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Abstract
The mechanistic target of rapamycin (MTOR) is a giant protein kinase that,
together with the accessory proteins Raptor and mLst8, forms a complex of
over 1 MDa known as MTOR complex 1 (MTORC1). MTORC1, through its
protein kinase activity, controls the accretion of cell mass through the regulation
of gene transcription, mRNA translation, and protein turnover. MTORC1 is
activated in an interdependent manner by insulin/growth factors and nutrients,
especially amino acids, and is inhibited by stressors such as hypoxia and by
the drug rapamycin. The action of insulin/growth factors converges on the small
GTPase Rheb, which binds directly to the MTOR polypeptide in MTORC1 and,
in its GTP-bound state, initiates kinase activation. Biochemical studies
established that MTORC1 exists as a dimer of the MTOR/Raptor/mLst8 trimer,
and progressive refinements in cryo-electron microscopy (cryo-EM) have
enabled an increasingly clear picture of the architecture of MTORC1,
culminating in a deep understanding of how MTORC1 interacts with and
phosphorylates its best-known substrates—the eIF-4E binding protein/4E-BP,
the p70 S6 kinase/S6K1B, and PRAS40/AKT1S1—and how this is inhibited by
rapamycin. Most recently, Rheb-GTP has been shown to bind to MTORC1 in a
cooperative manner at an allosteric site remote from the kinase domain that
twists the latter into a catalytically competent configuration. Herein, we review
the recent cryo-EM and associated biochemical studies of MTORC1 and seek
to integrate these new results with the known physiology of MTORC1 regulation
and signaling.

Keywords
MTOR, Raptor, mLst8, PRAS40, AKT1S1, Rheb, p70 S6 kinase, S6K1B,
EIF4EBP1, 4E-BP

1,2 1,3

1

2

3

     Referee Status:

  Invited Referees

 version 1
published
03 Jan 2019

   1 2 3

, University of Geneva,Robbie Loewith

Switzerland
1

, University ofDavid A. Guertin

Massachusetts Medical School, USA
2

, University of Basel,Michael Hall

Switzerland
3

 03 Jan 2019,  (F1000 Faculty Rev):14 (First published: 8
)https://doi.org/10.12688/f1000research.16109.1

 03 Jan 2019,  (F1000 Faculty Rev):14 (Latest published: 8
)https://doi.org/10.12688/f1000research.16109.1

v1

Page 1 of 10

F1000Research 2019, 8(F1000 Faculty Rev):14 Last updated: 04 JAN 2019

http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/8-14/v1
https://f1000research.com/articles/8-14/v1
https://orcid.org/0000-0002-4849-4148
https://orcid.org/0000-0003-4940-3495
https://f1000research.com/articles/8-14/v1
https://doi.org/10.12688/f1000research.16109.1
https://doi.org/10.12688/f1000research.16109.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.16109.1&domain=pdf&date_stamp=2019-01-03


 

 Luke H. Chao ( ), Joseph Avruch ( )Corresponding authors: chao@molbio.mgh.harvard.edu avruch@molbio.mgh.harvard.edu
  : Writing – Original Draft Preparation;  : Writing – Original Draft PreparationAuthor roles: Chao LH Avruch J

 No competing interests were disclosed.Competing interests:
 The authors acknowledge support from National Institute of Health - DK017776 (Joseph Avruch), the Charles H. HoodGrant information:

Foundation (Luke Chao), and institutional sources. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Chao LH and Avruch J. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution Licence
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Chao LH and Avruch J. How to cite this article: Cryo-EM insight into the structure of MTOR complex 1 and its interactions with Rheb and
   2019,  (F1000 Faculty Rev):14 ( )substrates [version 1; referees: 3 approved] F1000Research 8 https://doi.org/10.12688/f1000research.16109.1

 03 Jan 2019,  (F1000 Faculty Rev):14 ( ) First published: 8 https://doi.org/10.12688/f1000research.16109.1

Page 2 of 10

F1000Research 2019, 8(F1000 Faculty Rev):14 Last updated: 04 JAN 2019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.16109.1
https://doi.org/10.12688/f1000research.16109.1


Introduction
The giant protein kinase mechanistic target of rapamycin  
(MTOR) operates in two physically distinct and independently  
regulated multi-protein complexes called MTOR complex 1 
(MTORC1) and MTOR complex 2 (MTORC2)1. MTORC1,  
composed of the MTOR protein kinase and the non-catalytic 
polypeptides Raptor and mLst82,3, is a central regulator of cell 
function through its broad control of anabolic and catabolic  
processes4,5. TORC1 controls polypeptide abundance through the 
regulation of gene transcription by all three RNA polymerases6, 
cap-dependent mRNA translation7, and protein degrada-
tion via autophagy and the proteasome8. Advances in structure  
determination—in particular, cryo-electron microscopy (cryo-
EM)—have enabled considerable progress in understanding 
the structure of both MTORC19–14 and MTORC215–18. Here, we  
review the current understanding of MTORC1 structure and its 
implications for the regulation and signaling by this important  
protein kinase.

MTORC1 composition and architecture
MTOR is a member of the phosphatidylinositol 3-kinase  
(PI3K)-related kinases (PIKKs), along with ATM, ATR, DNA-
PK, SMG1, and TRRAP (a pseudokinase), which share a  
catalytic domain that more closely resembles that of the phos-
phatidylinositol 3′ (lipid) kinases than that of the typical  
eukaryotic protein kinases19,20. The amino-terminal 1,345  
residues of the approximately 289 kDa MTOR polypeptide  
contain 32 HEAT repeats, each a 30- to 40-residue segment con-
sisting of two antiparallel alpha-helices connected by a flexible 
linker21,22. The HEAT domains can be further subdivided into the 
N- and M-HEAT domains12. This is succeeded by the roughly 
500-residue FAT (FRAP/ATM/TRRAP) domain, followed by the  
MTOR catalytic domain (Figure 1A).

The MTOR catalytic domain has a canonical two-lobed  
structure with key insertions in both the amino-terminal and 
the carboxy-terminal lobes. In the amino-terminal lobe, a long  
alpha-helix packs against the amino-terminal lobe, as seen in  
other PI3K family members. Following this helix is the FRB inser-
tion, the site for FKBP12:rapamycin binding. In the carboxy- 
terminal lobe, a conserved, roughly 35-residue segment, FATC,  
seen only in the PIKKs that contain a FAT domain, stabilizes the 
activation loop and is completely integrated into the carboxy- 
terminal domain. Another segment in the carboxy-terminal lobe, 
referred to as LBE, forms a site for mLst8 binding. An inser-
tion in the carboxy-terminal lobe plugs a pocket beneath helix  
alpha D (in the PKA nomenclature), a surface often used for  
substrate binding, leaving little room immediately proximal to 
the phosphorylation site for the form of sequence recognition  
interactions seen in protein kinases like PKA. The FRB domain 
extends over the catalytic cleft from the amino-terminal lobe, as 
do the FATC and LBE from the carboxy-terminal lobe, thereby 
creating a deeply recessed catalytic cleft. Modeling the FKBP12:
rapamycin complex onto the FRB segment indicates that the lat-
ter severely limits access to the catalytic cleft. Moreover, the side 
of the FRB facing the catalytic cleft serves as a secondary sub-
strate-binding site10,14; thus, inhibition by the FKBP12:rapamycin 
complex is not allosteric, as was long thought, but occurs by inter-
ference with substrate recruitment10,11,14. The 40 kDa mLst8/Gβl 

polypeptide is composed entirely of seven WD40 repeats in 
a beta propeller; despite its status as a core component of  
MTORC1, its function in the complex is unknown inasmuch as  
its deletion does not alter MTORC1 signaling23.

Crystal structures and cryo-EM reconstructions show that the 
FAT domain is a large open solenoid that envelops, through  
extensive interactions, the “back side” of the kinase domain 
(that is, the surface opposite that containing the catalytic  
cleft)12–14. MTORC1 operates as a dimer of the MTOR, mLst8, 
and Raptor heterotrimer9, mediated by an antiparallel arrange-
ment of the MTOR HEAT domains, which extend from the 
FAT alpha solenoid11–14 (Figure 1B and 1C). The N-HEAT (also  
referred to as the “spiral” or “horn”) of one MTOR interacts with 
the M-HEAT (“bridge”) of the other MTOR polypeptide. This 
composite N-HEAT/M-HEAT surface provides a platform for  
Raptor. Raptor is a roughly 150 kDa polypeptide2,3 that contains 
an N-terminal, catalytically inactive24 caspase-like domain, fol-
lowed by HEAT repeats forming an open solenoid and seven WD40  
repeats forming a closed solenoid known as a beta-propeller. 
Through the N-HEAT/M-HEAT interface, each Raptor engages 
both MTOR molecules; Raptor binding stabilizes but is not 
required to maintain the dimer. Raptor serves as the indispensa-
ble binding subunit for the canonical TORC1 substrates p70 S6  
kinase/S6KB1 and EIF-4E binding protein/4E-BP3; the dimer 
interface orients Raptor such that the N-terminal caspase-like  
domain, which mediates Raptor’s substrate-binding function, is 
positioned opposite to a kinase catalytic cleft11–14. The symmet-
ric N-HEAT/M-HEAT interface also cooperatively couples the 
two Rheb sites, whereby binding to one site is expected to pre- 
configure the second site for higher-affinity binding14.

MTORC1 regulation
MTORC1 serves as a positive regulator of cell mass and prolif-
erative capability in all eukaryotic cells, and much effort has 
been directed toward elucidating the regulation of TORC1 activ-
ity. In single-cell eukaryotes, TORC1 is activated primarily by  
nutrients, which are both the substrate and the stimulus for 
cell growth and proliferation. In metazoans, MTORC1 is acti-
vated by growth factors and cytokines and in an interdependent  
manner by nutrients, especially amino acids (AAs)4. The model 
generally proposed for TORC1 activation in mammalian sys-
tems envisions two parallel pathways that converge at the lyso-
some. Growth factors and cytokines promote the activation of  
MTORC1 by inhibiting the tuberous sclerosis complex, a  
complex of TSC1, TSC2, and TBC1D17 that is the GTPase  
activator protein (GAP) for the ras-like small GTPase Rheb25. 
Rheb binds directly to the MTOR polypeptide and, in its GTP-
bound form, is required for TORC1 (but not TORC2) activation26. 
The kinases controlled by PI3K (Akt) and Ras-GTP (MAPK1, 
Rsk) phosphorylate TSC2 and the Iκb kinases phosphorylate 
TSC1 so as to impair, by various mechanisms, TSC GAP func-
tion and thereby promote Rheb GTP charging25. AAs act through 
an independent pathway that converges on the Rag GTPase  
heterodimer27,28, which in its activated state binds to the Raptor 
subunit of TORC1 and conveys TORC1 to the cytoplasmic  
surface of the lysosome28,29; there, MTOR is activated by interac-
tion with Rheb-GTP. Withdrawal of AAs, especially leucine and 
arginine, markedly inhibits MTORC1 signaling despite maximal 
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Figure 1. TOR complex 1: MTOR and Raptor domain structure and overall architecture with and without Rheb. (A) Domain architecture 
of mechanistic target of rapamycin 1 (MTOR1). At the amino-terminus of MTOR, a set of HEAT repeats organize into the N- and M-HEAT 
domains. Following the HEAT region is the FAT (FRAP/ATM/TRRAP) domain, which precedes the catalytic kinase domain. The kinase domain 
includes the FRB insertion (site of FKBP12:rapamycin binding) in the amino-terminal lobe and the FATC segment integrated into the carboxy-
terminal lobe. Raptor contains an amino-terminal, catalytically inactive Caspase-like domain and a set of HEAT repeats followed by a beta-
propeller formed by WD40 repeats. (B) The MTOR complex 1 (MTORC1) holoenzyme arrangement. The dimeric MTORC1 assembles through 
interactions between one M-HEAT domain and its partner’s N-HEAT. Raptor interacts near this interface. Substrate recognition sites—for 
example, the TOR signaling (TOS) site—are marked in black. The HEAT domains project from the FAT domain. The FAT domain wrap of the 
kinase domains projects the active sites away from one another and the central twofold axis. (C) Conformational rearrangement of MTORC1 
induced by Rheb-GTP. Membrane-localized Rheb-GTP binds to a site formed by the intersection of FAT and M- and N-HEAT domains. 
Formation of this site induces repositioning of N- and M-HEAT domains and, as a result, Raptor. Repositioning of N- and M-HEAT domains 
propagates conformational change through the FAT domain to influence catalytic activity of the kinase domain. If MTORC1 interacts with two 
membrane-localized Rheb-GTP molecules, MTORC1 would be predicted to sit with the top view orthogonal to the membrane plane.

growth factor signaling30. Conversely, overexpression of Rheb, 
which swamps endogenous TSC GAP activity, enables MTORC1 
activation even in the absence of all AAs31. Thus, a critical step 
in MTORC1 activation by insulin, growth factors, and AAs is the 
binding of Rheb-GTP to the MTOR polypeptide in MTORC1 at  
the surface of the lysosome4,32.

Multiple variants and exceptions to this model have been  
described; for example, in mammalian cells, whereas Leu acts 
via Rag recruitment of TORC1 to the lysosome, Gln has been  
observed to recruit TORC1 to the lysosome through Arf1 in a 
Rag-independent manner33. Thomas et al.34 described the ability 

of Rab1-GTP to promote TORC1 activation at the Golgi in a  
Rheb-dependent manner. In Caenorhabditis elegans, the TSC 
is entirely lacking and CeTORC1 is regulated independently 
of the InsR/IGFR Daf235 except for transcriptional regulation 
of CeRaptor/Daf15 abundance36. In lower eukaryotes, whereas 
TORC1 activation in Schizosaccharomyces pombe is SpRheb  
dependent37, TORC1 regulation in Saccharomyces cerevisiae is 
entirely independent of ScRheb and sustained activation does not 
require the Rag GTPase Gtr1/Gtr2 and requires Gln rather than 
Leu; nevertheless, activation occurs at the vacuolar surface38.  
S. cerevisiae contains about 200 TORC1 dimers per cell, distributed 
diffusely around the cytosolic face of the vacuole. Upon removal 
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of extracellular glucose (but not AAs or ammonium), TORC1,  
while remaining associated with the vacuole, undergoes a rapid 
inactivation, accompanied by a Gtr1/Gtr2-mediated reorgani-
zation into a large hollow cylinder composed of 100 or more  
dimers39. The packing of the TORC1 dimers in these assemblies 
is such that the central Raptor HEAT/armadillo repeat domain 
is apposed to the TOR FRB segment in a manner that resem-
bles the binding of the inhibitory FKBP12:rapamycin complex; 
in fact, rapamycin interferes with the assembly of the cylinders.  
Based on these and other features, these cylindrical TORC1 
assemblies have been designated “TOR organized in inhibited  
domains” or TOROIDs. Although the diverse mechanisms of 
TORC1 regulation ultimately will each require elucidation, 
here we focus on MTORC1 interaction with Rheb and with the  
preferred substrate PRAS40.

MTORC1 signaling
The MTORC1 signaling output, as defined by its Ser/Thr kinase 
catalytic function, displays several unusual features. First, the  
presence of a substrate-binding subunit (that is, Raptor) sepa-
rate from the kinase polypeptide itself is distinctly uncommon.  
Raptor binds the substrates S6K1B and 4E-BP through their 
TOS (TOR signaling) motif (F/Ac/φ/Ac/φ; Ac = acidic, φ =  
hydrophobic)40; the Raptor binding motif in PRAS40 is slightly 
variant (FVMDE)41,42. The integrity of their TOS motifs and 
the binding of these substrates to Raptor are necessary for their  
phosphorylation by MTORC1, both in vitro and in the cell43–45. 
However, at least one physiologic MTORC1 substrate, the Igf2 
mRNA-binding protein, IGF2BP2/IMP2, does not bind Raptor 
but binds to MTOR directly and is phosphorylated by MTORC1  
in vivo and in vitro independently of Raptor46. A systematic  
analysis of the increasing number of MTORC1 substrates for the  
Raptor dependence of their phosphorylation is awaited. A second 
unusual feature of MTORC1 is that its phosphorylation site 
selection is relatively broad; all Ser/Thr sites on 4E-BP, on the  
carboxy-terminal non-catalytic tail of S6K1B, and on IMP2 are 
followed immediately by a Pro residue, whereas the critical regu-
latory MTORC1 phosphorylation site on S6K1B, Thr389/412, 
is situated in the highly hydrophobic motif FLGFTYVA.  
Surprisingly, one report describes the ability of MTORC2 
to catalyze tyrosine phosphorylation of the insulin and IGF1  
receptors47.

The PRAS40 polypeptide is multiply phosphorylated by 
MTORC148. PRAS40 binds strongly to Raptor and, in contrast to 
the canonical physiologic TORC1 substrates 4E-BP or S6K1B, 
is commonly retrieved in stable association with MTORC1.  
Overexpression of PRAS40 strongly inhibits the phosphoryla-
tion of both 4E-BP and S6K141,42,49,50, which themselves show  
cross-competition for phosphorylation by MTORC151, suggest-
ing that access to Raptor may be limiting for substrate phos-
phorylation52. PRAS40 remains bound to Raptor despite its  
MTOR-catalyzed phosphorylation unless it is also phosphor-
ylated by Akt at a carboxy-terminal site, Thr246, which enables 
its binding to 14-3-3 and release from Raptor42,49,50. This behavior,  
together with the usual residency of PRAS40 in the unstimu-
lated MTORC1 complex, led to the proposal that PRAS40 
may serve as an Akt controlled regulator of substrate access to  

MTORC142,49,50, acting in concert with Akt inhibition of TSC 
and activation of Rheb to promote optimal MTORC1 activa-
tion. However, support for this plausible and attractive hypoth-
esis is scant; despite its ubiquitous expression and in contrast to  
inactivation of TSC1 or TSC2, inactivation of the AKT1S1/PRAS40 
gene in mice53,54 or Drosophila55 does not result in global phe-
notypes indicative of enhanced MTORC1 signaling, although  
tissue-specific effects are described54,55. Depletion of PRAS40 
in cell culture has been reported to promote42,49,50, impair56,57, or 
not alter58 insulin/growth factor-stimulated MTORC1 activity. 
The robust activation of MTORC1 by Rheb overexpression58 or 
treatment with phorbol esters (via Ras-GTP)59 occurs without 
any displacement of PRAS40 from MTORC1. Although its 
physiologic functions remain obscure, PRAS40 is clearly a 
preferred MTORC1 substrate and an excellent model for how  
MTOR recognizes Raptor-bound substrates.

Cryo-EM structures show three potential PRAS40 interaction 
sites in MTORC114: the PRAS40 TOS motif and the adjacent  
N-terminal residue binds to a pocket in Raptor formed by a cleft 
between the caspase-like domain and the succeeding solenoid 
structure. A set of arginine residues in the TOS binding pocket  
generates a positive electrostatic potential that favors acidic  
residues in flanking regions proximal to the consensus sequence. 
The site on Raptor occupied by the PRAS40 TOS motif is  
essentially superimposable on that occupied by the 4E-BP 
and S6K1 TOS motifs. Raptor localizes the TOS site about  
65 Å from the active site of the kinase, increasing the local con-
centration of the substrate. PRAS40 also binds to two other sites 
within MTORC1. A PRAS40 long amphipathic alpha-helix  
(residues 212–232) makes an extensive interface with the FRB 
segment of the MTOR catalytic domain, positioning the substrate 
near the catalytic cleft; S6K1 and 4E-BP each use a region about  
15 residues C-terminal to their phosphorylation sites to interact 
in a similar manner with the FRB segment, and mutation of 
the FRB-interacting sequences in S6K1 and 4E-BP markedly  
impairs their phosphorylation. In addition, PRAS40 interacts 
with a WD40 domain of mLST8 through a beta-strand interac-
tion that is not observed with S6K1 or 4E-BP; this third site of 
PRAS40 interaction within the complex may account for the  
greater overall affinity for PRAS40 as compared with S6K1 
and 4E-BP. How these interactions facilitate the processive  
phosphorylation of substrates by MTOR is unclear.

Activation by Rheb
As demonstrated by Yang et al.14, the catalytic domain in “apo” 
MTORC1 (that is, in the absence of Rheb) exhibits a wide  
catalytic cleft, prohibiting effective phosphate transfer from ATP 
bound at the P-site to polypeptide substrates. This conforma-
tion is enforced by the FAT domain, which clamps to both the 
amino- and carboxy-terminal lobes of the catalytic domain. The  
individual catalytic residues are positioned in a primed, active 
orientation; however, in contrast to, for example, PKA or PI3K  
(Figure 2A), the FAT domain clamp twists the N- and C-lobes 
relative to one another, breaking the catalytic “spine” and  
widening the catalytic cleft such that the relative positions of  
residues in the two lobes are out of alignment in a conformation  
not conducive for catalysis (Figure 2B). In this state, the N-heat  
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Figure 2. Kinase domain regulation. Several features define a catalytically active kinase domain: (A) Protein kinase A (PKA) aligns key 
secondary structure elements for catalysis in a “catalytic spine”, which positions nucleotide (a Gly-rich loop forms a roof for the adenine base 
and a Lys-Glu salt bridge coordinates phosphate groups of ATP) and substrate (often through a pocket adjacent helix alpha D) for phospho-
transfer (mediated by the catalytic loop and the DFG motif). Phosphatidylinositol 3-kinase (PI3K) shares these core catalytic elements with 
PKA. A defining element in PI3K is a series of tetratricopeptide (TRP) repeats that contacts the N-terminal and C-terminal lobes positioning 
the “catalytic spine” in register. (B) Mechanistic target of rapamycin (MTOR) does not have a substrate-binding pocket next to the helix alpha 
D (explaining its rather broad substrate selectivity); instead, substrate docking elements distributed throughout the complex (for example, 
FRB) serve as the targeting/specificity determinants. In the context of the MTORC1 complex, the FAT domain of MTOR breaks the catalytic 
spine by locking the N- and C-lobes in a non-productive twisted arrangement relative to one another, resulting in a slightly wider catalytic cleft. 
(C) Binding by Rheb-GTP to MTORC1 induces dramatic long-distance domain rearrangement of the N- and M-HEAT domains, resulting in a 
conformational change in the FAT domains, to align the catalytic spine in the kinase domain.

and M-heat domains extend from the FAT domain to form a large 
open interface. The dimeric MTORC1 assembly is observed to 
undergo a “breathing” motion that couples the state of the two 
interfaces.

The cryo-EM reconstructions establish that Rheb-GTP binds to 
an interface composed of segments of the N-HEAT, M-HEAT,  
and FAT domains; the largest interaction surface is between  
Rheb and the N-HEAT which may initiate the overall interaction 
inasmuch as it is accompanied by a substantial displacement of 
the N-HEAT segment toward the interface where the M-HEAT  
and FAT domains meet (Figure 1C). In this reconfigured state, 
the N-HEAT domain exhibits new interactions with the FAT  
domain, the middle portion of which undergoes a twist that  
loosens its interaction with the amino-terminal lobe of the  
catalytic domain. This allows the amino-terminal lobe to move 
closer to the carboxy-terminal lobe, closing the catalytic cleft  
substantially, accompanied by a marked increase in k

cat
, whereas 

K
m
 for the peptide substrate is little changed (Figure 2). Some  

mutations in the FAT domain accompanied by constitutive acti-
vation of MTORC1 activity appear to mimic the effect of Rheb 
binding inasmuch as their kinase activity is not additive with  
maximal concentrations of Rheb14. The minimal effect of Rheb 
on peptide affinity is at variance with that observed by Sato  
et al.60, who found that Rheb-GTP caused a marked increase in 

the affinity of MTORC1 for 4E-BP. The switch I domain of Rheb, 
whose configuration is strongly altered upon GTP binding61, 
exhibits interactions with the M-HEAT and FAT domains, 
whereas the switch II segment, whose configuration hardly  
differs whether Rheb is GTP- or GDP-bound, interacts with 
all three MTOR segments and is also critical to MTORC1  
activation62. The site of Rheb-MTOR interaction identified by 
cryo-EM, accompanied by extensive biochemical verification 
of Rheb-GTP activation of MTORC1, invalidates the earlier 
conclusion that Rheb binds to the MTOR catalytic domain, 
which was based on the use of Rheb co-expression with MTOR  
fragments26. Rheb binding to MTOR in vitro exhibits positive 
cooperativity, and the unique configuration of MTORC1 bound to 
Rheb as seen in cryo-EM enabled the conclusion that MTORC1 
dimers always show either two apo-MTORC1s or two Rheb-
MTORC1s. The half-maximal concentration for Rheb activation of 
MTORC1 in vitro is about 100 μM, which is consistent with the 
very low affinity of the Rheb-MTOR interaction identified in early  
studies. Those studies showed that recombinant MTOR bound 
more tightly to mutant, nucleotide-free, or GDP-Rheb than to  
Rheb-GTP; however, the recombinant MTOR polypeptides 
retrieved with mutant, inactive Rheb were essentially devoid 
of catalytic activity in vitro. This finding was interpreted to  
indicate that MTOR interaction with Rheb-GTP was required to 
configure MTOR to an active state, a conclusion consistent with 
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genetic data from Drosophila63,64 and with the recent results of  
Yang et al.14. Nevertheless, the data thus far continue to leave  
unanswered the question of whether a Rheb-MTORC1 interaction 
is required to maintain MTORC1 in an active state.

Conceivably, there may be additional interactions or modifica-
tions (or both) of MTORC1 activity involved in Rheb activation, 
as is the case, for example, for the Ras-GTP regulation of the  
Raf kinases; the initial high-affinity Ras-GTP/Raf interaction65 
is followed by a series of post-translational modifications of  
Raf and altered protein-protein interactions that result in a stable, 
Ras-free, Raf active state66. However, evidence is lacking for 
a stable activation of MTOR catalytic function (that is, k

cat
) in  

MTORC1 in response to cell stimulation. Unlike many conven-
tional protein kinases, the MTOR activation loop is not subject  
to phosphorylation and the orientation of the critical catalytic  
segments of the MTOR kinase domain in apo-MTORC1 is  
already in an active configuration, requiring only the Rheb- 
induced narrowing of the catalytic cleft to promote kinase  
activity. Reports detecting insulin activation of the kinase  
activity of MTORC1 assayed in vitro appear to reflect 
increased access of the added Raptor-dependent substrate (4E-
BP or S6K1)49,52; no differences are evident using a Raptor- 
independent substrate or salt washes to deplete PRAS40 from 
the complexes58. It has not been possible to retrieve endogenous 
MTOR in complex with endogenous Rheb after cell disrup-
tion (although a stable complex of SpTor2 with a mutant hyper-
active SpRhb1 (K120R) has been observed35). It can be argued  
that the very weak affinity of Rheb for MTOR results in a loss of 
the Rheb-MTOR interaction upon cell extraction; however, this 
returns to the question of how the Rheb activation mechanism  
demonstrated by Yang et al.14 relates to the mechanism opera-
tive in the cell and whether a continuing association of Rheb with  
MTOR is required for the maintenance of MTORC1 activity 
in the cell. Rheb is a membrane-bound protein (through its  
C-terminal prenylation) that is found predominantly in the  
Golgi67; although a small fraction of Rheb plausibly becomes 
apposed with MTORC1 at the lysosome to initiate activation67, 
MTORC1 thereafter operates in essentially every cellular compart-
ment, including the nucleus68. Fluorescence lifetime imaging of 
overexpressed Rheb, MTOR, and Raptor, each fused to fluores-
cent proteins, did detect the presence of a Rheb-MTOR complex in 
both the cytoplasm and the nucleus (the latter devoid of Raptor)69;  

as yet, however, the presence of endogenous Rheb in the nucleus 
and its localization therein await confirmation. Moreover, 
Rheb membrane association suggests a specific orientation for  
MTORC1 position relative to the membrane, which would 
restrict cooperative activation only at the membrane. The mecha-
nism by which MTORC1 activity is sustained within all cell 
compartments and the role of Rheb remain critical, unanswered  
questions.

Conclusions
MTORC1 exists as an extremely elaborate large holoenzyme. 
Why go to all the trouble? The structure may highlight three  
important properties of MTORC1 functions:

1. Adaptor binding. The interface formed by the MTORC1 
dimer provides a platform for Raptor. This same site is used by  
MTORC2 for RICTOR binding, building in a modularity often 
found in signaling assemblies.

2. Cooperative, allosteric activation. The mechanism for Rheb  
activation via HEAT/FAT domain re-organization is cooperative 
and is coupled through the dimeric interface mediated by the 
HEAT domains. The dimeric holoenzyme is required for the  
sigmoidal response. Could there be other modulators of  
MTORC1 activity that act through other allosteric sites?

3. Localization. The Rheb-dependent activation presumably  
occurs at a membrane surface. The location of the Rheb bind-
ing sites, if engaged simultaneously, would define a specific ori-
entation of MTORC1 at the membrane. How this positioning 
influences its engagement with other upstream and downstream 
factors is one of the many unexplored questions that  
remain.
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