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1is study aimed to determine whether modulation of the gut microbiota structure by liraglutide helps improve nonalcoholic fatty
liver disease (NAFLD) in rats on a high-fat diet (HFD). Rats were administered an HFD for 12 weeks to induce NAFLD and then
administered liraglutide for 4 additional weeks. Next-generation sequencing and multivariate analysis were performed to assess
structural changes in the gut microbiota. Liraglutide attenuated excessive hepatic ectopic fat deposition, maintained intestinal
barrier integrity, and alleviated metabolic endotoxemia in HFD rats. Liraglutide significantly altered the overall structure of the
HFD-disrupted gut microbiota and gut microbial composition in HFD rats in comparison to those on a normal diet. An
abundance of 100 operational taxonomic units (OTUs) were altered upon liraglutide administration, with 78 OTUs associated
with weight gain or inflammation. Twenty-three OTUs positively correlated with hepatic steatosis-related parameters were
decreased upon liraglutide intervention, while 5 OTUs negatively correlated with hepatic steatosis-related parameters were
increased. 1ese results suggest that liraglutide-mediated attenuation of NAFLD partly results from structural changes in gut
microbiota associated with hepatic steatosis.

1. Introduction

With the drastic increase in the prevalence of obesity,
nonalcoholic fatty liver disease (NAFLD), characterized by
excessively ectopic lipid accumulation in hepatocytes, has
become the major cause of chronic liver disease in Western
countries [1, 2]. NAFLD is closely associated with insulin
resistance and is, therefore, generally comorbid with type 2
diabetes (T2DM). Patients with NAFLD and T2DM are
more likely to experience disease progression to nonalco-
holic steatohepatitis (NASH), the subsequent stage of
NAFLD. Other than lifestyle-based interventions, which
facilitate the loss of >5% body weight, there are no efficient
treatments for NAFLD [3].

1e gut microbiota plays a critical role in the patho-
genesis and progression of NAFLD by regulation of gut
permeability, changes in luminal metabolism of bile acid and

food substrates, and production of lipoprotein lipase, en-
dogenous alcohol, and toxic compounds [4–9]. Increased
gut permeability and lipoprotein lipase production with gut
dysbiosis contribute to NAFLD pathogenesis [5]. Gut
microbiota involved in bile acid biosynthesis, which influ-
ences NAFLD progression by regulating farnesoid X re-
ceptor (FXR) in the liver, and hepatic steatosis resulting
from a high-fat diet (HFD), were reversed upon inhibition of
intestinal FXR through alterations in the gut microbiota
upon antibiotic administration [4, 5]. 1e production of
short-chain fatty acids (SCFAs) and carbohydrate fermen-
tation by gut microorganisms help inhibit lipid synthesis and
accelerate lipid oxidation in the liver [4, 5]. Some enzymes
produced by the gut microbiota convert dietary choline into
toxic compounds (such as methylamines), which are taken
up by the liver and cause liver injury and inflammation [6].
Moreover, the major source of endogenous alcohol is the gut
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microbiota, and numerous alcohol-producing bacteria have
been reported in NASH patients [7, 8]. Alleviation of
NAFLD through probiotic or prebiotic treatments is ef-
fective in animals and humans, which further confirms the
effect of gut microbiota on NAFLD [9]. Hence, modulation
of the gut microbiota is a potential method to treat NAFLD.

Glucagon-like peptide-1 receptor agonist (GLP-1R)
liraglutide, an antidiabetic agent for T2DM patients, re-
portedly exerts beneficial effects in NAFLD [10–12], with the
underlying mechanisms potentially involving body weight
reduction, improved blood glucose regulation, decreased
lipid synthesis, autophagy induction, and free fatty acid
β-oxidation [10, 13]. Dietary intervention, prebiotics, and
probiotics reduce body weight and improve metabolic
disorders through modulation of gut microbiota [14–16].
Recent studies report that liraglutide is beneficial for weight
loss through modulation of the structure of gut microbiota
in simple obese and diabetic obese rodents [17–19]. How-
ever, it is unknown whether NAFLD attenuation by lir-
aglutide is also associated with modulation of the structure
of the gut microbiota. Hence, the present study aimed to
investigate the effect of liraglutide on the intestinal micro-
biota in rats with HFD-induced NAFLD through next-
generation sequencing and multivariate analysis.

2. Materials and Methods

2.1. Animals and Treatments. Male Sprague-Dawley rats
(n� 24, 4-week-old, Shanghai Jiesijie Laboratory Animal Co.
Ltd. Shanghai, China) were housed in a controlled envi-
ronment (12 h day/night cycle, lights off at 18 : 00 h) with ad
libitum access to food and water. After 1 week of accli-
matization under laboratory conditions, the rats were ran-
domly segregated into two groups: a normal control group
(NC, n� 8) administered a standard chow diet comprising
10% fat, 64% carbohydrate, and 26% protein; and an HFD
group (HFD, n� 16) administered an HFD comprising 45%
fat, 37% carbohydrate, and 18% protein. Two rats from each
group were euthanized to determine whether NAFLD was
successfully established after 12 weeks.1e remaining rats of
the HFD group were equally assigned to two groups: the
HFD group (n� 8) or the HFD+ liraglutide (H+ L) group
(n� 8). 1e latter received a daily subcutaneous injection of
liraglutide (Novo Nordisk, Copenhagen, Denmark, 0.2mg/
kg body weight). 1e other two groups (NC and HFD)
received saline. Body weight was monitored once a week.
Animals were euthanized at 4 weeks after initial liraglutide
or saline administration. Blood and gut content samples
were harvested and stored at − 80°C. 1e liver and intestine
were precisely dissected out, weighed, washed with PBS, and
stored at − 80°C. 1is study conformed to the guidelines
established by the Research Animal Care Committee of
Drum Tower Hospital affiliated with the Medical School of
Nanjing University, Nanjing, China.

2.2. Histopathological Analysis. Rat livers were carefully
dissected out, fixed with formalin solution, and embedded in
paraffin. Tissue sections of livers were prepared and stained

with hematoxylin and eosin, using a standard protocol.
Formalin-fixed tissue sections were then stained with Oil
Red O (Sigma, San Francisco, USA) in accordance with the
standard protocol [20].

2.3. Assessment of Metabolic Profiles and Inflammation
Markers. For each rat, commercial ELISA kits were utilized
to quantify the level of liver triglycerides (TGs) and serum
tumor necrosis factor-α (TNF-α; Applygen Technologies,
Beijing, China), and serum aspartate aminotransferase
(AST), alanine (ALT), lipopolysaccharide (LPS), and di-
amine oxidase (DAO; USCN,Wuhan, China), in accordance
with the manufacturer’s instructions.

2.4. Transmission Electron Microscopy. Tight junction struc-
tures were examined via transmission electron microscopy.
In brief, ileal specimens were fixed in 4% paraformaldehyde,
postfixed in 1% osmium tetroxide, dehydrated using a
graded alcohol series, embedded in epoxy resin, stained with
uranyl acetate citrate, and examined using a transmission
electron microscope, as previously described [19].

2.5. DNA Extraction, PCR Amplification, and MiSeq
Sequencing. Fecal samples were stored at − 80°C until DNA
extraction. Total genomic DNA was extracted from each
sample using a QIAamp DNA Stool Mini Kit in accordance
with the manufacturer’s instructions. PCR amplification and
MiSeq sequencing were performed as previously described
[20]. In brief, the V4–V5 regions of bacterial 16S rDNAwere
amplified using the Phusion High-Fidelity PCR Master Mix
with HF buffer (New England Biolabs, UK). Barcode-
indexed PCR primers 515F and 926R were used. Amplicon
libraries were purified using the AXYGEN AxyPrep DNA
Gel Extraction Kit (Axygen Scientific, Union City, CA,
USA), normalized via FTC-3000TM real-time PCR, and
sequenced using a MiSeq instrument (Illumina) using a
2× 300-cycle V3 kit.

2.6. Bioinformatic Analysis. 1e raw sequencing reads were
optimized and subjected to bioinformatic analysis as previ-
ously described [20]. In brief, the raw data were demultiplexed
in accordance with the barcode. Low-quality base pairs were
eliminated using Trimmomatic (version 0.35). Trimmed reads
were merged and screened using FLASH (version 1.2.11) and
Mothur (version 1.33.3), respectively. Multivariate statistical
analyses were performed using Mothur, UPARSE (usearch
version v8.1.1756), and R (version 3.2.3). Clean tags were
clustered into OTUs and then assigned to their corresponding
taxa in accordance with the Silva 119 database. Multivariate
analyses were performed to evaluate overall structural
changes in the gut microbiota, and a rarefaction curve and
alpha-diversity were used to assess the richness and diversity
of the microbiota in each group, including UniFrac distance-
based principal coordinate analysis (PCoA) and a UniFrac
tree. 1e α-diversity and β-diversity were analyzed using
Mothur and R.
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2.7. Statistical Analyses. Data were analyzed using Stu-
dent’s t-test or one-way analysis of variance with Bon-
ferroni post hoc tests, using SPSS Statistics 19.
Spearman’s correlation analysis was performed to de-
termine correlations between microbial communities and
metabolic parameters. Data are expressed as mean-
± standard deviation values, and a P value (P< 0.05) was
considered statistically significant.

3. Results

3.1. Effects of Liraglutide on Hepatic Steatosis, Intestinal
Barrier Function, and Inflammatory Levels in High-Fat-Diet
Rats. HFD rats displayed a slightly distorted structure of the
hepatic lobule and increased deposition of lipid droplets
(Figure 1(a)), significantly increased liver TG content
(P< 0.05; Figure 2(c)), and significantly higher serum ALT
(P< 0.05; Figure 2(d)) and AST levels (P< 0.01; Figure 2(e))
in comparison with control rats. Furthermore, levels of
intestinal barrier function, endotoxin, and inflammatory
factors in the serum, such as DAO, LPS, and TNF-α
(P< 0.01 − 0.05), were significantly increased in HFD rats in
comparison to control rats (Figures 1(f )–1(h)). Transmis-
sion electron microscopy revealed that the width of tight
junctions in ileal tissue was broadened in HFD rats
(Figure 1(i)). However, 4-week liraglutide administration
significantly reversed all these changes (P< 0.01 − 0.05),
except for AST levels (Figures 1(a), 1(c)–1(i)). Additionally,
there is a stable decrease in body weight during the treatment
of liraglutide (Figure 1(b)).

3.2. LiraglutideAltered theCompositionof theGutMicrobiota.
High-throughput sequencing yielded 593,121 high-quality
sequences and 725 OTUs from 24 fecal samples. Rarefaction
curves indicated that the current sequencing depth was
adequate, and only a few new OTUs were obtained through
subsequent sequencing (Figure 2(a)). Chao and ACE ana-
lyses revealed that the richness of the gut microbiota was
significantly lower in the HFD group than in the control
group (HFD vs. NC, P � 0.039 for the Ace index and P �

0.039 for the Chao index), while no significant difference was
observed between the H+L and HFD groups (Figures 2(b)
and 2(c)). Shannon and Simpson’s analysis revealed that the
overall microbial diversity did not differ significantly among
the three groups (Figures 2(d) and 2(e)).

According to the unweighted and weighted PCoA score
plot, structures of the gut microbiota were altered along with
the second principal component (PC2) in the HFD group
relative to the control group, whereas these changes were
reversed upon liraglutide administration (Figures 2(f ) and
2(g)). 1e unweighted and weighted UniFrac trees revealed
that there are three different communities of microbiota
among the groups (Figures 2(h) and 2(i)).

Taxon-based analysis was performed to further explore
changes among the three groups. 1ese OTUs comprised 13
phyla. 1e major phyla were Firmicutes, Bacteroidetes,
Actinobacteria, Spirochaetes, and Proteobacteria. Taxon-
based analysis revealed that liraglutide significantly altered

the composition of the gut microbiota in HFD rats. Con-
sequently, bacteria of phylum Bacteroidetes (P � 0.002),
Tenericutes (P � 0.002), Cyanobacteria (P � 0.002), Elusi-
microbia (P � 0.03), and Fusobacteria (P � 0.002) were
significantly decreased, while those of phylum Firmicutes
(P � 0.002), Actinobacteria (P � 0.003), Proteobacteria
(P � 0.018), and Deinococcus-1ermus (P � 0.049) were
significantly increased in the H+L group relative to the HFD
group.

Hundred OTUs of gut microbiota were significantly
altered, among which 57 OTUs were increased and 43 OTUs
were decreased in the HFD group in comparison with the
control group (Figure 3). Twenty-six reduced OTUs in the
HFD group were increased upon liraglutide administration,
while 5 increased OTUs were decreased. Among the
remaining 69 OTUs, 38 were increased and 31 were de-
creased upon liraglutide administration. Among the 38
increased OTUs, 4, 6, and 11 OTUs were classified into
family Erysipelotrichaceae, Ruminococcaceae, and Lach-
nospiraceae, respectively. Among the 31 decreased OTUs,
11, 4, and 5 OTUs were classified into families Rumino-
coccaceae, Lachnospiraceae, and Prevotellaceae, respec-
tively. Hence, we speculated that the genus and species
potentially influence NAFLD. Among the 38 increased
OTUs, 6 putative SCFA-producing bacteria, including those
of genera Allobaculum (OTU_4, OTU_31, and OTU_28)
and Bacteroides (OTU_109) and species blautia (OTU_58,
OTU_87), were markedly increased upon liraglutide ad-
ministration (Figure 3). Furthermore, we speculated that
SCFA-producing bacteria constitute an important factor
contributing to the beneficial effects of liraglutide. Together,
these results indicate that liraglutide modulates the pre-
dominance of OTUs in a strain-specific manner, resulting in
a microbiota composition similar to that of control rats.

3.3. Associations between the 78 OTUs and Metabolic Pa-
rameters Were Altered upon Liraglutide Administration.
Seventy-eight OTUs were significantly correlated with at
least one abnormal metabolic parameter, including ALT,
AST, DAO, body weight, liver weight, LPS, and TNF-α
(Figure 3). Twenty-three OTUs decreased in response to an
HFD were increased upon liraglutide administration
(Figure 4), of which two were positively correlated with at
least one abnormal metabolic parameter. Twenty-one of the
23 reduced OTUs were positively correlated with at least two
abnormal metabolic parameters. Five OTUs increased with
an HFDwere decreased upon liraglutide administration, one
of which was negatively associated with at least one ab-
normal metabolic parameter, and the remaining 4 were
negatively correlated with at least two abnormal metabolic
parameters.

4. Discussion

1is study shows that liraglutide alleviates NAFLD and is
beneficial for weight loss, maintenance of intestinal barrier
function, and reduction of inflammation levels via modu-
lation of the structure of gut microbiota in obese rats on an
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HFD. Gut microbiota associated with metabolic parameters
contributed to liraglutide-mediated attenuation of NAFLD,
consistent with prior reports that changes in gut microbiota
composition and activity are associated with metabolic

disorders, such as obesity, diabetes, and cardiometabolic
disorders.

Liraglutide potentially helps attenuate NAFLD; however,
its underlying mechanism is yet unclear [21]. Weight loss is
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Figure 1: Liraglutide attenuates nonalcoholic fatty liver disease, retains intestinal barrier function, and decreases inflammation levels in rats
on a high-fat diet. (a) Oil Red O staining of liver sections; (b) body weight of rats; (c) relative levels of triglycerides (TG) in the liver; (d) levels
of serum alanine transaminase (ALT), (e) aspartate transaminase (AST), (f ) tumor necrosis factor-α (TNF-α), (g) lipopolysaccharide (LPS),
and (h) diamine oxidase (DAO); (i) ultrastructure of tight junctions in the ileal mucosa (transmission electron microscopy, 20,000x). Data
are expressed as mean± standard deviation values. ∗P< 0.05 vs NC group; ∗∗P< 0.01 vs NC group; #P< 0.05 vs HFD group; ##P< 0.01 vs
HFD group.
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currently known as the only effective strategy to improve
NAFLD, and in the present study, liraglutide treatment
resulted in significant weight loss [13, 22, 23]. Hence, weight
loss potentially contributes to liraglutide-mediated attenu-
ation of NAFLD. Consistent with previous reports, this
study shows that liraglutide induces weight loss and

attenuates NAFLD. However, the mechanism underlying
weight loss resulting from liraglutide administration is
unclear. 1e side effects of liraglutide potentially include
nausea and vomiting, thus resulting in weight loss. Lean et al.
reported an average weight loss of 9.2 kg vs 6.3 kg in patients
with or without nausea/vomiting episodes after one year of
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Figure 2: α-Diversity analysis and structural changes in the gut microbiota upon liraglutide administration. (a) Rarefaction curves of multiple
samples; (b) Chao index curve; (c) Ace index curve; (d) Shannon curve; (e) Simpson index curve; principal coordinate analysis (PCoA) score
plot based on unweighted (f) and weighted (g) PCoA scores. UniFrac tree based on unweighted (h) and weighted (i) PCoA scores.
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liraglutide treatment [24]. However, the 6.3-kg weight loss in
patients without nausea/vomiting after liraglutide treatment
lacked a reasonable explanation.

Other studies have focused on the activating effects of the
GLP-1 receptor on hepatocytes [25]. However, it is still
controversial whether GLP-1 receptors are present on
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Figure 4: Seventy-eight operational taxonomic units (OTUs) altered upon liraglutide administration were significantly correlated with host
metabolic parameters in accordance with Spearman’s correlation analysis. (a) Correlation between 76 OTUs and host metabolic parameters.
Rows correspond to OTUs with identities shown on the left and columns correspond to metabolic parameters. Red and blue colors indicate
positive and negative associations, respectively. Color intensity represents the degree of association between the OTU abundances and host
parameters, as assessed via Spearman’s correlation analysis. Asterisks indicate significant associations. Taxonomic classification of the OTUs
is shown on the right side. (b) Altered direction of 76 OTUs. Red and blue colors indicate the OTUs that were more and less abundant,
respectively, in the H+L and control groups in comparison with the high-fat diet (HFD) group. 1e asterisk (∗) represents OTUs whose
level was altered via an HFD and then reversed significantly upon liraglutide administration.
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human hepatocytes [26, 27]. Recent studies have reported
that GLP-1 prevents diabetes by altering the structure of the
gut microbiota and inhibiting inflammation [28, 29]. In-
flammation, caused by a high-fat diet, is one factor inducing
metabolic disorders [30]. Previous studies reported that LPS/
TLR4 signaling contributes significantly to NAFLD patho-
genesis [31, 32]. DAO, a marker for the assessment of gut
barrier function, enters the bloodstream when the gut
barrier is impaired [33]. LPS crosses the gut barrier and
penetrates the liver from the portal circulation. Activated
LPS/TLR4 signaling in Kupffer cell causes insulin resistance
through inhibition of insulin receptor substrate-1 phos-
phorylation in the liver [34–36]. However, it is still unknown
whether liraglutide attenuates NAFLD through reduction of
inflammation. Our results show that serum levels of met-
abolic endotoxemia and inflammation markers, including
LPS, TNFα, and DAO, increased in HFD rats relative to
control rats upon liraglutide administration, indicating that
liraglutide attenuates NAFLD by potentially accelerating
weight loss and inhibiting low-grade chronic inflammation.
However, the question regarding how these alterations are
brought about remains.

To determine the reasons for the weight loss and inhi-
bition of inflammation, the gut microbiota of the rats was
analyzed. As revealed through the analysis of α-diversity,
microbial enrichment was markedly decreased in NAFLD
rats and was not reversed upon liraglutide administration.
However, β-diversity analysis revealed that the composition
of the gut microbiota was markedly altered upon liraglutide
administration. Hence, we speculated that a “more healthy
composition of the gut microbiota,” which benefited lipid
metabolism and inhibition of inflammation, was potentially
acquired upon liraglutide administration, rather than re-
covery of the original composition similar to that in control
rats.

Taxon-based analysis revealed that at the phylum level,
liraglutide administration significantly increased bacteria
of phylum Firmicutes and Actinobacteria and significantly
decreased those of phylum Bacteroidetes and Tenericutes.
Increased Firmicutes/Bacteroidetes ratio results in de-
creased SCFA production and increased energy harvested
from the diet, facilitating the development and progression
of NAFLD [5]. Some studies have reported that a higher
Firmicutes/Bacteroidetes ratio was decreased by liraglutide
in obese and diabetic rats [17, 28, 29]. However, the re-
lationship of Firmicutes/Bacteroidetes ratio with obesity
and NAFLD remains controversial [37–39]. 1ese results
indicate that further classification may yield exact reasons.
Lactobacillus, a genus of Gram-positive, nonsporulating,
anaerobic bacillus, generally used as probiotics, efficiently
improves NAFLD [6]. In the present study, liraglutide
administration significantly increased bacteria of genus
Lactobacillus in HFD rats. Another study confirmed that
liraglutide helped decrease the genus Helicobacter and
increase Akkermansia muciniphila in the HFD group [37].
Different OTUs from the same genus displayed different
responses to liraglutide treatment, indicating that lir-
aglutide differently regulated the gut microbiota by tar-
geting different species even from the same genus.

1erefore, Spearman’s correlation analysis was performed
to determine which OTU was important in causing obesity
and inflammation. Consistent with another study [37], the
analysis revealed that liraglutide altered microbial com-
munities and these change were related to weight loss and
reduced inflammation levels. Five OTUs belonging to the
genus Lactobacillus, family Ruminococcaceae, family Spi-
rochaetaceae, and order Bacteroidales exerted beneficial
effects in NAFLD. Furthermore, 23 OTUs belonging to the
genus Bacteroides, Coprococcus, Roseburia, Anaerotruncus,
and Ruminococcus exerted negative effects in NAFLD. 1e
effect of the GLP-1R agonist on the gut microbiota
structure might relate to the reduction of food intake and
gastrointestinal motility, and the changes in diet compo-
sition [37].

5. Conclusions

In conclusion, liraglutide attenuates NAFLD by decreasing
body weight and inhibiting inflammation through alterations
in the gut microbiota. Further studies are required to explore
the specific mechanism by which liraglutide affects the in-
testinal microbiota in humanized mice and obese humans.
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