased SERT
availability for serotonin uptake (Benmansour et al., 2002).
Together, these studies indicate that because of the increased
serotonin turnover rate in depressed individuals, serotonin
levels are likely lower in the brains of patients suffering from
depression. SSRI-mediated SERT inhibition then raises brain
serotonin levels because of the decreased serotonin turnover
(Figure 1C). Together, the serotonin receptors 5-HT1A and 5-
HT2A and the serotonin transporter SERT have a demonstrable
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role in the pathogenesis and treatment of depression and
anxiety via their regulation of serotonin signaling and serotonin
levels in the brain and periphery. Examining these roles in
depression and anxiety indicate that the correct maintenance
of 5-HT receptors and the transporter at the cell surface is
integral to their functioning. Increased or decreased availability
of the receptors/transporters at the surface could therefore be
contributing to depression/anxiety pathogenesis.

Endocytosis is the central cellular process that regulates the
internalization of receptors and transporters into the cell, thereby
regulating their availability for correct functioning at the cell
surface (Sorkin and Von Zastrow, 2009). Our understanding of
how 5-HT1A, 5-HT2A and SERT are endocytosed is in its infancy.
In this remainder of this hypothesis and theory review, we will
highlight the importance of endocytosis in the regulation of these
three components of the serotonin system. Consistent with the
importance of endocytosis in their regulation, all antidepressant
and hallucinogenic compounds targeting 5-HT1A or 5-HT2A

modulate their endocytosis and concomitant signaling responses
(Riad et al., 2004; Karaki et al., 2014), and all SSRIs induce SERT
endocytosis (Jørgensen et al., 2014). Further, there are a range
of genetic, transcriptomic, and proteomic changes identified
in patients with depression and anxiety. We hypothesize that
these highlighted changes impact the endocytosis of the 5-HT
receptors and transporter, and impaired receptor and transporter
endocytosis contribute to the biological basis of depression
and anxiety.

ENDOCYTOSIS AND ENDOSOMAL
SORTING

Receptor Mediated Endocytosis
Broadly, endocytosis, the process by which cells internalize
cargoes such as ligands/receptors/transporters, can be separated
into receptor-mediated and receptor independent (fluid-
phase) endocytosis. In receptor-mediated endocytosis, a cell
internalizes proteins such as receptors and transporters from
the plasma membrane following ligand binding. This modulates
the internalized receptor/transporters plasma membrane
distribution which in turn alters the availability of the respective
receptor/transporter for functional outcomes such as activated
signaling cascades (Sorkin and Von Zastrow, 2009). Three
forms of receptor mediated endocytosis have been relatively
well-characterized in mammalian cells: clathrin-mediated
endocytosis (CME), fast endophilin mediated endocytosis
(FEME) and clathrin-independent carrier/GPI-enriched
endocytic compartment (CLIC/GEEC) endocytosis (Redpath
et al., 2020; Renard and Boucrot, 2021). In addition to receptor
mediated endocytosis, fluid-phase endocytic mechanisms
exist, such as macropinocytosis, in which endocytic cargoes
are engulfed by the cell (Kerr and Teasdale, 2009). Common
to each mechanism of receptor mediated endocytosis is the
requirement for a protein coat around the forming endosome,
actin remodeling, membrane phosphoinositide conversions
and membrane bending BAR-domain containing proteins to
induce membrane curvature (Redpath et al., 2020). Fluid phase

endocytosis does not require a protein coat, but similarly relies
on actin remodeling and phosphoinositide conversions for
endocytosis to proceed (Ferreira and Boucrot, 2018). Most
relevant to 5-HT receptor (i.e., GPCR) and SERT endocytosis are
CME and FEME, while SERT endocytosis potentially occurs via
fluid-phase mechanisms upon SSRI treatment (detailed below).

CME is the predominant receptor uptake mechanism in
human cells (Bitsikas et al., 2014). When a ligand binds to
its receptor, a conformational change is typically induced in
the cytoplasmic domain of the receptor. This conformational
change allows recruitment and binding of clathrin adaptors
such as AP-2 to the receptor (Boucrot et al., 2010). AP-2 binds
to phosphoinositide(4,5)P2 (PI4,5P2) enriched regions of the
plasma membrane, initiating clathrin recruitment, leading to
formation of a clathrin lattice on the cytoplasmic face of the
plasma (Cocucci et al., 2012). Further, actin branching factors
localize to PI(4,5)P2 enriched membrane regions, which stabilize
membrane curvature and assist in endosome extrusion and
from the plasma membrane (Redpath et al., 2020). Adaptor
localization to the clathrin lattice initiates recruitment of the
protein phosphoinositide clathrin assembly lymphoid myeloid
leukemia protein (PICALM, or CALM), which drives maturation
of the clathrin lattice into an endocytic pit (Miller et al., 2015).
Membrane bending BAR-domain containing proteins are also
recruited to induce membrane curvature required for lattice
maturation, phosphatases are recruited to catabolize the PI4,5P2
required for clathrin uncoating following endosome scission,
and dynamin recruitment for final scission of the endocytic pit
from the plasma membrane (Redpath et al., 2020). Together,
these steps result in internalization of receptors or transporters
by CME.

FEME is a clathrin-independent endocytic mechanism
characterized by the constant formation and dissolution of
endophilin “patches” on the plasma membrane (Boucrot et al.,
2015). Endophilin is a BAR-domain containing protein, likely
involved in the membrane bending required for formation of an
endophilin endocytic carrier. In FEME, initially the BAR-domain
proteins FIP17 and CIP4 and the actin-remodeling small GTPase
CDC42 are recruited to phosphoinositide(3,4,5)phosphate
(PI3,4,5P3) enriched regions of the plasma membrane, leading
to recruitment of the phosphatase SHIP2. SHIP2 metabolizes
PI(3,4,5)P3 to phosphoinositide(3,4)phosphate (PI3,4P2).
Endophilin is recruited to and is concentrated at PI(3,4)P2
enriched plasma membrane regions, thus forming a primed
endophilin patch (Chan Wah Hak et al., 2018). These patches
are localized around receptors such as the β1-adrenergic GPCR,
and rapidly dissolve if receptor ligand binding does not occur.
Where ligand binding does occur, endophilin patches mature
into endocytic carriers, actin branching facilitates endosome
extrusion from the plasma membrane and dynamin is recruited
for scission of the mature endocytic carrier from the plasma
membrane, resulting in receptor internalization (Boucrot et al.,
2015; Chan Wah Hak et al., 2018).

CLIC/GEEC endocytosis is unique from CME and FEME
in that scission of the CLIC/GEEC endocytic carrier from the
plasma membrane occurs independent of dynamin (Sathe et al.,
2018). Rather, CLIC/GEEC relies heavily on membrane bending
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by BAR-domain containing proteins and actin branching to
facilitate endocytic carrier maturation and scission from the
plasma membrane. CLIC/GEEC is activated specifically at the
leading edge of a cell by mechanical stimulus (Thottacherry
et al., 2018), and has recently been confirmed as a bona-fide
receptor-mediated endocytic mechanism with the identification
of its first cargo-specific adaptor (Moreno-Layseca et al., 2021).
To date, CLIC/GEEC endocytosis has not been implicated in
GPCR endocytosis.

Macropinocytosis is the predominant mechanism of
fluid-phase uptake in the cell. Rather than internalizing a
cargo following receptor- ligand binding or involvement of
specific endocytic adaptors, macropinocytosis is characterized
by extensive plasma membrane ruffling, which internalizes
cargo by capturing it and the surrounding extracellular
fluid in the ruffled membrane (Kerr and Teasdale, 2009).
Macropinocytosis therefore represents a rather non-specific
uptake mechanism whereby a plasma membrane-localized
protein will be internalized by being captured in the membrane
ruffling event. Macropinocytosis can be constitutively active,
activated by growth factor receptors or activated by specific
cellular conditions such as amino acid starvation (Canton et al.,
2016; Charpentier et al., 2020). Unlike the other endocytic
mechanisms discussed here, macropinocytosis does not
typically rely on endocytic coat proteins such as clathrin, but
is rather regulated by a complex series of phosphoinositide
conversions that regulate actin remodeling and membrane
engulfment (Ferreira and Boucrot, 2018). Constitutively active
macropinocytosis is dynamin dependent, while growth factor
induced macropinocytosis is dynamin-independent (Cao et al.,
2007; Li et al., 2015). While macropinocytosis has not been
specifically implicated in GPCR or transporter endocytosis, it
is well-established to endocytose plasma membrane proteins as
“collateral” during membrane engulfment (Renard and Boucrot,
2021).

Endosomal Sorting
Following endocytosis of a receptor or transporter, endosomal
sorting occurs which controls the receptor/transporter fate
and modulates the receptor signaling outcome. Following
endocytosis, most endocytic cargoes are endocytosed to the
Rab5+ sorting endosome, where their endosomal fate is directed
(Naslavsky and Caplan, 2018). Four endosomal sorting fates
predominate: rapid recycling; constitutive recycling; conditional
recycling; and degradation. Rapid recycling to the plasma
membrane from Rab5+ endosomes is mediated by Rab4
or APPL1, and occurs in a timeframe from seconds to
minutes following endocytosis (Yudowski et al., 2009; Jean-
Alphonse et al., 2014). Constitutive recycling occurs via Rab11+

endosomes, which facilitates continued receptor uptake for
nutrient sourcing or sustained receptor signaling and occurs over
a timeframe of 5–30min following endocytosis (Ciechanover
et al., 1983; Redpath et al., 2019). Rab5+ sorting endosomes
mature into Rab7+ late endosomes, which subsequently fuse
with lysosomes, delivering cargoes for degradation (Rink et al.,
2005). A form of conditional recycling can occur from Rab7+ late
endosomes, which occurs via the retromer/retriever complexes

present on Rab7+ endosomes (Temkin et al., 2011; McNally et al.,
2017). Conditional recycling is modulated by additional stimuli
to the receptor ligand, allowing nuanced recycling or degradative
responses to regulate processes such as nutrient acquisition or
receptor signaling. Conditional recycling via retromer/retriever
sequesters cargoes from the late endosome, delivering them to the
trans-Golgi network and allowing the cargo to avoid lysosomal
degradation (Temkin et al., 2011; McNally et al., 2017).

G-Protein Coupled Receptor Endocytosis
GPCRs are the largest family of transmembrane proteins
in the human genome, and are responsible for transducing
ligand binding into cellular signaling for many hormones,
neurotransmitters and stimuli (Thomsen et al., 2018). GPCR
endocytosis occurs predominantly via CME, with a subset
endocytosed via FEME (Boucrot et al., 2015). Following
ligand binding, GPCRs activate a variety of intracellular
signaling pathways via heterotrimeric G-protein binding to the
cytoplasmic C-terminus of the receptor (Tsvetanova et al., 2015).
In the case of serotonin receptors, serotonin binding to 5-HT1A

inhibits adenylate cyclase and cyclic AMP production, neuronal
nitric oxide synthase, MEK activation and ERK phosphorylation
and T-type calcium channel activation, while activating Rho
GTPases, calmodulin, phospholipase C (PLC), phosphoinositide-
3-kinase, Src and Ras. Serotonin binding to 5-HT2A activates
PLC, PLD, protein kinase C (PKC), adenylate cyclase and cAMP
production, endoplasmic reticulum calcium release, calcium
channel activation and RhoGTPase activation (reviewed in
Masson et al., 2012 and pathway analysis provided in Sahu et al.,
2018).

Endocytosis typically serves to limit GPCR signaling. Ligand
binding induces phosphorylation of cytoplasmic C-terminal
serine or threonine residues by G-protein receptor kinases
(GRKs), and less commonly, protein kinase A (PKA) and
PKC (Carmona-Rosas et al., 2019; Sulon and Benovic, 2021).
GPCR C-terminal phosphorylation by GRKs or PKC allows
binding of the proteins β-arrestin1 or 2 (for non-visual GPCRs)
to the cytoplasmic C-terminal tail. β-arrestins act as GPCR
adaptor proteins, recruiting the clathrin-adaptor AP-2 to the
GPCR, leading to translocation of the ligand-bound GPCR
to clathrin coated pits or lattices to initiate the clathrin-
dependent, dynamin-dependent endocytosis (Laporte et al.,
2000; Tsvetanova et al., 2015; Beautrait et al., 2017). C-terminal
phosphorylation by GRK, PKC or PKC can also serve to
diversify the GPCR signaling response. For example, PKA
phosphorylation of the β2-adrenergic receptor lead to receptor
retention in the plasma membrane, where it activates L-type
calcium channels, while GRK-phosphorylated β2-adrenergic
receptor were endocytosed in the same cell and did not
contribute to calcium channel activation (Shen et al., 2018).
Both GRK and PKC phosphorylation of 5-HT1A and 5-
HT2A appears to be important for receptor signaling and
internalization, with PKC-mediated C-terminal phosphorylation
the best studied mechanism facilitating β-arrestin recruitment in
5-HT2A endocytosis, and the effects of both PKC and GRK on
5-HT1A surprisingly understudied, as detailed below.
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Clathrin-independent endocytic mechanisms may serve to
diversify the endocytic control of GPCRs. FEME represents a
potential β-arrestin independent GPCR uptake pathway, with
FEME endocytic carriers having been demonstrated to be devoid
of β-arrestins (Boucrot et al., 2015). The β1-adrenergic receptor
and dopamine receptor 4 are both internalized independently of
β-arrestins and β1-adrenergic receptor is an established FEME
cargo, while the dopamine receptor 4 is an interaction partner
of endophilin family proteins (Shiina et al., 2000; Boucrot et al.,
2015; Xu et al., 2019). Together, this indicates that for specific
GPCRs, uptake can be β-arrestin- and clathrin-independent, and
potentially mediated by FEME.

G-Protein Coupled Receptor Endosomal
Signaling
A subset of GPCRs can be classified as class-A and class-B
based on the affinity of their β-arrestin interaction (Nguyen
and Lefkowitz, 2021), and provide an example of how β-
arrestin affinity can modulate GPCR endosomal sorting and
signaling. Class-A GPCRs have lower affinity for β-arrestin
and are rapidly recycled to the plasma membrane following
their ligand-induced internalization. Rapid GPCR recycling
allows constant endocytosis and recycling, facilitating rapid,
iterative signaling responses to continued GPCR ligand binding
(Seachrist et al., 2000). The β2-adrenergic receptor undergoes
this kind of rapid GPCR recycling, which occurs via Rab4-
depedent pathways (Yudowski et al., 2009). Class-B GPCRs
have a higher β-arrestin affinity than class-A GPCRs. β-arrestin
binding to the GPCR C-terminus was previously thought to
terminate or limit GPCR signaling by sterically interfering with
G-protein binding. However, significant physiologically relevant
signaling occurs from endosome localized, β-arrestin-bound
GPCRs (Thomsen et al., 2016), conferring a spatiotemporal
aspect to GPCR signaling within the cell. Class-A GPCRs exhibit
lower levels of endosomal signaling, despite the lower β-arrestin
affinity theoretically allowing for more G-protein binding and
signaling pathway activation. Class-B GPCRs can exhibit more
robust endosomal signaling, with the bound β-arrestin forming
a conformation that facilitates sustained G-protein binding to
facilitate signaling from the endosome (Nguyen et al., 2019). The
relative affinity of a GPCR for β-arrestin is therefore an important
factor determining the GPCR endosomal sorting fate and extent
of endosomal signaling.

Endosomal signaling diversifies the GPCR signaling response,
conferring additional cellular outcomes beyond those encoded by
plasma membrane signaling. For example, initial ligand binding
to the parathyroid hormone (PTH) receptor induces transient
production of cyclic-AMP (cAMP) at the plasma membrane
via G-protein signaling, while also activating β-arrestin binding
and receptor internalization. Following internalization, cAMP
production is sustained from PTH receptor endosomes (White
et al., 2020). cAMP rapidly diffuses within the cell, meaning
cAMP produced prior to endocytosis is unlikely to function far
beyond the plasma membrane environment. Endosomal cAMP
production occurs in the perinuclear region, inducing protein
kinase A (PKA) translocation into the nucleus and eliciting a

transcriptional response to GPCR signaling (Peng et al., 2021).
In contrast, plasma membrane cAMP production induces PKA
phosphorylation of the endosomal protein APPL1, which is
present on early endosomes within close proximity to the plasma
membrane, and this phosphorylation facilitates rapid GPCR
recycling (Sposini et al., 2017).

SEROTONIN RECEPTOR AND
TRANSPORTER ENDOCYTOSIS

As GPCRs, 5-HT receptor endocytosis is central to mediating the
signaling response to serotonin. Serotonin induces endocytosis
of most 5-HT GPCRs (Ponimaskin et al., 2005; Janoshazi et al.,
2007; Bohn and Schmid, 2010; Renner et al., 2012; Kumar et al.,
2019), as well as endocytosis of its transporter, SERT (Jørgensen
et al., 2014) (Figure 2; Table 2). The current state of knowledge
of 5-HT1A, 5-HT2A and SERT endocytosis and the effects of
serotonin and pharmacological compounds on endocytosis is
summarized below. Notably there are cell type differences in 5-
HT receptor endocytosis and in the induction of endocytosis
and the subsequent signaling in response to pharmacological
agents and ligands. The final section highlights the missing
pieces in our understanding of 5-HT receptor and transporter
endosomal trafficking.

5-HT1A Endocytosis
5-HT1A endocytosis is induced by serotonin binding,
which induces β-arrestin1-mediated and clathrin-mediated
endocytosis. Dominant-negative β-arrestin1 or dynamin-1
expression (Della Rocca et al., 1999), or treatment with the
clathrin inhibitor PitStop2 (Mondal et al., 2019; Kumar and
Chattopadhyay, 2021), reduces 5-HT1A endocytosis by ∼50%
following serotonin addition in HEK293 cells. Further, in
the mouse neuronal Neuro-2A cell line, 5-HT1A endocytosis
occurred robustly in serum-free media and occurred over
minutes, indicating CME, and not rapid, serum-dependent
uptake via FEME (Casamento and Boucrot, 2020), is the
predominant mechanism of 5-HT1A endocytosis. Acute ethanol
exposure reduced the internalization of 5-HT1A in Neuro2A
cells by inducing the degradation of β-arrestin2, but not of
GRK2, indicating that 5-HT1A endocytosis may be independent
of GRK2 activity (Luessen et al., 2019). While both PKC and
GRF activity are required for signaling outcomes of 5-HT1A

in response to the 5-HT1A/5-HT7 agonist 8-OH-DPAT in
RN46A cells, with mutation of PKC phosphorylation sites and
over-expression of the C-terminus of GFR2 impeding agonist
induced calcium release andMAPK inhibition, however receptor
endocytosis was not explored in this study (Kushwaha and
Albert, 2005). Further, both studies did not use serotonin as a
receptor agonist. GRK and PKC are likely important for 5-HT1A

internalization and signaling, but their precise roles are yet to
be elucidated.

In both HEK293 (Kumar et al., 2019) and mouse Neuro-2A
neuronal cells, 5-HT1A co-localizes with Rab4 and Rab11 (or
the Rab11 pathway marker Rab coupling protein, RCP) (Fichter
et al., 2010). Rab4 co-localization is also robust in both cell
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FIGURE 2 | Serotonin system endocytic trafficking. (A) 5-HT1A endocytosis is induced by serotonin and is clathrin, dynamin and β-arrestin1 dependent for both

autoreceptors and heteroreceptors. Following endocytosis, 5-HT1A is recycled via Rab4 and Rab11-depednent pathways, (this has not been directly demonstrated for

(Continued)
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FIGURE 2 | 5-HT1A autoreceptors but is consistent with available data, grayed arrow). 5-HT1A autoreceptor endocytosis is induced by serotonin, the SSRI fluoxetine

and other pharmacological compounds and leads to rapid endocytic trafficking (double arrows), while 5-HT1A heteroreceptor endocytosis is slower and induced only

be serotonin. Endosomal signaling has not been directly demonstrated for 5-HT1A but appears to occur based on pharmacological studies (question mark). (B)

5-HT2A endocytosis is clathrin, dynamin and β-arrestin2 dependent in response to both serotonin and LSD binding. Serotonin and LSD induce differential

phosphorylation at the plasma membrane. Following serotonin induced endocytosis, 5-HT2A endosomal sorting leads to Rab4 and Rab11-dependent recycling. The

effect of LSD on 5-HT2A endosomal signaling and sorting is unknown (grayed arrow, question marks). (C) SERT endocytosis is presumable clathrin-dependent and

demonstrated to be dynamin-dependent. Following endocytosis, SERT can be sorted to the Rab7+ late endosome for lysosomal degradation or can potentially be

sorted for Rab11-dependent recycling via interaction with flotillin. The SSRI sertraline induces dynamin-independent endocytosis of SERT, following which the

endosomal sorting is unexplored (grayed arrow, question mark).

TABLE 2 | Serotonin receptor and transporter endosomal pathways and agonist effects.

Component Endocytic pathway Sorting pathways Serotonin effect Therapeutic agent

effect

References

5-HT1A CME, β-arrestin1,

dynamin

Rab4 and Rab11

recycling

Induces endocytosis

(neurons), no effect

(kidney)

Fluoxetine: induces

endocytosis.

8-OH-DPAT: induces

endocytosis

(Riad et al., 2004;

Bouaziz et al., 2014;

Mondal et al., 2019;

Kumar and

Chattopadhyay, 2021)

5-HT2A CME, β-arrestin2,

dynamin

Rab11 recycling, Rab4

recycling with CRF

Induces endocytosis DOI, LSD: low

endocytosis induction.

Lisuride, ergotamine:

potent endocytosis

induction

(Gray et al., 2001;

Nicole et al., 2002;

Magalhaes et al., 2010;

Baldys and Raymond,

2011; Karaki et al.,

2014)

SERT Likely CME, dynamin Degradation, potential

recycling

Induces endocytosis SSRIs: induce

endocytosis, potentially

clathrin independent.

(Kittler et al., 2010;

Jørgensen et al., 2014;

Rahbek-Clemmensen

et al., 2014; Quinlan

et al., 2020)

lines almost immediately following endocytosis, and peaks
within 10–15min following serotonin addition. Co-localization
of 5-HT1A with Rab11 (or RCP) however, peaks from 30 to
90min following serotonin addition. No colocalisation with
lysosomal compartment markers was observed in either cell line
(Fichter et al., 2010; Kumar et al., 2019) indicating that 5-HT1A

likely undergoes both fast Rab4-dependent recycling for rapid
desensitization/resensitization cycles, and Rab11-dependent
recycling for sustained redelivery to the plasma membrane.

5-HT1A endocytosis is differentially induced by ligands and
agonists between dorsal raphe nucleus neurons (serotonergic,
5-HT1A autoreceptors) and hippocampal neurons (non-
serotonergic, 5-HT1A heteroreceptors) (Figure 2A). In both
cell types, 5-HT1A undergoes a basal level of constitutive
endocytosis (Bouaziz et al., 2014). Addition of serotonin, the
closely related tryptophan derivative 5-carboxamidotryptamine,
and the agonist 8-OH-DPAT to serotonergic neurons induce
robust 5-HT1A endocytosis following 1- and 24-h treatments,
which is abolished with co-incubation of a 5-HT1A antagonist.
Hippocampal neurons do not respond to the agonist 8-OH-
DPAT, and 5-HT1A endocytosis is only induced by serotonin
and carboxamidotryptamine with 24 h of treatment. Further,
a subpopulation of hippocampal neurons show no response
to any treatments in regard to 5-HT1A endocytosis (Bouaziz
et al., 2014). The SSRI fluoxetine induces 5-HT1A endocytosis
in serotonergic neurons, but not hippocampal neurons, in the

absence of serotonin (Riad et al., 2004). Together, these studies
indicate that 5-HT1A autoreceptors (in serotonergic neurons)
and heteroreceptors (on non-serotonergic neurons) respond
differently to physiological and pharmacological agonists.

A recent study by Sniecikowska et al. (2020) has identified
new 5-HT1A-specific antidepressant compounds, highlighting
the importance of endosomal signaling through 5-HT receptors
in regards to developing novel antidepressants. “Compound
44” induced potent ERK activation, while inducing β-arrestin
recruitment to 5-HT1A and cAMP production at a level
comparable to serotonin. Intriguingly, compound 44 was an
effective antidepressant in mice, indicating that specific 5-HT1A

signaling profiles are beneficial for alleviating depression.
“Compound 56” potently induced β-arrestin recruitment
compared to serotonin or compound 44, and increased ERK
activation and cAMP production to a much greater extent than
compound 44. Compound 56 also acted as an antidepressant
in mice, but also led to serotonin syndrome (i.e., serotonin
overdose) (Sniecikowska et al., 2020). Similar to cAMP, ERK
can be activated at the plasma membrane or intracellular
compartments by either G-proteins or β-arrestins (Eishingdrelo,
2013). The potent β-arrestin recruitment and signaling outcomes
induced by compound 56 compared to compound 44 and
serotonin (Sniecikowska et al., 2020), highlights the likelihood
that endosomal signaling is an important component of the
5-HT1A receptor response.
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5-HT2A Endocytosis
5-HT2A receptor endocytosis is induced upon serotonin binding
(Bhattacharyya et al., 2002) which can be abolished by over-
expression of dominant-negative dynamin-1 in C6 glioblastoma
cells (Nicole et al., 2002). The receptor endocytosis is inhibited
by expression of dominant-negative dynamin-1 in HEK293 cells
(Bhatnagar et al., 2001). 5-HT2A co-localizes with clathrin in NIH
3T3 mouse fibroblast cell lines (Willins et al., 1998). Together
these data suggest that 5-HT2A endocytosis occurs via CME
(Table 2; Figure 2B).

5-HT2A appears to have cell-type variation in its requirement
of β-arrestins for endocytosis. 5-HT2A endocytosis is β-arrestin2
dependent in isolated mouse cortical neurons, mouse embryonic
fibroblasts (Schmid et al., 2008) and rat C6 glioblastoma cells
(Nicole et al., 2002). In HEK293 cells expressing rat 5-HT2A,
serotonin induces dynamin-dependent endocytosis of 5-HT2A

and β-arrestin1 and 2 translocation to the plasma membrane,
but expression of dominant negative β-arrestin1/2 does not
alter 5-HT2A endocytosis (Bhatnagar et al., 2001). Dominant-
negative β-arrestin1 also does not affect rat 5-HT2A receptor
desensitization in HEK293 cells, consistent with the lack of effect
on endocytosis, while it prevents 5-HT2A receptor desensitization
in C6 glioblastoma cells (Gray et al., 2001). GRKs do not
significantly contribute to rat 5-HT2A endocytosis in HEK293
or C6 cells, (Gray et al., 2001), yet expression of dominant
negative GRK2 inhibited human 5-HT2A endocytosis by 50%,
and dominant negative β-arrestin by 70% in mouse AB1 cells
(Bhattacharya et al., 2010). It is worth noting that in the Human
Protein Atlas, 5-HT2A is highly expressed in the brain, with
very low levels of expression throughout most other tissues in
the human body (Uhlén et al., 2015) while HEK293 cells do
not express any 5-HT2A whatsoever (Thul et al., 2017). Rat 5-
HT2A contains crucial sequence differences to human 5-HT2A

(Bhattacharya et al., 2010), and when expressed in HEK293
cells is in ways an artificial system that potentially lacks the
requisite accessory factors that may be required for arrestin
recruitment and endocytosis of the receptor. It is likely that in
a physiological context, β-arrestins and GRK2 phosphorylation
are a requirement for 5-HT2A endocytosis following serotonin
binding. Further study on human 5-HT2A is required to better
understand the role of GRFs in receptor internalization.

In addition to β-arrestins, PKC phosphorylation following
serotonin binding is required for rat 5-HT2A receptor
endocytosis (Raote et al., 2013). Crucially, a wide range of
5-HT2A receptor agonists induce differential phosphorylation of
both rat and human 5-HT2A and have differing requirements for
PKC activity and β-arrestin recruitment (Figure 2B). Serotonin,
dopamine, the hallucinogenic compound 2,5-Dimethoxy-4-
iodoamphetamine (DOI) and anti-psychotic clozapine all induce
rat 5-HT2AR endocytosis in HEK293 cells. Mutation of the
Ser291 PKC phosphorylation site abolishes serotonin and DOI
induced 5-HT2A receptor endocytosis, but not that of dopamine
and clozapine (Raote et al., 2013). LSD and DOI, but not the
chemically related, non-hallucinogenic compounds lisuride and
ergotamine, lead to PKC-dependent phosphorylation of human
5-HT2A at Ser280 (Karaki et al., 2014). LSD and DOI induce
a comparable signaling response to serotonin in both HEK293

cells and cortical neurons, while inducing minimal 5-HT2A

receptor internalization and β-arrestin2 interaction. In contrast,
lisuride and ergotamine induce robust 5-HT2A internalization
and β-arrestin2 interaction, while minimally activating 5-HT2A

receptor signaling. Interestingly, mutation of the Ser280 PKC
phosphorylation site abolishes 5-HT2A receptor signaling in
response to LSD and DOI treatment, but not serotonin treatment
(Karaki et al., 2014), highlighting the differential signaling
induced by serotonin and putatively therapeutic hallucinogenic
compounds. Finally, a recent study by Hayata-Takano et al.
(2021) identified that pituitary adenylate cyclase-activating
polypeptide (PACAP) regulated the PKC and β-arrestin-
dependent endocytosis of human 5-HT2A, but not 5-HT1A or
5-HT2C, in HEK293 cells. In cortical neurons isolated from
PACAP knockout mice, 5-HT2A expression on the cell surface
was increased, and these mice displayed a higher response to DOI
compared to wild-type mice. Importantly, Karaki et al. (2014)
and Hayata-Takano et al. (2021) reveal the importance of PKC
phosphorylation and receptor internalization in the signaling
response of 5-HT2A to serotonin and hallucinogenic compounds.

Serotonin and other agonists induce differential endosomal
sorting of 5-HT2A. Human 5-HT2A is sorted into Rab11+

recycling endosomes via EEA1+ early endosomes following
serotonin-induced internalization in HEK293 cells (Baldys
and Raymond, 2011), indicating 5-HT2A undergoes relatively
“slow” recycling and resensitization. Complete recycling of
all rat 5-HT2A internalized into HEK293 cells with serotonin
treatment takes∼2.5 h (Raote et al., 2013). DOI-induced 5-HT2A

endocytosis occurs in a comparable timeframe and magnitude
to serotonin-induced endocytosis, yet 5-HT2A recycling takes
significantly longer (∼7.5 h) with DOI treatment compared to
serotonin (Raote et al., 2013) and occurs through an undefined
pathway. DOI also induces near-identical levels of human 5-
HT2A- mediated ERK phosphorylation as serotonin in vivo and
in HEK293 cells (Schmid et al., 2008; Karaki et al., 2014). Despite
this similar induction of ERK phosphorylation in vivo, β-arrestin
KOmice stop head twitching in response to serotonin treatment,
while those treated with DOI do not. DOI induced 5-HT2A

endocytosis is also only partially reduced in β-arrestin KO MEFs
compared to serotonin (Schmid et al., 2008). Together, these
studies indicate that the intracellular residence time of 5-HT2A in
endosomes induces different cellular or physiological outcomes
in response to 5-HT2A agonists across species, implicating
endosomal signaling as an important effector of the 5-HT2A

receptor response.
Finally, the interaction between the corticotrophin-releasing

factor (CRF) receptor and 5-HT2A (Magalhaes et al., 2010)
further demonstrates that specific signaling outcomes of 5-HT
receptors are attractive targets for depression and anxiety
treatments. In mouse cortical neuron cultures and HEK293
cells, treatment with the stress induced peptide CRF enhances
serotonin-induced 5-HT2A signaling. CRF and serotonin co-
treatment resulted in higher inositol phosphate production
than with serotonin treatment alone. Over-expression of
dominant-negative Rab4, but not dominant negative Rab11,
abolished the combined CRF and serotonin increase in inositol
phosphate production (Magalhaes et al., 2010), indicating
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that rapid recycling of 5-HT2A is required for sustaining
5-HT2A signaling, at least in response to CRF in HEK293
cells. In vivo, administration of the 5-HT2A agonist DOI
or CRF each had no detrimental effects on mouse behavior
however, co-administration of both compounds induced anxiety
related behaviors. Together, the study by Magalhaes et al.
(2010) further highlights the importance of the differential
outcomes of 5-HT receptor signaling in depression and anxiety,
and how endosomal trafficking modulates this signaling. A
deeper understanding of 5-HT receptor endosomal signaling,
5-HT receptor endosomal trafficking, and inducing/limiting
such signaling and trafficking are clearly important in the
development of antidepressant and anxiolytic treatments
targeting 5-HT receptors.

Serotonin Transporter Endocytosis
The mechanism of SERT endocytosis is yet to be precisely
defined, although it is likely that it occurs via CME (Figure 2C;
Table 2). SERT endocytosis can be induced by serotonin
(Jørgensen et al., 2014), or occurs constitutively (Rahbek-
Clemmensen et al., 2014). In HEK293 cells and mouse
neuronal CAD cells, constitutive SERT endocytosis is inhibited
by expression of dominant-negative dynamin-1 (Rahbek-
Clemmensen et al., 2014). In HEK293 cells and rat platelets, PKC
phosphorylation of SERT induces endocytosis in the presence
of serotonin (Qian et al., 1997; Jayanthi et al., 2005), indicating
serotonin-induced SERT endocytosis is PKC-dependent. SERT
endocytosis is also induced by serotonin in serotonergic dorsal
raphe nucleus neurons and in HEK293 cells whereby serotonin-
induced SERT endocytosis subsequently reduces serotonin
uptake (Jørgensen et al., 2014). Endocytosis is clearly important
in regulating serotonin uptake into the cell. Both WT SERT
and a constitutively active SERT mutation (G56A) interact
with components of CME in mouse models, indicating SERT
endocytosis is clathrin-dependent in vivo (Quinlan et al.,
2020). WT SERT interacts with the CME facilitators AP180,
FCHO1, Eps15, and Reps2, as well as multiple dynamin-related
components, and these interactions are decreased in the brains of
mouse expressing the constitutively active SERT G56A mutation
(Quinlan et al., 2020). This study therefore suggests clathrin-
dependent endocytosis is required for endocytic downregulation
of SERT in vivo.

As with SERT endocytosis, the endosomal sorting of SERT
still requires precise definition (Figure 2C; Table 2). Constitutive
endocytosis primarily targets SERT to the lysosome in HEK293
and CAD cells, although significant co-localization with the
rapid recycling marker Rab4 is observed, and pharmacological
inhibition of recycling reduces SERT cell surface levels (Rahbek-
Clemmensen et al., 2014). SERT interacts with the Rab11 sorting
mediator flotillin-1 in HEK293 cells and mouse brains (Reisinger
et al., 2019; Quinlan et al., 2020), indicating that SERT may
be able to undergo Rab11-dependent recycling in vivo and in
cell models.

Induction of SERT endocytosis represents a primary mode
of action of SSRIs. All SSRIs induce SERT endocytosis in
serotonergic 1H11 cells (Kittler et al., 2010). Escitalopram
and sertraline also induce endocytosis in stem cell generated

serotonergic neurons (Matthäus et al., 2016). Mice treated
with paroxetine and sertraline, show reduced SERT binding
availability in the brain despite unaltered mRNA levels
(Benmansour et al., 1999). With sertraline treatment, this was
not due to the SERT binding site being occupied by the SSRI,
rather, it was due to downregulation of transporter-independent
transcription (Benmansour et al., 2002). Long term treatment of
CACO-2 cells with fluoxetine reduces plasma membrane SERT
levels without altering total protein levels (Iceta et al., 2007). All
SSRIs induce SERT endocytosis and do not appear to regulate
SERT transcription or translation, therefore it is highly plausible
that SSRIs reduce SERT membrane levels via endocytosis.

SSRI-induced SERT endocytosis could also suggest that
SERT uptake occurs via a non-CME mechanism. Sertraline
is an established and potent dynamin-1 inhibitor (Otomo
et al., 2008) which induces SERT endocytosis in serotonergic
neurons (Matthäus et al., 2016) and in 1C11 cells (Kittler
et al., 2010) despite it being reported that SERT endocytosis is
dynamin-1 dependent. CME has never been reported to occur
without dynamin, indicating that sertraline treatment may re-
route SERT endocytosis via an alternate clathrin-independent
endocytic pathway yet to be characterized (Figure 2C). A better
understanding the SERT endocytic pathways will therefore
enhance our understanding of how SSRIs act in vivo and
at a cellular level, allowing for the identification of specific
endosomal targets to modulate SERT levels at the plasma
membrane therapeutically.

ENDOCYTIC DYSREGULATION IN
DEPRESSION AND ANXIETY

Identification of directly causative genetic, transcriptomic, or
proteomic changes associated with depression and anxiety
has been difficult. Studies identifying biological changes in
depression and anxiety may rely on self-reported diagnoses
from large population databases, capturing broad depression and
anxiety phenotypes (Thorp et al., 2021). Others use the relatively
strict diagnosis of MDD, yet this still encapsulates multiple
heterogenous depressive phenotypes. Depression and anxiety
are also often comorbidities with other additional conditions
adding to the complexity (Ormel et al., 2019). Studies are
often performed on peripheral tissues due to the difficulty in
accessing brain tissue (Wittenberg et al., 2020; Thorp et al.,
2021), making it difficult to separate neurological and peripheral
changes associated with depression and anxiety. A smaller
number of studies are performed on post-mortem brain tissues
however, patient numbers are very limited (Kang et al., 2012).
Despite the heterogeneity in the way these association studies are
performed, and consistent with our theory that endocytosis is an
important biological factor in depression and anxiety, multiple
single nucleotide polymorphisms (SNPs), transcriptional and
proteomic changes relating to proteins have been associated
with depression and anxiety. The following table documents the
changes in proteins related to endocytosis that are also associated
with depression and anxiety and details their roles in endocytosis
and endosomal sorting (Table 3).
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TABLE 3 | Gene, transcript and protein changes associated with depression and anxiety.

Protein Change Endocytic

involvement

Tissue Diagnosis References

PKC Decreased protein

expression

5-HT2A and SERT

phosphorylation for

endocytosis

Brain Depression Pandey et al. (2021)

β-arrestin1 and 2 Decreased protein

expression

Adaptor for 5-HT1A
(β-arrestin1) and

5-HT2A (β-arrestin2)

CME

Leukocytes Depression, MDD Avissar et al. (2004),

Golan et al. (2013)

PACSIN3 SNP, functional change

unknown

Membrane bending,

dynamin recruitment

Blood (UK Biobank) Depression, anxiety Thorp et al. (2021)

DENND1A SNP, functional change

unknown

Connecting Rab35

endocytic

compartments with

CME

Genome-wide study MDD Wray et al. (2018)

DENND1B Transcript

downregulated

Required for endosome

trafficking from cell

periphery

Brain, blood Depression Dall’Aglio et al. (2021)

Flotillin-1 Protein upregulated Rab11 endosomal

recycling, interacts with

SERT

Brain, periphery MDD Zhong et al. (2019)

EHD1 Overexpressed Sorting between Rab5

and Rab11 endosomes

for recycling

Brain Depression Yoshino et al. (2021)

RabGAP1L SNP, functional change

unknown

Inactivates Rab22, a

negative regulator of

endosomal recycling

Blood (UK Biobank) Depression, anxiety Thorp et al. (2021)

Rab4B Protein expression

decreased

Rapid recycling from

sorting endosomes

Brain Depression Kang et al. (2012)

PICALM Transcript

overexpressed

Clathrin coat assembly Peripheral blood

mononuclear cells

(PBMC)

Depression Wittenberg et al. (2020)

Rac1 Transcript

overexpressed

Actin remodeling for

clathrin-independent

endocytosis

PBMC MDD Wittenberg et al. (2020)

PACSIN2 Transcript

overexpressed

Membrane bending,

dynamin recruitment,

potential involvement in

FEME

PBMC MDD Wittenberg et al. (2020)

Rab5 Transcript

overexpressed

Endosomal sorting

regulator

PBMC MDD Wittenberg et al. (2020)

Rab7 Transcript

overexpressed

Late endosomal

regulator

PBMC MDD Wittenberg et al. (2020)

SNX27 Transcript

overexpressed

Retromer complex

component for

recycling from Rab7

endosomes

PBMC MDD Wittenberg et al. (2020)

Clathrin Endocytic Regulators and
Adaptors
PKC

PKC protein expression is decreased in post-mortem brain
samples of patients with depression (Pandey et al., 2021). PKC
is activated by signaling through 5-HT2A (Masson et al., 2012),
and PKC phosphorylation of 5-HT2A and SERT cytoplasmic C-
termini are required for their internalization (Jayanthi et al., 2005;
Raote et al., 2013). In patients with reduced PKC levels, 5-HT2A

and SERT endocytosis is likely to be reduced.

β-Arrestin

Reductions in β-arrestin1 levels correlate with depression
severity in leukocytes of major depressive disorder patients,
and antidepressant treatment increases β-arrestin1 levels
in rat brains (Avissar et al., 2004). Further, antidepressant
treatment rescues the reduction in both β-arrestin1 and 2
observed in leukocytes of major depressive disorder patients
(Golan et al., 2013). Reduced β-arrestin levels in patients with
depression would likely reduce both 5-HT1A and 5-HT2A

endocytosis given their established interaction with β-arrestins
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(Della Rocca et al., 1999; Schmid et al., 2008), while β-arrestin
rescue by antidepressant treatment would potentially restore
5-HT1A and 5-HT2A endocytosis rates.

PACSIN3

PACSIN3 SNPs are associated with depression and anxiety
(Thorp et al., 2021). PACSIN3 is the least characterized member
of the PACSIN/syndapin protein family of BAR-domain, SH3-
domain containing proteins (Modregger et al., 2000). Each
PACSIN family member interacts with dynamin, the actin
remodeling protein N-WASP, and the phosphatase involved in
clathrin coated pit assembly, synaptojanin-1. PACSIN3 over-
expression inhibits the uptake of the clathrin-dependent cargo,
transferrin (Modregger et al., 2000). The interaction of PACSIN3
with synaptojanin and dynamin indicates it may play a role
in recruiting uncoating and scission machinery to the clathrin-
coated pit, and the inhibitory effect of PACSIN3 over-expression
may be due to the propensity for PACSIN proteins to self-
oligomerize (Modregger et al., 2000), potentially sterically
hindering dynamin and synaptojanin recruitment. It is unknown
what the effect of PACSIN3 depletion on endocytosis is, but
it seems plausible that a mutation reducing PACSIN3 function
would have reductive effects on CME by reducing dynamin and
synaptojanin recruitment.

PICALM

PICALM (or CALM) transcripts have been identified as
upregulated in a meta-analysis by Wittenberg et al. (2020)
consisting of 8 studies on peripheral blood mononuclear cells
(PBMC) from patients diagnosed with MDD. PICALM interacts
with clathrin heavy chain, the clathrin adaptor AP2 and facilitates
the assembly of clathrin lattices, facilitating the progression
of endosome formation (Tebar et al., 1999; Meyerholz et al.,
2005). PICALM over-expression has a dominant negative effect
on CME, preventing transferrin and epidermal growth factor
receptor endocytosis (Tebar et al., 1999), while PICALM
depletion also inhibits CME (Meyerholz et al., 2005), highlighting
its critical role in the CME process.

DENND1

DENND1A SNPs are associated with depression (Wray et al.,
2018), and the DENND1B transcript is downregulated in
patients with depression (Dall’Aglio et al., 2021). DENND1A
and B (or connecdenn1 and 2) are DENN domain containing
proteins. The DENN domains of DENND1A and B act as
guanine exchange factors for Rab35, activating Rab35 by
facilitating GTP loading in the GTPase domain. DENND1A
and B also interact with clathrin heavy and light chains,
as well as the clathrin adaptor AP2 (Marat and McPherson,
2010). Rab35 recruits the 5’ phosphatase ORCL to clathrin-
coated pits, facilitating the PI(4,5)P2 catabolism required for
scission of the clathrin-coated pit from the plasma membrane.
DENND1A knockdown or dominant negative Rab35 over-
expression result in endocytic cargoes being trapped in the cell
periphery, consistent with incomplete clathrin-coated pit scission
from the plasma membrane (Cauvin et al., 2016). DENND1B

knockdown causes enlargement of early endosomes and aberrant
intracellular trafficking of the clathrin-dependent endocytic
cargo transferrin (Marat and McPherson, 2010), and DENND1B
knockout and Rab35 knockdown reduces internalization of
the T-cell receptor subunit CD3ε in T cells (Yang et al.,
2016). DENND1A/B are therefore likely required for Rab35
activation for clathrin-coated pit scission from the plasma
membrane and subsequent cargo vesicle incorporation into
early endosomes.

Endosomal Sorting Regulators
Rac1 and PACSIN2

Rac1 and PACSIN2 transcripts are upregulated in PBMCs
from MDD patients (Wittenberg et al., 2020). Rac1-GTPase is
involved in actin remodeling required for clathrin-independent
endocytosis and Rac1 activation is required for FEME (Boucrot
et al., 2015), dynamin-dependent, clathrin-independent
endocytosis of the interlukin-2 receptor (Grassart et al., 2008),
fluid-phase uptake by macropinocytosis (Fujii et al., 2013),
and dynamin-independent, clathrin-independent endocytosis
of the nicotinic acetylcholine receptor (Kumari et al., 2008).
PACSIN2 is another member of the PACSIN/syndapin protein
family of BAR-domain, SH3-domain containing proteins.
Similar to PACSIN3, PACSIN2 is capable of interacting with
N-WASP, synaptojanin-1 and dynamin, and PACSIN2 over-
expression inhibits CME (Modregger et al., 2000). PACSIN2 is
the PACSIN family member most enriched on FEME endocytic
carries (Chan Wah Hak et al., 2018), implicating it in clathrin-
independent endocytosis. PACSIN2 over-expression induces
membrane tubulation at the plasma membrane of the cell
that are positive for the clathrin-independent endocytic cargo
cholera toxin, but not the CME cargo transferrin. PACSIN
interacts with Rac1, inducing GTP hydrolysis and inactivation
(de Kreuk et al., 2011). The Rac1 activation/deactivation
cycle is required for proper progression of Rac1-dependent
endocytic mechanisms (Fujii et al., 2013), suggesting that over-
expression of both Rac1 and PACSIN2 could facilitate increased
uptake by Rac1-dependent endocytic pathways such as FEME
and macropinocytosis.

RabGAP1L

SNPs in RABGAP1L are associated with depression (Thorp et al.,
2021). RabGAP1L is a GTPase activating protein responsible for
hydrolyzing GTP to GDP in Rab22, inactivating it. RabGAP1L
is recruited to PI(3)P-enriched early endosomes by the protein
Ankyrin-B (Qu et al., 2016). PI(3)P-enriched early endosomes
represent Rab5+ sorting endosomes that are responsible for
cargo sorting for recycling and degradative fates (Redpath
et al., 2020). Rab22 is present on a subset of these sorting
endosomes, facilitating the recycling of both clathrin-dependent
and independent endocytic cargoes (Weigert et al., 2004;
Holloway et al., 2013). When RabGAP1L recruitment to Rab22+

sorting endosomes is disrupted by dominant negative Ankyrin-B
expression, Rab22 accumulates on sorting endosomes and cargo
recycling is disrupted (Qu et al., 2016), indicating RabGAP1L is
required for cargo progression through sorting endosomes for
subsequent recycling.
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FLOT1

Flotillin-1 (or reggie-2) is upregulated in the brain and peripheral
tissues of depression sufferers (Zhong et al., 2019). Flotillin-
1 directly interacts with SERT (Reisinger et al., 2019), and
the over-active SERT variant G56A has decreased interaction
with flotillin-1 in vivo (Quinlan et al., 2020). Flotillin1 acts as
an obligatory heterodimer with flotillin-2 (or reggie-1) (Solis
et al., 2007). Together, flotilin1/2 mediate receptor and cargo
sorting into the Rab11+ endocytic recycling network, regulating
cargo entry into Rab5+ endosomes, facilitating delivery into
Rab11+ endosomes for cargo recycling (Solis et al., 2013; Redpath
et al., 2019). Consistent with flotillin-1 being a regulator of
SERT intracellular trafficking, the dopamine transporter, which
is closely related to SERT, is incorporated into flotillin-1-positive
vesicles following PKC-induced endocytosis (Cremona et al.,
2011). Flotillin-1 overexpression in patients with depression
would be likely to facilitate SERT recycling, increasing plasma
membrane levels and facilitate continued serotonin uptake into
the cell.

EHD1

EHD1 is overexpressed in the prefrontal cortex of depression
sufferers (Yoshino et al., 2021). EHD1 is a membrane of the
FERARI sorting complex, which forms tubules from Rab5+

sorting endosomes to facilitate cargo transfer to Rab11+
recycling endosomes (Solinger et al., 2020). Further, EHD1
interacts with Rab11 sorting regulators flotillin1/2 (Solis et al.,
2013), and is required for cargo transit throughout the entire
Rab11+ recycling endosomal compartment (Lee et al., 2015).
EHD1 over-expression in the brains of depression patients
would be highly likely to facilitate increased receptor or
transporter recycling.

Rab4B

Rab4B protein expression is decreased in the brains of depression
sufferers (Kang et al., 2012). Rab4B interacts with the clathrin
adaptor AP-1 and localizes to Rab5+ sorting endosomes, and
over-expression enhances rapid transferrin recycling (Perrin
et al., 2014). As Rab4A regulates the rapid recycling of the β2
adrenergic receptor, another GPCR internalized in a β-arrestin
dependent manner (Yudowski et al., 2009), and Rab4B appears to
be similar involved in rapid recycling of the transferrin receptor
(Perrin et al., 2014), the Rab4 family may facilitate rapid GPCR
recycling for continued receptor stimulation and recycling over
sustained endosomal signaling.

Rab5, Rab7, and SNX27

Rab5, Rab7, and SNX27 transcripts are upregulated in PBMCs
from MDD patients (Wittenberg et al., 2020). Rab5 is the
predominant regulator of endosomal sorting. Rab5+ sorting
endosomes mature to Rab7+ late endosomes, with cargoes that
are not sorted for Rab4/Rab11-dependent recycling retained
throughout this sorting to late endosomal transition (Rink et al.,
2005; Redpath et al., 2020). Rab7+ late endosomes can then fuse
with lysosomes, leading to cargo degradation. However, cargoes
present in Rab7+ endosomes can be spared from degradation by
recycling via the retromer/retriever recycling pathways, which

bind cargoes in specific cellular circumstances, removing them
from the Rab7+ late endosome and delivering them to the trans-
Golgi network for recycling (Seaman, 2012; McNally et al., 2017).

SNX27 is a member of the sorting nexin family of cargo
sorting regulators and plays an integral role in cargo sorting
for the retromer complex (Temkin et al., 2011; McNally et al.,
2017). SNX27 interacts with a wide range of proteins, including
PDZ domains containing proteins such as GPCRs, targeting
them for plasma membrane recycling (Lauffer et al., 2010;
Temkin et al., 2011). 5-HT2A contains a PDZ domain (Xia et al.,
2003), and SERT interacts with PDZ-domain containing proteins
(Chanrion et al., 2007), indicating both proteins may be able
to be recovered from late endosomes by the retromer complex.
Together, upregulation of Rab5 and Rab7 is likely to increase the
trafficking flux though the sorting to late endosomal pathway,
with SNX27 upregulation balancing this flux by increasing
retromer-based recycling from Rab7+ late endosomes.

HYPOTHESIS: IMPAIRED CME AND
ENHANCED ENDOSOMAL RECYCLING
OCCURS IN DEPRESSION AND ANXIETY

The genetic, transcriptomic and proteomic changes associated
with depression and anxiety detailed above (Table 3) all coalesce
in an endosomal network where CME and Rab4-dependant rapid
recycling are reduced, while clathrin-independent endocytosis,
Rab11-dependant and retromer-dependent recycling are
increased. We hypothesize that these changes contribute to
the pathogenesis of depression and anxiety by disrupting
the normal endocytic trafficking of serotonin receptors and
transporter. While patients suffering from depression and
anxiety will not possess every SNP, transcript or protein change,
we speculate that any of these changes could result in decreased
endocytosis of 5-HT1A and 5-HT2A, disrupting their typical
plasmamembrane and endosomal signaling profiles (Figure 3A),
or enhance clathrin-independent endocytosis and recycling of
SERT or decrease SERT CME, increasing its levels at the plasma
membrane (Figure 3B), which would deplete extracellular
serotonin levels to further reducing serotonin signaling. Of note,
for the following we assume that SNPs identified in the studies
in Table 3 are deleterious for protein function, however this is
yet to be experimentally determined and is a fascinating area of
future research.

In our hypothetical model, PACSIN3 mutation,
PACSIN2 overexpression, DENND1A mutation, DENND1B
downregulation, and PICALM overexpression are likely to
impair endocytic uptake by CME. This CME impairment
could conceivably reduce the endocytosis of 5-HT1A, 5-HT2A

and SERT. Reduced β-arrestin levels would further impair
5-HT1A, 5-HT2A endocytosis, while PKC downregulation
would lead to reduced 5-HT2A and SERT phosphorylation,
reducing their endocytosis. Reduced 5-HT1A endocytosis could
lead to increased plasma membrane signaling, with reduced
endosomal signaling, altering the cellular response to serotonin
and other potential therapeutic agents. Reduced 5-HT2A

endocytosis could similarly impair 5-HT2A endosomal signaling,
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FIGURE 3 | Hypothetical model of the effect of SNPs, transcript and protein expression changes on serotonin receptor and transporter endocytic trafficking. (A)

Reduced PKC phosphorylation will reduce 5-HT2A plasma membrane signaling and β-arrestin recruitment. Reduced β-arrestin1 and 2 levels will reduce CME of both

5-HT1A and 5-HT2A. Further, increased PICALM expression inhibits clathrin-coated pit formation, and PACSIN3 mutations may impair dynamin recruitment, further

reducing CME. DENND1A/B mutations could impair coupling of CME to Rab5+ sorting endosomes, reducing uptake, downstream receptor sorting and potential

endosomal signaling. Finally, reduced Rab4B expression will prevent rapid recycling of 5-HT1A and 5-HT2A, reducing the potential for rapid resensitization following

serotonin-induced endocytosis. (B) Increased PICALM expression, PACSIN3 and DENND1A/B mutations are likely to impair CME of SERT. However, PACSIN2 and

Rac1 over-expression could induce CIE of SERT by enhancing actin branching, leading to increased clathrin-independent carrier formation. Following CIE, increased

Rab5 and Rab7, expression could increase early to late endosomal trafficking of SERT, following which increased SNX27 expression would salvage SERT from

degradation and boost recycling. Alternately, increased EHD1 and flotillin expression would increase sorting of SERT from Rab5+ sorting endosomes to Rab11+

recycling endosomes, further enhancing SERT recycling.

while reduced PKC phosphorylation could lead to altered
receptor phosphorylation patterns and diminished or aberrant
responses to serotonin and hallucinogenic therapeutics. Rab4b
downregulation would be likely to reduced rapid recycling of 5-
HT1A and 5-HT2A, which would impair receptor resensitization
following endocytosis, further altering 5-HT receptor signaling
outcomes. Reduced SERT CME would likely lead to increased

plasma membrane SERT levels, leading to continued serotonin
uptake from the extracellular space, reducing the availability
of serotonin for signaling. Impaired CME is likely to reduce
serotonin signaling through multiple mechanisms.

Clearly, there is a possibility that SERT undergoes clathrin-
independent endocytosis upon treatment with the SSRI
sertraline (Lau et al., 2008; Takahashi et al., 2010). In our
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hypothetical model, elevated PACSIN2 and Rac1 levels
could increase SERT endocytosis by upregulating clathrin-
independent endocytosis. Once endocytosed, upregulated
flotillin-1 and EHD1 would increase SERT sorting for Rab11-
dependent recycling. RabGAP1L mutations may conversely
cause SERT accumulation in sorting endosomes, preventing
delivery to recycling endosomes. Upregulated Rab5, Rab7, and
SNX27 would salvage SERT from late endosomes, preventing
degradation. Together, these mechanisms could act to redeliver
endocytosed SERT to the plasma membrane, thus reducing the
efficacy of SSRIs by ensuring plasma membrane levels of the
transporter remain high.

CONCLUSIONS

Endocytosis is clearly central to the regulation of serotonin
signaling, SERT, the therapeutic response to hallucinogens,
SSRI function and the function of novel antidepressant
compounds. Here we present a hypothetical model of how SNPs,
transcriptional and protein expression changes in patients with
depression and anxiety could alter the endocytosis of serotonin
receptors and SERT. This nascent area of neurobiological
research highlights the potential impact of endocytosis in these
disorders. Despite their apparent importance in mediating
therapeutic effects, it is still unclear whether CME is required for
SERT uptake, and 5-HT receptor and SERT-specific endocytic
adaptors remain unidentified. Perhaps most startling is the
lack of exploration of the effects of endosomal sorting on

5-HT-mediated serotonin signaling, despite clear evidence
supporting endosomal signaling mechanisms for how each exert
their cellular effects. It is abundantly clear that building a
detailed understanding of the endocytic pathways of 5-HT
receptors and SERT can enhance our understanding of the
biological bases of depression and anxiety. A comprehensive
understanding of antidepressants and hallucinogenic functions
is critical in facilitating the development of the next generation
of more effective antidepressants and anxiolytics and a deeper
understanding of the genesis of these disorders.
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