
RESEARCH ARTICLE

Security analysis and secure channel-free

certificateless searchable public key

authenticated encryption for a cloud-based

Internet of things

Bin WuID
1,2, Caifen Wang3*, Hailong Yao1,4

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, 2 Information

Security Lab, Lanzhou Resources and Environment Voc-tech College, Lanzhou, China, 3 College of Big Data

and Internet, Shenzhen Technology University, Shenzhen, China, 4 School of Electronic and Information

Engineering, Lanzhou City University, Lanzhou, China

* soloren@yeah.net

Abstract

With the rapid development of informatization, an increasing number of industries and orga-

nizations outsource their data to cloud servers, to avoid the cost of local data management

and to share data. For example, industrial Internet of things systems and mobile healthcare

systems rely on cloud computing’s powerful data storage and processing capabilities to

address the storage, provision, and maintenance of massive amounts of industrial and med-

ical data. One of the major challenges facing cloud-based storage environments is how to

ensure the confidentiality and security of outsourced sensitive data. To mitigate these

issues, He et al. and Ma et al. have recently independently proposed two certificateless pub-

lic key searchable encryption schemes. In this paper, we analyze the security of these two

schemes and show that the reduction proof of He et al.’s CLPAEKS scheme is incorrect,

and that Ma et al.’s CLPEKS scheme is not secure against keyword guessing attacks. We

then propose a channel-free certificateless searchable public key authenticated encryption

(dCLPAEKS) scheme and prove that it is secure against inside keyword guessing attacks

under the enhanced security model. Compared with other certificateless public key search-

able encryption schemes, this scheme has higher security and comparable efficiency.

Introduction

The Internet of things (IoT) [1–3] is a new model that has rapidly become popular in wireless

communication scenarios. The basic idea of this concept is that all items—such as actuators,

radio-frequency identification tags—are connected to the Internet through information sens-

ing devices, to exchange information. That is, objects are interconnected, to realize intelligent

identification and management. IoT has opened new avenues for technology connectivity and

business upgrading in industry, healthcare, and transportation, of which the industrial Internet

of things (IIoT) and mobile healthcare systems (MHSs) are the most successful applications.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wu B, Wang C, Yao H (2020) Security

analysis and secure channel-free certificateless

searchable public key authenticated encryption for

a cloud-based Internet of things. PLoS ONE 15(4):

e0230722. https://doi.org/10.1371/journal.

pone.0230722

Editor: He Debiao, Wuhan University, CHINA

Received: December 17, 2019

Accepted: March 7, 2020

Published: April 9, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0230722

Copyright: © 2020 Wu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The author(s) received no specific

funding for this work.

http://orcid.org/0000-0001-7056-5769
https://doi.org/10.1371/journal.pone.0230722
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230722&domain=pdf&date_stamp=2020-04-09
https://doi.org/10.1371/journal.pone.0230722
https://doi.org/10.1371/journal.pone.0230722
https://doi.org/10.1371/journal.pone.0230722
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

IIoT refers to the IoT environment applied in industrial systems. IIoT integrates various

intelligent terminals and sensing devices through a ubiquitous network to efficiently and eco-

nomically manage industrial production, not only improving manufacturing efficiency, but

also reducing product costs, upgrading traditional industries to intelligent industries [4].

MHSs refers to the provision of medical applications and medical information at any time

or place, based on the IoT [5, 6]. MHSs provide a wide range of services and applications,

including patient monitoring, mobile telemedicine, real-time transmission, storage of (and

access to) medical information, and customized and personalized medical service

prescriptions.

Although the IIoT and MHSs have great development prospects and bring great conve-

nience to people’s productivity and life, they still face a substantial challenge, namely, the stor-

age and management of massive amounts of data (including both industrial and medical data).

In recent years, cloud computing technology has developed rapidly, and some typical cloud

service products have been released and have received extensive attention; these include Drop-

box [7], a cloud network storage tool, and Windows Azure [8], a cloud computing platform

from Microsoft. Cloud computing is a business model that allows on-demand network access

to configurable computing resources such as services, storage, networks, and applications.

These resources can be quickly provided and released with minimal management work and

interaction. The IoT generally contains small objects (things) with limited processing power

and storage capabilities, whereas cloud computing has unlimited storage and processing

power capabilities, which can play a supporting role in the IoT architecture, as explained in

Ref. [9, 10]. Specifically, the IoT can benefit from the unlimited resources and capabilities of

the cloud to make up for its technological constraints. A recent and continuing trend is the

integration of the cloud and the IoT. The new model, called the cloud-based Internet of

Things, has been extensively studied [11–14]. In a cloud-based IoT system, users upload data

collected by various smart devices to cloud servers through the Internet, and other authorized

users can retrieve data collected from different environments.

However, when outsourcing data to a cloud server, the security and privacy of the data can-

not be guaranteed because the cloud server is considered honest but curious; it can fulfill its

obligations, but is curious about the stored information. Before uploading sensitive data to the

cloud server, the data owner needs to perform encryption to protect the privacy and confi-

dentiality of the data. However, in this way, the existing plaintext-based keyword search tech-

nology is ineffective, because encryption usually hides the structure of the original data. To

address this problem, searchable encryption (SE), which supports efficient search over cipher-

text, has been widely applied, studied, and developed in recent years [15–29].

SE can be categorized into symmetric and asymmetric encryption. Symmetric searchable

encryption has the characteristics of low computational overhead and high speed, but it is usu-

ally suitable for a single-user model; additionally, the encryption and decryption parties need

to negotiate the key beforehand. To address this limitation, public key searchable encryption

(PEKS) was first proposed by Boneh et al. [18]. It is very suitable for solving the searchable

encryption problem in a multi-user system. In a PEKS system, without prior agreement

between sender and receiver, the sender generates encrypted files, called PEKS ciphertext

(including encrypted files body and encrypted keywords) using the receiver’s public key, and

uploads the ciphertext to the cloud server. When the receiver needs to search the ciphertext for

a certain keyword, it uses its own secret key to generate the search certificate of the keyword

and sends it to the cloud server. The server then runs a test operation to select the ciphertext

file containing the target keyword, and returns it to the receiver.

Although PEKS solves the problem of searching ciphertext, it still suffers from some privacy

problems. Reference [24] pointed out that most PEKS schemes are susceptible to off-line

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 2 / 24

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0230722

keyword guessing attacks (KGAs). The KGAs is attributed to the fact that keyword space is

very small and users usually use common keywords for retrieval, which provides a “shortcut”

for an attacker to obtain data privacy information by using only dictionary attacks. Specifically,

with a given trapdoor, the attacker tests every possible keyword off-line. If the test is successful,

the attacker can know the potential keywords in the trapdoor. From the server’s reply, he also

knows which encrypted files contain the keywords encapsulated in the trapdoor. In short, by

running this off-line KGAs, malicious (inside or outside) attackers can obtain information

about encrypted files and invade the user’s data privacy. Constructing a scheme to resist KGAs

has attracted the attention of many researchers [30–37].

Recently, He et al. [38] proposed a new scheme, CLPAEKS, for IIoT, and Ma et al. [39] pro-

posed a scheme, CLPEKS, for MHSs. Their schemes are both certificateless public key search-

able encryption schemes, which effectively solve the problem of searching over encrypted data

stored in the cloud and avoid the problems of certificate management and key escrow.

In this paper, through careful analysis, we describe security vulnerabilities that we found in

the two schemes mentioned above. The security reduction of He et al.’s CLPAEKS scheme is

actually incorrect for two types of adversaries. That is, an adversary cannot solve the computa-

tional bilinear Diffie-Hellman problem by using adversary AI (AII), which attacks the security

of the CLPAEKS scheme, as a subroutine. Ma et al.’s CLPEKS scheme is not secure against off-

line KGAs. Furthermore, in both CLPAEKS and CLPEKS, anyone can run test operations,

which makes it easy to identify whether two search queries are generated from the same key-

word; that is, the search patterns of users can be revealed to anyone. The potential risks of

search pattern leakage have been studied in the literature [40]: adversaries may use searching

frequency to obtain information about the plaintext.

Our contributions

• We note the security vulnerabilities of the CLPAEKS scheme proposed by He et al. and the

CLPEKS scheme proposed by Ma et al.

• To protect the privacy and security of data stored in the cloud in the Internet of Things envi-

ronment, we propose a dCLPAEKS scheme, which is a channel-free certificateless searchable

public key encryption scheme, and present a security model for dCLPAEKS to remedy the

problem mentioned above.

• Under the enhanced security model, we prove that the dCLPAEKS scheme is secure against

inside keyword guessing attacks for two types of adversaries. Specifically, we formally prove

that the scheme satisfies ciphertext indistinguishability and trapdoor indistinguishability.

Furthermore, we prove that the scheme satisfies the security of the designated tester (specifi-

cally, only the server can perform test operations).

• We compare our scheme with other CLPEKS schemes in terms of security, computational

complexity and communication overhead. We also evaluate its efficiency in experiments,

and the results show that our scheme has higher security and efficiency.

Related works

In 2004, Boneh et al. first proposed the concept of public key searchable encryption [18] and

proposed the construction scheme of PEKS based on anonymous identity-based cryptosys-

tems. This scheme has been applied in a mail system to solve the mail routing problem of

untrustworthy servers. In 2008, Baek et al. [23] pointed out that the scheme in [18] must be

built on a secure channel. To overcome this limitation, they proposed a public key

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 3 / 24

https://doi.org/10.1371/journal.pone.0230722

searchable encryption scheme without a secure channel by introducing a designated tester.

In 2006, Bynn et al. [30] found that the scheme proposed in [18] was susceptible to off-line

KGAs because keywords are selected from a much smaller space than keys and users usually

use common keywords; hence, an attacker can easily crack the PEKS system through KGAs.

To protect against KGAs, Rhee et al. [32] proposed a trapdoor secure dPEKS scheme, but

Wang et al. [41] later pointed out that the scheme suffered from an inherent insecurity,

namely, vulnerability to inside KGAs (IKGAs). Roughly speaking, given a trapdoor, a mali-

cious server can generate the PEKS ciphertext for any keyword it chooses, and then the

server can run a test operation to determine whether the keywords being guessed are the

keywords underlying the trapdoor. In 2013, Xu et al. [34] proposed a fuzzy keyword public

key searchable encryption scheme against IKGAs. In their scheme, the server can only per-

form fuzzy matching search, and accurate matching search is executed locally, so an attacker

cannot obtain an accurate search trapdoor, thus ensuring the security of the scheme. In

2016, Chen et al. [35] proposed a dual-server public-key searchable encryption scheme that

can resist IKGAs from malicious servers by dividing the test algorithm into two parts and

letting two independent servers execute it. However, all of the schemes mentioned above

encounter certificate management or key escrow problems. To address this problem, AL-

piyami et al. [42] defined the concept of certificateless public key cryptography (CLPKC).

Users’ private keys in certificateless public key cryptosystems consist of two parts: one is

generated by the key generation center and the other is generated by users. Peng [43] pro-

posed the first certificateless public key encryption with keyword search (CLPEKS) scheme.

Subsequently, other improved certificateless public key searchable encryption schemes were

proposed [44, 39]. He et al. [38] demonstrated that these schemes are vulnerable to IKGAs

and proposed a certificateless public key authenticated encryption scheme with keyword

search that can resist IKGAs.

Paper organization

The rest of this paper is organized as follows. In section 2, we present some preliminaries. In

section 3, we review Ha et al’s scheme and Ma et al’s scheme and then point out the disadvan-

tages of their schemes. In section 4, we introduce a new notion, dCLPAEKS, and give its secu-

rity model. We construct a concrete dCLPAEKS scheme and prove its security in enhanced

security models in section 5. In section 6, we present the performance analysis of our proposed

scheme. Finally, we conclude the paper in section 7.

Preliminaries

Bilinear pairing

Bilinear pairing [45] plays an important role in constructing many cryptographic schemes,

including our dCLPAKES scheme. Let Z be a set of integers. Set ê : G1 �G1 ! G2 as a bilin-

ear map, mapping groupsG1 andG1 toG2, whereG1,G2 are cyclic groups with the same

prime order p. This mapping satisfies the following properties:

1. Bilinearity: For any u, v 2 Z�p and g, h 2 G1, êðgu; hvÞ ¼ êðg; hÞuv.

2. Non-degeneracy: If g is a generator ofG1, then êðg; gÞ is a generator ofG2.

3. Computability: For any g, h 2 G1, there is an efficient algorithm to calculate êðg; hÞ.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 4 / 24

https://doi.org/10.1371/journal.pone.0230722

Computational bilinear diffie-hellman problem

Definition 1 (CBDH Problem) Let ê : G1 �G1 ! G2 be a bilinear pairing. Given (g, ga, gb, gc),
where a; b; c 2 Z�p are unknown numbers, the goal is to compute the value of êðg; gÞabc.

Decisional bilinear diffie-hellman assumption

The decisional bilinear Diffie-Hellman (DBDH) problem is described as follows.

Given Y ¼ ðg; gx; gy; gz 2 G1; ê : G1 �G1 ! G2;Z 2 G2Þ, where x, y, z are randomly cho-

sen from Z�p, let η be a bit such that η = 1 if Z is randomly selected fromG2, and η = 0 if

Z ¼ êðg; gÞxyz. The DBDH problem is to determine the value of η.

Definition 2 (DBDH Assumption [46, 47]) The DBDH assumption is that for any probabilis-
tic polynomial-time (PPT) algorithm A, the following holds:

jPr½0 AðYÞjZ ¼ 0� � Pr½0 AðYÞjZ ¼ 1�j � neglðlÞ

where the probability is taken over the random choice of x; y; z 2 Z�p, g 2 G1, Z 2 G2.

Review and security analysis of the CLPAEKS and CLPEKS

schemes

In this section, we briefly review the CLPAEKS scheme of He et al. [38] and the CLPEKS

scheme of Ma et al. [39], and give the security cryptanalysis of the two schemes.

Review and security analysis of He et al.’s CLPAEKS scheme

Description of He et al.’s scheme. The CLPAEKS scheme can be described as follows:

• Setup: Input a security parameter l. The KGC selects two cyclic groupsG1,G2 with the same

prime order q and a bilinear pairing ê : G1 �G1 ! G2. Let P be a generator ofG1; The

KGC chooses a random number s 2 Z�q as the master key and computes Ppub = sP. The KGC

selects three different hash functions: h1 : f0; 1g
�
�G1 ! Z�q , H2 : f0; 1g

�
! G1 and

h3 : f0; 1g
�
�G1 �G1 �G1 ! Z�q . Then, the KGC publishes the system parameters

prms ¼ fl;G1;G2; ê; P; Ppub; h1;H2; h3g.

• Extract-Partial-Private-Key: Input the sender’s identity IDS 2 {0, 1}�. The KGC selects a

random number rIDS
2 Z�q and computes RIDS

¼ rIDS
P, aIDS

¼ h1ðIDS;RIDS
Þ and

dIDS
¼ rIDS

þ saIDS
ðmod qÞ. Then, the KGC returns ðdIDS

and RIDS
Þ to the sender. In parallel,

the partial private key ðdIDR
, RIDR

Þ of the receiver is calculated in the same way.

• Set-Secret-Value: This takes IDS, IDR 2 {0, 1}� as input. The sender and the receiver choose

random numbers xIDS
and xIDR

as their secret values, respectively.

• Set-Private-Key: This sets the sender’s private key and the receiver’s private key as SKIDS
¼

ðxIDS
; dIDS
Þ and SKIDR

¼ ðxIDR
; dIDR
Þ, respectively.

• Set-Public-Key: The sender computes PIDS
¼ xIDS

P and sets PKIDS
¼ ðPIDS

;RIDS
Þ as its public

key. The receiver computes PIDR
¼ xIDR

P and sets PKIDR
¼ ðPIDR

;RIDR
Þ as its public key.

• CLPAEKS: This takes prms; IDS; IDR; SKIDS
; PKIDR

as input. The sender encrypts the keyword

w as follows:

1. The sender chooses a random number r 2 Z�q .

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 5 / 24

https://doi.org/10.1371/journal.pone.0230722

2. The sender computes bIDS
¼ h3ðIDS; Ppub; PIDS

;RIDS
Þ, bIDR

¼ h3ðIDR; Ppub; PIDR
;RIDR

Þ,

C1 ¼ ðdIDS
þ bIDS

xIDS
ÞH2ðwÞ þ rP, C2 ¼ rðbIDR

PIDR
þ RIDR

þ aIDR
PpubÞ.

The final ciphertext for the keyword is C = (C1, C2).

• Trapdoor: This takes prms; IDS; IDR; SKIDR
; PKIDS

as input. The data receiver runs the follow-

ing steps to compute the trapdoor Tw:

1. Compute bIDR
¼ h3ðIDR; Ppub; PIDR

;RIDR
Þ, bIDS

¼ h3ðIDS; Ppub; PIDS
;RIDS
Þ.

2. Compute Tw ¼ êððdIDR
þ bIDR

xIDR
ÞH2ðwÞ; bIDS

PIDS
þ RIDS

þ aIDS
PpubÞ.

• Test: Take prms, the trapdoor Tw and ciphertext C as input. The cloud server checks whether

TwêðC2; PÞ ¼ êðC1; bIDR
PIDR
þ RIDR

þ aIDR
PpubÞ holds. If it holds, then the server outputs 1.

Otherwise, it outputs 0.

Security analysis. In the random oracle model, the semantic security of the CLPAEKS

scheme against IKGAs is reduced to solve the CBDH problem [38]. Here, we show that the

security reduction for the CLPAEKS scheme is in fact incorrect for two types of adversaries.

We use a reductionist proof for a type 1 adversary as an example to illustrate.

Given an instance (P, aP, bP, cP) of the CBDH problem, assuming that adversary AI

intends to break the CLPAEKS scheme, B makes use of the advantage of AI to compute the

value of êðP; PÞabc. B simulates security games for adversary AI . After AI outputs a guess value

in the guess stage, the simulator B calculates êðP; PÞabc as follows:

êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞbþmi

êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞmi

¼ êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞb

êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞb

êðdIDI
bP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞ

¼ êðbIcP; bIDS
PIDS
þ RIDS

þ aIDS
aPÞb

êðbIcP; bIDS
PIDS
þ RIDS

þ aIDS
aPÞb

êðbIcP; bIDS
xIDS

bPþ rIDS
bPÞ

 !
1

bIaIDS

¼ êðP; PÞabc

The core part of computing êðP; PÞabc is the left-hand side of the first equation. For ease of

description, the numerator and denominator of the fraction in the first equation are abbrevi-

ated as follows:

M ¼ êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞbþmi

N ¼ êðdIDI
P þ bIcP; bIDS

PIDS
þ RIDS

þ aIDS
aPÞmi

Let us see how B obtainsM and N.

N is calculated by B itself, whileM is obtained by B using AI . However, B is unable to use

the adversary AI to obtain the value ofM. Specifically, in the reductionist proof for adversary

AI ,M is the value of the trapdoor of the challenge keywords under the challenge identities

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 6 / 24

https://doi.org/10.1371/journal.pone.0230722

and E5 denotes the event that AI does not ask the hash query for the value of the trapdoor of

the challenge keywords, and we show that Pr[¬E5]� 2ε, where ε denotes the advantage of AI

breaking the CLPAEKS scheme. Thus, B aims to make use of the fact that AI has conducted a

hash query on this trapdoor, namely, the value ofM, with a non-negligible probability in the

interactive game, and then randomly select one from the previous query history asM.

However, in the trapdoor algorithm design of the CLPAEKS scheme [38], no hashing oper-

ation is performed on the value of the trapdoor, that is, Hi(Tw), for some hash function Hi.

Therefore, it is impossible for AI to make the hash query on the trapdoor of the challenge key-

word. In addition, B has no other advantage in obtainingM from AI . In short, the reduction

process shows that B is unable to solve the CBDH problem with AI as a subroutine.

Review and security analysis of Ma et al.’s CLPEKS scheme

A description of Ma et al.’s scheme. The CLPEKS scheme is as follows:

• Setup: Input a security parameter k. The KGC selects two cyclic groupsG1,G2 with the

same prime order q, a bilinear pairing e : G1 �G1 ! G2. Let P be a generator ofG1; the

KGC chooses a random number s 2 Z�q as the master key and computes Ppub ¼ sP 2 G1. The

KGC selects four different hash functions: h1 : f0; 1g
�
�G1 ! Z�q ,

h2 : f0; 1g
�
�G1 �G1 ! Z�q , H3: {0, 1}� ! G1 and h4 : G1 ! f0; 1g

l
. Then, the KGC pub-

lishes public parameters prms ¼ fk;G1;G2; ê; q; P; Ppub; h1; h2;H3; h4g.

• Extract-Partial-Private-Key: Input a user U’s identity ID 2 {0, 1}�. The KGC selects a ran-

dom number tID 2 Z�q and computes TID = tID P, αID = h1(ID, TID) and dID = tID + sαID(mod
q). Then, the KGC sends (dID, TID) to U.

• Set-Secret-Value: Input U’s identity ID. U chooses a random number xID 2 Z�q as its secret

value.

• Set-Private-Key: This sets U’s private key as SKID = (xID, dID).

• Set-Public-Key: U computes PIDS
¼ xIDS

P and sets PKID = (PID, TID) as its public key.

• CLPAEKS: Let W = {wi|i = 1, 2, � � �, m} be a set of keywords. Take prms, ID, PKID as input. U

encrypts the keyword w as follows:

1. Compute βID = h2(ID, PID, TID), choose a random number ri 2 Z�q and compute Ui = ri
P, Qi = H3(wi).

2. Compute Γi = e(ri Qi, βID PID + TID + αID Ppub) and vi = h4(Γi).

The final ciphertext for the keyword is C = {C1, C2, � � �, Cm}, where Ci = (Ui, vi).

• Trapdoor: This takes prms, ID, SKID, PKID as input. U runs the following steps to compute

the trapdoor Tw:

1. Compute βID = h2(ID, PID, TID) and Q = H3(w).

2. Compute Tw = (dID + βID xID)Q.

• Test: Take prms, the trapdoor Tw and ciphertext C as input. The cloud server checks whether

h4(e(Tw, Ui)) = vi holds. If it holds, then the server outputs 1. Otherwise, it outputs 0.

Security vulnerability. In this subsection, we show that the scheme is vulnerable to an

off-line keyword guessing attack. We prove that a malicious adversary can retrieve keyword-

specific information from any query message captured by the protocol.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 7 / 24

https://doi.org/10.1371/journal.pone.0230722

Lemma 1 Ma et al.’s scheme is susceptible to an off-line keyword guessing attack.

Proof 1 An attacker B performs the following steps.

1. B first captures a valid trapdoor Tw. The goal of B is to recover w from Tw. B guesses an
appropriate keyword w0, and computes H3(w0), βID = h2(ID, PID, TID) and αID = h1(ID, TID).

2. B checks whether e(Tw, P) = e(βID H3(w0), PID) � e(H3(w0), TID + αID Ppub). If the equation
holds, the guessed keyword is a valid keyword, namely, w0 = w. Otherwise, go to Step (1). Spe-
cifically, if w0 = w, then

eðTw; PÞ ¼ eððbIDxID þ dIDÞQ; PÞ

¼ eððbIDxID þ dIDÞH3ðwÞ; PÞ

¼ eðbIDxIDH3ðwÞ; PÞ � eðdIDH3ðwÞ; PÞ

¼ eðbIDH3ðwÞ; PIDÞ � eðH3ðwÞ; dIDPÞ

¼ eðbIDH3ðwÞ; PIDÞ � eðH3ðwÞ; ðtID þ saIDÞPÞ

¼ eðbIDH3ðw0Þ; PIDÞ � eðH3ðw0Þ;TID þ aIDPpubÞ

Definitions and system model

System model

We first describe the relationships and interactions among the four entities, namely, the cloud

server, KGC, data sender and data receiver, in dCLPAEKS: The KGC generates the system

parameters and part of the user’s private key according to the user’s identity. The sender

extracts keywords from each data file and uses the sender’s secret key SkIDs
, the receiver’s pub-

lic key PkIDr
and the server’s public key PkCsvr to encrypt keywords to form the dCLPAEKS

ciphertext; then, it encrypts the file by using another encryption algorithm and sends it to the

cloud server along with the keyword ciphertext. To search encrypted files, the receiver uses his

secret key SkIDr
and the sender’s public key PkIDs

to generate the trapdoor Tw of the keywords

and sends it to the cloud server. The cloud server uses its secret key to search and return the

ciphertext files containing the target keywords.

Definition of dCLPAEKS

Our dCLPAEKS scheme consists of the following (probabilistic) polynomial-time algorithms.

• Setup (λ): Given a security parameter λ, this algorithm generates a master public/secret key

pair (mpk, msk) and global parameter params.

• KGenCsvr (params): Given params, it generates a public/secret key pair (PKCsvr, SKCsvr) for

the cloud server.

• PPKGen (params, ID, msk): Given params, a master secret key msk and a user’s identity ID,

it generates the user’s partial private key, referred to as PPKID.

• SVGen (params, ID): Given params and a user’s identity ID, it generates a secret value,

referred to as SVID.

• SKGen (params, PPKID, SVID): Given params, a partial private key PPKID and a secret value

SVID, it generates the user’s secret key, referred to as SKID.

• PKGen (params, SVID): Given params and a secret value SVID, it generates a public key

PKID for the identity ID.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 8 / 24

https://doi.org/10.1371/journal.pone.0230722

• PEKS (params, w, PKCsvr, SKIDs
, PKIDr

, IDs, IDr): Given params, a keyword w, PKCsvr, a

sender’s identity IDs and SKIDs
, and a receiver’s identity IDr and PKIDr

, it generates a cipher-

text Cw.

• Trapdoor (params, w, SKIDr
, PKIDs

, IDr, IDs): Given params, a keyword w, a receiver’s iden-

tity IDr and SKIDr
, and a sender’s identity IDs and PKIDs

, it generates a trapdoor Tw.

• dTest (params, SKCsvr, Cw, Tw, IDs, IDr): Given params, the server’s secret key SKCsvr, a

PEKS ciphertext Cw, a trapdoor Tw, the identity IDs of a sender and the IDr of a receiver, it

outputs 1 if Cw and Tw contain the same keyword, and 0 otherwise.

Security models

There are two types of adversaries, i.e., a Type 1 adversary AI and a Type 2 adversary AII , in

certificateless cryptography [43]. Adversary AI cannot access the master key. However, AI

can extract partial private keys and secret keys, request public keys and replace public keys

with any values he chooses. Adversary AII can access the system’s master key, but cannot

replace the user’s public key.

We define the following five games between the adversaries AI (AII) and a challenger B to

show that our scheme is semantically secure against IKGA.

For adversaries in Game 1 to Game 4, we set the following natural restrictions.

1. The adversary cannot extract the secret key for the challenge identities.

2. The adversary cannot make a ciphertext query and trapdoor query on the challenge key-

words w�
0
, w�

1
for the challenge identity ID�s of a sender and ID�r of a receiver.

Ciphertext indistinguishability. Game 1: Ciphertext indistinguishability for AI

In this game, we set the semi-trusted cloud server as the adversary AI . Ciphertext indistin-

guishability ensures that the ciphertext reveals no information about the underlying keyword

to the cloud server.

• Setup: Given a security parameter λ, the challenger B generates the system parameter

params, the PKG’s public/secret key (mpk, msk), and the server’s public/secret key (PKCsvr,

SKCsvr). It then invokes AI on the input params and (PKCsvr, SKCsvr).

• Phase 1: Adversary AI issues a sequence of queries adaptively polynomial-many times but is

subject to the restrictions defined above.

• Partial Private Key Extraction: Given the user’s identity ID, it returns the user’s partial pri-

vate key PPKID to AI .

• Secret Key Queries: Given the user’s identity ID, B returns the user’s secret key SKID to AI .

• Public Key Queries: Given the user’s identity ID, B returns the user’s public key PKID to

AI .

• Replace Public Key: AI can replace the public key with any value he chooses.

• Ciphertext Queries: Given a keyword w, identity IDs of a sender and identity IDr of a

receiver, B computes the corresponding ciphertext Cw and returns it to AI .

• Trapdoor Queries: Given a keyword w, identity IDs of a sender and identity IDr of a

receiver, B computes the corresponding trapdoor Tw and returns it to AI .

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 9 / 24

https://doi.org/10.1371/journal.pone.0230722

• Challenge: AI outputs two keywords w�
0
, w�

1
, the challenge identity ID�s of a sender and ID�r

of a receiver, and B randomly chooses a bit b 2 {0, 1}, computes the challenge ciphertext Cw�b

and returns it to AI , where Cw�b
¼ PEKSðparams;w�b; PKCsvr; SKID�s

; PKID�r
; ID�s ; ID

�
r Þ.

• Phase 2: Adversary AI continues to issue requests to B, as in phase 1.

• Guess: AI outputs a bit b0 2 {0, 1}, and wins the game if and only if b0 = b.

The advantage of AI winning Game 1 is defined as

AdvC
AI
¼ jPr½b0¼b� �

1

2
j:

Game 2: Ciphertext indistinguishability for AII

In this game, we set the semi-trusted KGC as the adversary AII .

• Setup: B generates the system public parameter params, the PKG’s public/secret key (mpk,

msk), and the server’s public/secret key (PKCsvr, SKCsvr). Then, B returns params and msk to

AII .

• Phase 1: AII can adaptively issue a sequence of queries polynomial-many times but obeys

the restrictions defined above.

• Secret Key Queries: Taking the identity ID as input, B outputs the secret key SKID to AII .

• Public Key Queries: Taking the identity ID as input, B outputs the public key PKID to AII .

• Ciphertext Queries: Given a keyword w, identity IDs of a sender and IDr of a receiver, B
outputs the corresponding ciphertext Cw to AII .

• Trapdoor Queries: Given a keyword w, identity IDs of a sender and IDr of a receiver, B out-

puts the corresponding trapdoor Tw to AII .

• Challenge: AII outputs two keywords w�
0

and w�
1

and the challenge identity ID�s of a sender

and ID�r of a receiver, and B randomly chooses a bit b 2 {0, 1}, computes the challenge

ciphertext Cw�b
and returns it to AII , where

Cw�b
¼ PEKSðparams;w�b; PKCsvr; SKID�s

; PKID�r
; ID�s ; ID

�
r Þ.

• Phase 2: Adversary AII continues to issue queries to B as in phase 1.

• Guess: AII outputs a bit b0 2 {0, 1}, and wins the game if and only if b0 = b.

The advantage of AII winning Game 2 is defined as

AdvC
AII
ðlÞ ¼ jPr½b0¼b� �

1

2
j:

Definition 3 We say that a dCLPAEKS scheme satisfies ciphertext indistinguishability if, for
any polynomial-time adversaries Aiði ¼ I; IIÞ, AdvC

Ai
ðlÞ is negligible.

Trapdoor indistinguishability. Game 3: Trapdoor indistinguishability for AI

Similar to Game 1, we set the semi-trusted cloud server as the adversary AI . Trapdoor

indistinguishability guarantees that the cloud server cannot obtain any information about the

keyword from a given trapdoor. This indicates that the server cannot forge valid ciphertext

and cannot perform offline inside keyword guessing attacks (IKGAs) successfully.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 10 / 24

https://doi.org/10.1371/journal.pone.0230722

• Setup: Same as in Game 1.

• Phase 1: Same as in Game 1.

• Challenge: AI outputs two keywords w�
0

and w�
1

and the challenge identity ID�s of a sender

and ID�r of a receiver, and B randomly chooses a bit b 2 {0, 1}, computes the challenge trap-

door Tw�b
and returns it to AI , where Tw�b

¼ Trapdoorðparams;w�b; SKID�r
; PKID�s

; ID�s ; ID
�
r Þ.

• Phase 2: Adversary AI continues to issue queries to B, as in phase 1.

• Guess: AI outputs a bit b0 2 {0, 1}, if b0 = b, we say AI wins the game. The advantage of AI

in breaking trapdoor indistinguishability in a dCLPAEKS is defined as

AdvT
AI
¼ jPr½b0¼b� �

1

2
j:

Game 4: Trapdoor indistinguishability for AII

Game 4 is similar to Game 2; the difference is that B needs to generate a trapdoor of the

challenge keywords for the challenge identity ID�s of a sender and ID�r of a receiver in Game 4.

Definition 4 We say that a dCLPAEKS scheme satisfies trapdoor indistinguishability if for
any polynomial-time adversaries Aiði ¼ I; IIÞ, AdvT

Ai
ðlÞ is negligible.

Designated testability. Game 5: In this game, we assume that AI is an outside adver-

sary who is allowed to obtain any user’s secret key. Designated testability aims to prevent

adversaries from searching the ciphertexts while guaranteeing that only the designated

server can.

• Setup: B generates the system public parameter params, the PKG’s public/secret key (mpk,

msk), and the server’s public/secret key (PKCsvr, SKCsvr). It invokes AI on input params and

PKCsvr.

• Phase1: Adversary AI can adaptively issue a sequence of queries polynomial-many times.

• Secret Key Queries: Given a user’s identity ID, B return the user’s secret key SKID to AI .

• Public Key Queries: Given a user’s identity ID, B return the user’s public key PKID to AI .

• Challenge: AI outputs two keywords w�
0

and w�
1

and the challenge identity ID�s of a sender

and ID�r of a receiver, and B randomly chooses a bit b 2 {0, 1}, computes the challenge

ciphertext Cw�b
and returns it to AI , where

Cw�b
¼ PEKSðparams;w�b; PKCsvr; SKID�s

; PKID�r
; ID�s ; ID

�
r Þ.

• Phase 2: Adversary AI continues to issue queries to B as in phase 1.

• Guess: AI outputs a bit b0 2 {0, 1}, and if b0 = b, AI wins the game.

The advantage of AI winning Game 5 is defined as

AdvD
AI
¼ jPr½b0¼b� �

1

2
j:

Definition 5 We say that a dCLPAEKS scheme satisfies designated testability if for any
polynomial-time adversary AI , AdvD

AI
ðlÞ is negligible.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 11 / 24

https://doi.org/10.1371/journal.pone.0230722

A instantiation of dCLPAEKS

Concrete dCLPAEKS scheme

Here, we present a concrete dCLPAEKS scheme, which is composed of nine polynomial-time

algorithms.

• Setup (λ): Given a security parameter λ, this algorithm runs as follows:

1. Select two cyclic groupsG1 andG2 with the same prime order p, a bilinear pairing

ê : G1 �G1 ! G2, and a cryptographic hash function H1 : f0; 1g
�
! G1.

2. Select a random number a 2 Z�p as the master key msk and set mpk = gα, where g is an

arbitrary generator ofG1.

3. Choose another arbitrary generator h 2 G1.

4. Choose two additional cryptographic hash functions H : G2 � f0; 1g
�
! G1 and

H2 : f0; 1g
�
� f0; 1g

�
! G1.

The system parameters params¼ ðG1;G2; ê; g; h;H;H1;H2;mpkÞ are publicly and

authentically available, but only the KGC knows the master key msk. Steps (1) and (2) of

the algorithm are run by the KGC.

• KGenCsvr (params): Chooses n 2 Z�p randomly, and outputs the server’s public/secret key

pair (PKCsvr, SKCsvr) = (gν, ν).

• PPKGen (params, IDi, msk): Outputs the partial private key PPKIDi
¼ H1ðIDiÞ

a
.

• SVGen (params, IDi): Selects bIDi
2 Z�p randomly, and outputs the secret value SVIDi

¼ bIDi
.

• SKGen (params, PPKIDi
, SVIDi

): Outputs the secret key

SKIDi
¼ ðSK1

IDi
; SK2

IDi
Þ ¼ ðH1ðIDiÞ

a
; bIDi
Þ.

• PKGen (params, SVID): Outputs the public key PKIDi
¼ gabIDi .

• PEKS (params, w, PKCsvr, SKIDs
, PKIDr

, IDs, IDr): Selects s 2 Z�p randomly and computes

C1 ¼ êðHðk;wÞ;PKCsvrÞ
s
, C2 = gs, C3 = hs, where k ¼ êðSK1

IDs
;H1ðIDrÞÞ �

êðH2ðIDs; IDrÞ; PKIDr
Þ
SK2

IDs outputs the ciphertext Cw = (C1, C2, C3).

• Trapdoor (params, w, SKIDr
, PKIDs

, IDr, IDs): Selects r 2 Z�p randomly, and computes T1 =

H(k, w) � hr, T2 = gr, where k ¼ êðH1ðIDsÞ; SK1
IDr
Þ � êðH2ðIDs; IDrÞ; PKIDs

Þ
SK2

IDr , and outputs

the trapdoor Tw = (T1, T2).

• dTest (params, SKCsvr, Cw, Tw, IDs, IDr): Returns 1 if C1 � êðT
SKCsvr
2 ;C3Þ ¼ êðTSKCsvr

1 ;C2Þ and

0 otherwise.

Security analysis

In this subsection, we analyze the security of the above concrete construction.

dCLPAEKS ciphertext indistinguishability. Theorem 1 Our dCLPAEKS scheme satis-
fies ciphertext indistinguishability under the assumption that DBDH is intractable.

This conclusion is derived from the following two lemmas.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0230722

Lemma 2 For any polynomial-time adversary AI , our dCLPAEKS scheme satisfies cipher-
text indistinguishability in Game 1 under the random oracle model assuming DBDH is
intractable.

Proof 2 Assume that AI is a semi-trusted server that tries to break the ciphertext indistin-
guishability of our dCLPAEKS scheme. We construct a simulator B to solve the DBDH prob-
lem. Given a random challenge ðG1;G2; ê; g; gx; gy; gz;ZÞ, where Z is either equal to êðg; gÞxyz or
a random element ofG2, B interacts with AI as follows:

• Setup: B randomly chooses h fromG1 and n 2 Z�p and sets (PKCsvr, SKCsvr) = (gν, ν) and
params¼ ðG1;G2; ê; p; g; h;mpk ¼ gzÞ. B sends params and (PKCsvr, SKCsvr) to AI .

• Phase1: AI is allowed to issue queries to the following oracles simulated by B. To simplify, let
us make the following assumptions: the adversary does not initiate repeated queries, and the
attacker does not use an identity to perform any calculations before initiating H1 on the
identity.

• H Queries: Upon receiving AI s query on an element k and a keyword w, B randomly
chooses an element fromG1 as the output of H(k, w).

• H1 Queries: Suppose that AI makes at most qH1
queries. A list is maintained by B, referred to

as LH1
. B randomly chooses i; j 2 f1; 2; � � � ; qH1

g, and guesses that the i-th and the j-th H1

queries initiated by AI correspond to the sender’s challenge identity ID�s and receiver’s chal-
lenge identity ID�r , respectively. When AI makes a H1 query on identity ID, B responds as
follows:

1. If this is the i-th query, e.g., ID ¼ ID�s , B outputs H1(ID) = gx and adds< ID, gx,?> to
LH1

.

2. If this is the j-th query, e.g., ID ¼ ID�r , B outputs H1(ID) = gy and adds< ID, gy,?> to
LH1

.

3. Otherwise, B chooses a random number mID 2 Z�p , outputs H1ðIDÞ ¼ gmID and adds< ID,

H1(ID), μID> to LH1
.

• H2 Queries: Given a pair of identities (IDs, IDr), B randomly chooses an element fromG1 as
the output of H2(IDs, IDr).

• Partial Private Key Extraction: When AI asks for the partial private key of the ID, if ID ¼
ID�s or ID ¼ ID�r , B outputs a random bit η0 and aborts. Otherwise, it recovers the tuple<
ID, H1(ID), μID> from LH1

, and returns the partial private key PPKID ¼ ðgzÞ
mID to AI .

• Secret Key Queries: B maintains a list LSK, which is initially empty. Taking ID as input, B
performs the following actions:

1. If ID 6¼ ID�s and ID 6¼ ID�r , it recovers the tuple< ID, H1(ID), μID> from LH1
and chooses

a random number βID as the secret value. Then, B returns the secret key SKID ¼

ððgzÞ
mID ; bIDÞ to AI and adds< ID, SKID> into LSK.

2. Otherwise, B randomly chooses an element bID 2 Z�p as a secret value and adds< ID,?,

βID> into LSK. Then, B outputs a random bit η0 and aborts.

• Public Key Queries: B maintains a list LPK, which is initially empty. Given an identity ID, B
retrieves the tuple< ID, SKID> from LSK, computes the public key PKID ¼ ðgzÞ

bID , and then
returns it to AI and adds< ID, PKID> into LPK.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 13 / 24

https://doi.org/10.1371/journal.pone.0230722

• Replace Public Key: AI can replace the public key with any value he chooses.

• Ciphertext Queries: Taking (w, IDr, IDs) as input, B randomly chooses s 2 Z�p and executes
the following steps:

1. If at least one of IDr and IDs is not equal to ID�r or ID
�
s , without loss of generality, we

assume that IDs =2fID�s ; ID
�
rg. B recovers< IDs;H1ðIDsÞ; mIDs

> from LH1
, < IDs; SKIDs

>

from LSK, and< IDr; PKIDr
> from LPK, computes k ¼ êðgz;H1ðIDrÞÞ

mIDs �

êðH2ðIDs; IDrÞ; PKIDr
Þ
SK2

IDs and returns C1 ¼ êðHðk;wÞ; PKCsvrÞ
s
, C2 = gs, C3 = hs.

2. Otherwise, B outputs a random bit η0 and aborts.

• Trapdoor Queries: Taking (w, IDr, IDs) as input, B randomly chooses r 2 Z�p and responds as
follows:

1. If at least one of IDr and IDs is not equal to ID�r or ID
�
s , without loss of generality, we

assume that IDs =2fID�s ; ID
�
rg. B recovers< IDs;H1ðIDsÞ; mIDs

> from LH1
, <

IDr; SKIDr
> from LSK, and< IDs; PKIDs

> from LPK, computes k ¼ êðgz;H1ðIDrÞÞ
mIDs �

êðH2ðIDs; IDrÞ; PKIDs
Þ
SK2

IDr and returns T1 = H(k, w) � hr, T2 = gr.

2. Otherwise, B outputs a random bit η0 and aborts.

• Challenge: AI issues a challenge on two different keywords w�
0
, w�

1
, a sender’s identity ID�s and

a receiver’s identity ID�r . B randomly selects a bit b 2 {0, 1} and an element s 2 Z�p , and com-

putes the ciphertext Cw�b
¼ ðC�

1
;C�

2
;C�

3
Þ, where C�

1
¼

êðHðZ � êðH2ðID�s ; ID
�
r Þ; PKID�r

Þ
SK2

ID�s ;w�bÞ; PKCsvrÞ
s and C�

2
¼ gs, C�

3
¼ hs.

• Phase 2: Simulator B responds as in phase 1.

• Guess: AI outputs a bit b0 2 {0, 1}, and then B outputs η0 = 0 if b0 = b and 1 otherwise.

If B guesses that the challenge identities are incorrect, B aborts. Denote by abt the event that
B aborts. The probability that event abt does not occur is 1=qH1

� ðqH1
� 1Þ.

Assume that B does not abort in the game. If Z ¼ êðg; gÞxyz, the view of AI is the same as in a
real attack, and AI succeeds in the game with probability AdvC

AI
¼ kPr½b0¼b� � 1

2
k. If Z is selected

fromG2 randomly, then k is also a random element inG1, so AI wins Game 1 with probability
at most 1

2
. Hence, the advantage of B in solving the DBDH problem is

AdvDBDH
B

¼ jPr½Z0¼Zjabt� � Pr½abt� þ Pr½Z0¼Zj:abt� � Pr½:abt� �
1

2
j

¼ j
1

2
ð1 � Pr½:abt�Þ þ ðPr½Z0¼0j:abt^Z¼0� � Pr½Z¼0� þ Pr½Z0¼1j:abt^Z¼1� � Pr½Z¼1�Þ � Pr½:abt� �

1

2
j

� j
1

2
ð1 � Pr½:abt�Þ þ Pr½:abt� �

1

2
AdvC

AI
ðlÞ þ

1

2

� �

þ
1

2
�
1

2

� �

�
1

2
j

¼
1

2
Pr½:abt� � AdvC

AI
ðlÞ

¼
1

2qH1
� ðqH1

� 1Þ
� AdvC

AI
ðlÞ

If AdvC
AI
ðlÞ is not negligible, then AdvDBDH

B is not negligible.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 14 / 24

https://doi.org/10.1371/journal.pone.0230722

Lemma 3 For any polynomial-time adversary AII , our dCLPAEKS scheme satisfies cipher-
text indistinguishability in Game 2 under the random oracle model, assuming DBDH is
intractable.

Proof 3 Assume that AII is a semi-trusted KGC that tries to break the ciphertext indistin-
guishability of our dCLPAEKS scheme. Given a DBDH instance ðG1;G2; ê; p; g; gx; gy; gz;ZÞ,
we will construct an algorithm B to solve the DBDH problem by using AII as a subroutine. B
interacts with AII as follows:

• Setup: B selects h fromG1 and a 2 Z�p randomly and sets params¼ ðG1;G2; ê; p; g; h;mpk ¼

gaÞ and PKCsvr = gx. Then, B sends params, PKCsvr and msk = α to AII .

• Phase 1: AII executes the following queries; assume that AII does not repeat its queries.

• H Queries: A list is maintained by B, referred to as LH, which is initially empty. Taking an
element k and a keyword w as input, B randomly chooses mk;w 2 Z�p , returns Hðk;wÞ ¼
gygmk;w to AII and adds< (k, w), H(k, w), μk,w> into LH.

• H1 Queries: Given an identity ID, B randomly selects an element fromG1 as the H1(ID)

value and returns it to AII .

• H2 Queries: Given a pair of identities (IDs, IDr), B randomly chooses an element fromG1 as
its H2(IDs, IDr) value, and outputs it to AII .

• Secret Key Queries: B maintains a list LSK that is initially empty. Taking an identity ID as
input, B selects a random number bID 2 Z�p as the secret value and returns the secret key
SKID = ((H1(ID)α, βID) to AII . Then, B adds< ID, H1(ID)α, βID> into LSK.

• Public Key Queries: B maintains a list LPK that is initially empty. Given an identity ID, B
recovers the tuple< ID, H1(ID)α, βID> from LSK, computes the public key PKID ¼ ðgaÞ

bID ,

and returns it to AII . Then,< ID, PKID> is added to LPK.

• Ciphertext Queries: Taking (w, IDr, IDs) as input, B recovers the tuple< (k, w), H(k, w), μk,w

> from LH, where k ¼ êðSK1
IDs
;H1ðIDrÞÞ � êðH2ðIDs; IDrÞ; PKIDr

Þ
SK2

IDs . If there is no such
tuple, B generates it as in previous queries. Then, B randomly chooses s 2 Z�p and computes
the ciphertext Cw = (C1, C2, C3), where C1 ¼ êðHðk;wÞ; PKCsvrÞ

s and C2 = gs, C3 = hs.

• Trapdoor Queries: Taking (w, IDr, IDs) as input, B recovers the tuple< (k, w), H(k, w), μk,w

> from LH, where k ¼ êðH1ðIDsÞ; SK1
IDr
Þ � êðH2ðIDs; IDrÞ; PKIDs

Þ
SK2

IDr . If there is no such
tuple, B generates it as in previous queries. Then, B randomly chooses r 2 Z�p and computes
trapdoor Tw = (T1, T2), where T1 = H(k, w) � hr, T2 = gr.

• Challenge: AII submits two challenge keywords w�
0
, w�

1
, the sender’s challenge identity ID�s and

the receiver’s challenge identity ID�r . B chooses a random bit b 2 {0, 1} and recovers the tuple

< ðk�;w�bÞ;Hððk
�;w�bÞ; mk� ;w�b

>, where k� ¼ êðSK1
ID�s
;H1ðID�r ÞÞ � êðH2ðID�s ; ID

�
r Þ; PKID�r

Þ
SK2

ID�s . If

there is no such tuple, B generates it as in previous queries. Then, it computes the challenge
ciphertext Cw�b

¼ ðC�
1
;C�

2
;C�

3
Þ, where C�

1
¼ Z � êðgz; gxÞ

mk� ;w�
b ;C�

2
¼ gz;C�

3
¼ hz.

• Phase 2: Simulator B responds as in phase 1.

• Guess: AII outputs a bit b0; if b0 = b, B outputs η0 = 0, and it outputs 1 otherwise.

If Z ¼ êðg; gÞxyz, then the challenge ciphertext is a correctly distributed verifiable ciphertext,
so the view of AII is the same as in real attack, and AII succeeds in Game 2 with probability

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0230722

AdvC
AII
þ 1

2
. If Z is selected fromG2 randomly, then C�

1
is also a random element inG1; hence,

AII succeeds in the game with probability at most 1

2
. Therefore, the advantage of B in solving the

DBDH problem is

AdvDBDH
B

¼ jPr½Z0¼ZjZ¼1� � Pr½Z¼1� þ Pr½Z0¼ZjZ¼0� � Pr½Z¼0� �
1

2
j

� j
1

2
�
1

2
þ

1

2
AdvC

AII
ðlÞ þ

1

2

� �

�
1

2
j

¼
1

2
� AdvC

AII

If AC
IIðlÞ is not negligible, then AdvDBDH

B is not negligible.

Trapdoor indistinguishability of dCLPAEKS. Theorem 2 Our dCLPAEKS scheme sat-
isfies trapdoor indistinguishability under the assumption that DBDH is intractable.

This conclusion is derived from the following two lemmas.

Lemma 4 For any polynomial-time adversary AI , our dCLPAEKS scheme satisfies trapdoor
indistinguishability in Game 3 under the random oracle model, assuming DBDH is intractable.

The proof of Lemma 4 is similar to that of Lemma 2. The difference is that the simulator

generates a challenge trapdoor in the challenge stage. We omit the proof details here.

Lemma 5 For any polynomial-time adversary AII , our dCLPAEKS scheme satisfies trap-
door indistinguishability in Game 4 under the random oracle model, assuming DBDH is
intractable.

Proof 4 Assume that AII is a semi-trusted KGC that tries to break the trapdoor indistinguish-
ability of our scheme. We construct a simulator B to solve the DBDH problem. Given a random
challenge ðG1;G2; ê; p; g; gx; gy; gz;ZÞ, B interacts with AII as follows:

• Setup: B selects h fromG1 and n; a 2 Z�p randomly and sets params¼
ðG1;G2; ê; p; g; h;mpk ¼ gaÞ and (PKCsvr, SKCsvr) = (gν, ν). B returns params, PKCsvr and msk

= α to AII .

• Phase 1: B responds to AII ’ inquiry as follows, assuming that AII does not initiate repeated
queries.

• H Queries: Given a keyword w and an element k, B randomly chooses an element fromG1 as
the output of H(k, w).

• H1 Queries: Given an identity ID, B picks a random number fromG1 and returns it to AII

as the H1(ID) value of ID.

• H2 Queries: Suppose that AII issues at most qH2
queries. A list is maintained by B, referred

to as LH2
, which is initially empty. B randomly selects i 2 f1; 2; � � � ; qH2

g and guesses that
the two identities in the i-th inquiry are the sender’s challenge identity ID�s and receiver’s
challenge identity ID�r , respectively. Taking a pair of identities (IDs, IDr) as input, B responds
as follows:

1. If this is the i-th query, e.g., ðIDs; IDrÞ ¼ ðID�s ; ID
�
r Þ, it returns H2(IDs, IDr) = gz and adds

< (IDs, IDr), gz,?> into LH2
.

2. Otherwise, B randomly chooses mr;s 2 Z�p , returns H2ðIDs; IDrÞ ¼ gmr;s and adds<
ðIDs; IDrÞ; gmr;s ; mr;s > into LH2

.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 16 / 24

https://doi.org/10.1371/journal.pone.0230722

• Secret Key Queries: A list is maintained by B, called LSK. Given an identity ID, B responds as
follows:

1. If ID =2 ðID�s ; ID
�
r Þ, B selects a random number bID 2 Z�p as the secret value of the identity

ID and returns the secret key SKID = (H1(ID)a, βID) to AII , then adds< ID, SKID> into
LSK.

2. Otherwise, B outputs a random bit η0 and aborts.

• Public Key Queries: B maintains an initially empty list LPK. Taking an identity ID as input,
B returns a value to AII according to the following conditions:

1. If ID ¼ ID�s , it outputs PKID = (gx)α and adds< ID, (gx)α> into LPK.

2. If ID ¼ ID�r , it outputs PKID = (gy)α and adds< ID, (gy)α> into LPK.

3. Otherwise, B retrieves the tuple< ID, H1(ID)a, βID> from LSK and computes the public
key PKID ¼ ðgaÞ

bID . Then, B returns PKID to AII and adds< ID, PKID> into LPK.

• Ciphertext Queries: Taking (w, IDr, IDs) as input, B randomly chooses s 2 Z�p and computes
the ciphertext Cw = (C1, C2, C3) as follows:

1. If ðIDr; IDsÞ ¼ ðID�r ; ID
�
s Þ or ðIDr; IDsÞ ¼ ðID�s ; ID

�
r Þ, B computes C1 ¼

êðHðêðH1ðIDsÞ
a
;H1ðIDrÞÞ � ZaÞ;wÞ; PKCsvrÞ

s and C2 = gs, C3 = hs.

2. Otherwise, at least one of IDr and IDs is not equal to ID�r or ID
�
s . Without loss of generality,

we assume that IDs =2fID�s ; ID
�
rg. B recovers< ðIDs; IDrÞ; gmr;s ; mr;s > from LH2

and<
IDs; PKIDs

> from LPK, computes k ¼ êðH1ðIDsÞ
a
;H1ðIDrÞÞ � eðgy; PKIDs

Þ
mr;s and returns

C1 ¼ êðHðk;wÞ;PKCsvrÞ
s
, C2 = gs, C3 = hs.

• Trapdoor Queries: Taking (w, IDr, IDs) as input, B randomly chooses r 2 Z�p , and computes
the trapdoor Tw = (T1, T2) as follows:

1. If ðIDr; IDsÞ ¼ ðID�r ; ID
�
s Þ or ðIDr; IDsÞ ¼ ðID�s ; ID

�
r Þ, B computes T1 ¼

HðêðH1ðIDsÞ;H1ðIDrÞ
a
Þ � ZaÞ;wÞ � hr and T2 = gr.

2. Otherwise, at least one of IDr and IDs is not equal to ID�r or ID
�
s . Without loss of generality,

we assume that IDs =2fID�s ; ID
�
rg. B recovers< ðIDs; IDrÞ; gmr;s ; mr;s > from LH2

and<
IDs; PKIDs

> from LPK, computes k ¼ êðH1ðIDsÞ;H1ðIDrÞ
a
Þ � eðgy; PKIDs

Þ
mr;s and returns

T1 = H(k, w) � hr, T2 = gr.

• Challenge: AII submits two challenge keywords w�
0
, w�

1
, the sender’s challenge identity ID�s and

the receiver’s challenge identity ID�r . B chooses a random bit b 2 {0, 1} and an element r 2 Z�p ,

computes ciphertext C�
1
¼ êðHðêðH1ðID�s Þ

a
;H1ðID�r ÞÞ � Z

aÞ;w�bÞ; PKCsvrÞ
s
, C�

2
¼ gs, C�

3
¼ hs

and returns ciphertext Cw�b
¼ ðC�

1
;C�

2
;C�

2
Þ to AII .

• Phase2: B responds as in phase 1.

• Guess: AI outputs a bit b0 2 {0, 1}, and then B outputs η0 = 0 if b0 = b and 1 otherwise.

If B guesses that the challenge identities are incorrect, then B aborts. Denote by abt the event
that B aborts. The probability that event abt does not occur is 1

qH2

.

Assume that B does not abort in the game. If Z ¼ êðg; gÞxyz, the view of AII is the same as in
a real attack, and AII succeeds in the game with probability AdvT

AII
þ 1

2
. If Z is chosen fromG2

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0230722

randomly, then k is also a random element inG1; hence, AII would win Game 4 with probability
at most 1

2
. Therefore, the advantage of B in solving the DBDH problem is

AdvDBDH
B

¼ jPr½Z0¼Zjabt� � Pr½abt� þ Pr½Z0¼Zj:abt� � Pr½:abt� �
1

2
j

¼ j
1

2
ð1 � Pr½:abt�Þ þ Pr½:abt� � ðPr½Z0¼0j:abt^Z¼0� � Pr½Z¼0� þ Pr½Z0¼1j:abt^Z¼1� � Pr½Z¼1�Þ �

1

2
j

� j
1

2
�

1

2
� Pr½:abt� þ Pr½:abt� �

1

2
AdvT

AII
ðlÞ þ

1

2

� �

þ
1

2
�
1

2

� �

�
1

2
j

¼
1

2
Pr½:abt� � AdvT

AII
ðlÞ

¼
1

2
�

1

qH2

� dvAIIT
ðlÞ

If AdvAIITðlÞ is not negligible, then AdvDBDH
B ðlÞ.

Theorem 3 Our dCLPAEKS scheme satisfies designated testability under the assumption
that DBDH is intractable.

Proof 5 Assume that outside adversary AI tries to break the designated testability of our
dCLPAEKS scheme. We build an algorithm B with AI as a subroutine to solve the DBDH
problem. Given a DBDH instance ðG1;G2; ê; p; g; gx; gy; gz;ZÞ, B interacts with AI as follows:

• Setup: B selects h fromG1 and a 2 Z�p randomly and sets params¼ ðG1;G2; ê; p; g; h;mpk ¼

gaÞ and PKCsvr = gx. Then, B sends params and PKCsvr to AI .

• Phase 1: B answers AI s inquiries as follows, assuming that AI does not repeat his inquiries.

• H1 Queries: Given an identity ID, B randomly chooses an element fromG1 as the H1(ID)

value and returns it to AI .

• H2 Queries: Given a pair of identities (IDs, IDr), B randomly selects an element fromG1 as
the H2(IDs, IDr) value, and outputs it.

• H Queries: A list LH is maintained by B that is initially empty. Taking an element k and a
keyword w as input, B randomly chooses mk;w 2 Z�p , returns Hðk;wÞ ¼ gygmk;w to AI and
adds< (k, w), H(k, w), μk,w> into LH.

• Secret Key Queries: B maintains a list LSK that is initially empty. Taking an identity ID as
input, B selects a random number βID 2 Zp as the secret value of identity ID and returns the
secret key SKID = ((H1(ID)α, βID) to AI . Then, B adds< ID, H1(ID)α, βID> into LSK.

• Public Key Queries: B maintains a list LPK that is initially empty. Given an identity ID, B
recovers the tuple< ID, H1(ID)α, βID> from LSK, computes the public key PKID ¼ ðgaÞ

bID ,

and returns it to AI . Then,< ID, PKID> is added to LPK.

• Challenge: AI submits two different challenge keywords w�
0
, w�

1
, the sender’s identity ID�s and

the receiver’s identity ID�r . B chooses a random bit b 2 {0, 1} and recovers the tuple

< ðk�;w�bÞ;Hððk
�;w�bÞ; mk� ;w�b

>, where k� ¼ êðSK1
ID�s
;H1ðID�r ÞÞ � êðH2ðID�s ; ID

�
r Þ; PKID�r

Þ
SK2

ID�s . If

there is no such tuple, B generates it as in previous queries. Then, B computes the challenge
ciphertext Cw�b

¼ ðC�
1
;C�

2
Þ, where C�

1
¼ Z � êðgz; gxÞ

mk� ;w�
b ;C�

2
¼ gz;C�

3
¼ hz.

• Phase 2: The simulator B responds as in phase 1.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 18 / 24

https://doi.org/10.1371/journal.pone.0230722

• Guess: AI outputs a bit b0; if b0 = b, B outputs η0 = 0, otherwise 1. If Z ¼ êðg; gÞxyz, the view of
AI is the same as in a real attack, and AI succeeds in Game 5 with probability AdvD

AI
þ 1

2
. If Z

is selected fromG2 randomly, then C�
1
is also a random element inG1; hence, AI succeeds in

the game with probability at most 1

2
. Therefore, the advantage of B in solving the DBDH prob-

lem is

AdvDBDH
B

¼ jPr½Z0¼ZjZ¼1� � Pr½Z¼1� þ Pr½Z0¼ZjZ¼0� � Pr½Z¼0� �
1

2
j

¼ j
1

2
�
1

2
þ

1

2
AdvD

AI
ðlÞ þ

1

2

� �

�
1

2
j

¼
1

2
� AdvD

AI

If AdvD
AI
ðlÞ is not negligible, then AdvDBDH

B .

Evaluation

In this section, we evaluate the security properties, computational complexity and communica-

tion overhead of our scheme, and compare it with the schemes proposed in [17, 43, 44], and

[19]. Table 1 shows the comparison between these schemes and our dCLPAEKS scheme in

terms of security. As shown by Table 1, our scheme provides security against inside keyword

Table 1. Comparison of security.

Scheme Functionalities
C Ind T Ind SCF IKGAs

SCF-MCLPEKS+ [17]
p

×
p

×
CLPEKS [43]

p
×

p
×

SCF-MCLPEKS [44]
p

×
p

×
CL-dPAEKS [19]

p
×

p
×

Proposed scheme
p p p p

C Ind: Ciphertext Indistinguishability, T Ind: Trapdoor Indistinguishability, SCF: Secure Channel Free, IKGAs:

Security against Inside Keyword Guessing Attacks.

https://doi.org/10.1371/journal.pone.0230722.t001

Table 2. Comparison of communication overhead.

Scheme communication overhead
Size(PK) Size(C) Size(Tw)

SCF-MCLPEKS+ [17] |G1| 2|G1| + |G2| 2|G1|

CLPEKS [43] |G1| |G1| + |Zp| |G1|

SCF-MCLPEKS [44] 2|G1| |G1| + |Zp| |G1|

CL-dPAEKS [19] 2|G1| 2|G1| 2|G1| + |G2|

Proposed scheme |G1| 2|G1| + |G2| 2|G1|

Size(PK): Size of Public Key, Size(C): Size of Ciphertext, Size(Tw): Size of Trapdoor, |G1|: Size of an element in G1, |

G2|: Size of an element in G2, |Zp|: Size of an element in Zp.

https://doi.org/10.1371/journal.pone.0230722.t002

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 19 / 24

https://doi.org/10.1371/journal.pone.0230722.t001
https://doi.org/10.1371/journal.pone.0230722.t002
https://doi.org/10.1371/journal.pone.0230722

guessing attacks and against outside keyword guessing attacks without requiring a secure

channel.

The communication overhead of the five schemes is given in Table 2. According to Table 2,

the communication overhead of our dCLPAEKS scheme is almost the same as that of

SCF-MCLPEKS+ and CL-dPAEKS.

Table 3. Computational efficiency comparison.

scheme PEKS Trapdoor Test
SCF-MCLPEKS+ [17] 4E+2H+h+2P 3E+h+2A E+2P+h+A+M

CLPEKS [43] 5E+3P+3H+2h 3E+H+h+2A 2E+P+h+4A

SCF-MCLPEKS [44]) 4E+3P+3H+h+A E+H+A E+P+2H+h+2A

CL-dPAEKS [19] 5E+H+2h+3A 7E+H+3h+P+4A 4E+2P+M

Our scheme 3E+3H+3P 3E+3H+2P+M E+2P+M

E: a scalar multiplication operation; P: a bilinear pairing operation; H: a Hash-to-point operation; h: a general hash

function operation; A: an addition operation; M: a multiplication operation

https://doi.org/10.1371/journal.pone.0230722.t003

Fig 1.

https://doi.org/10.1371/journal.pone.0230722.g001

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 20 / 24

https://doi.org/10.1371/journal.pone.0230722.t003
https://doi.org/10.1371/journal.pone.0230722.g001
https://doi.org/10.1371/journal.pone.0230722

The comparison of computational complexity is given in Table 3. We compare the compu-

tational costs of the PEKS, Trapdoor and Test algorithms of the schemes. The results show that

our scheme is comparable with the other schemes.

We implemented our scheme, the SCF-MCLPEKS+ scheme [17], the CL-dPAEKS scheme

[19] and CLPEKS [43] on a laptop with a 3.10-GHz Intel i5 CPU with a 64-GB memory and an

Ubuntu Linux operating system. We used the PBC library [48], in which Type-A pairing was

chosen. The pairing operation is based on the curve y2 = x3 + x over the field Fp. The parameter

set is |G1| = |G2| = 128-bit.

To compare the computational efficiency of the four schemes, including our scheme in

more detail, we tested the running time of the ciphertext algorithm and trapdoor algorithm.

As shown in Fig 1, the ciphertext generation of our scheme has the highest computational effi-

ciency compared with the other schemes. According to Fig 2, as the number of keywords

increases, our scheme outperforms the other two schemes in computational efficiency. Fig 1.

Computation cost of ciphertext generation in different schemes. Fig 2. Computation cost of

trapdoor generation in different schemes.

Conclusions

In a cloud-based IoT environment, protecting the privacy and security of sensitive data stored

in the cloud is a major concern. An effective method is certificateless public key searchable

Fig 2.

https://doi.org/10.1371/journal.pone.0230722.g002

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 21 / 24

https://doi.org/10.1371/journal.pone.0230722.g002
https://doi.org/10.1371/journal.pone.0230722

encryption (CLPEKS), which both enables search over encrypted data and avoids the problems

of certificate management and key escrow. In this paper, we demonstrated that the security

reduction for the CLPAEKS scheme proposed by He et al. is incorrect under two types of

adversaries, and Ma et al.’s CLPEKS scheme is susceptible to an off-line KGAs. We then pro-

posed a new certificateless public key searchable encryption scheme, which overcomes a limi-

tation of these two schemes—the need for a secure channel—and solves the security defect that

the CLPEKS scheme cannot resist a KGAs. In addition, in comparison with the other recently

proposed CLPEKS schemes, the performance analysis demonstrates that our scheme is more

efficient and has higher security.

Author Contributions

Conceptualization: Bin Wu, Caifen Wang, Hailong Yao.

Formal analysis: Bin Wu, Caifen Wang.

Methodology: Bin Wu, Caifen Wang, Hailong Yao.

Resources: Bin Wu, Caifen Wang.

Writing – original draft: Bin Wu, Caifen Wang.

Writing – review & editing: Bin Wu, Caifen Wang.

References
1. Atzori L, Iera A, Morabito G. The Internet of Things: A survey. COMPUT NETW. 2010, 54(15):2787–

2805.

2. Ray PPA survey on Internet of Things architectures. Journal of King Saud University–Computer and

Information Sciences. 2018, 30(3):291–319.

3. Ren H, Li H, Dai Y, Yang K, Lin X. Querying in Internet of Things with Privacy Preserving: Challenges,

Solutions and Opportunities. IEEE Network. 2018, 32(6):144–151.

4. Xu L, He W, Li S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Infor. 2014, 10(4)2233–

2243.

5. Doukas C, Pliakas T, Maglogiannis I. Mobile healthcare information management utilizing cloud com-

puting and android OS. In: Proc. IEMBC 2010, LNCS, 2010, 6110:1–23.

6. Li X, Huang X, Li C, et al. EdgeCare: Leveraging Edge Computing for Collaborative Data Management

in Mobile Healthcare Systems. IEEE Access. 2019, 7:22011–22025.

7. Dropbox. http://www.dropbox.com/.

8. Windows azure. http://www.microsoft.com/windowsazure/.

9. Babu SM, Lakshmi AJ, Rao BT et al. A study on cloud based Internet of Things: CloudIoT. In: Proc.

GCCT 2015. 60–65.

10. Conti M, Dehghantanhab A, Frankec K, Watsond S. Internet of Things security and forensics: Chal-

lenges and opportunities. Future Generation Computer Systems. 2018, 78:544–546.

11. Ojha T, Misra S, Raghuwanshi RN, Poddar H. DVSP: Dynamic Virtual Sensor Provisioning in Sensor–

Cloud-Based Internet of Things. IEEE Internet of Things Journal. 2019, 6(3):5265–5272.

12. Pan W, Chai C. Structure-aware Mashup service Clustering for cloud-based Internet of Things using

genetic algorithm based clustering algorithm. Future Generation Computer Systems. 2018, 87:267–

277.

13. Meerja KA, Naidu PV, Kalva S R K. Price Versus Performance of Big Data Analysis for Cloud Based

Internet of Things Networks. Mobile Netw Appl. 2019, 24:1078–1094.

14. Boveiri HR, Khayami R, Elhoseny M et al. An efficient Swarm-Intelligence approach for task scheduling

in cloud-based internet of things applications. J Ambient Intell Human Comput. 2019, 10:3469–3479.

15. Li H, Yang Y, Dai Y, et al. Achieving Secure and Efficient Dynamic Searchable Symmetric Encryption

over Medical Cloud Data. IEEE T CLOUD COMPU. 2018, 1–1.

16. Song D, Wagner D, Perrig A. Practical techniques for searches on encrypted data In: Proc. IEEE Symp

Secur Privacy, Berkeley, CA, USA, 2000, 44-55.

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 22 / 24

http://www.dropbox.com/
http://www.microsoft.com/windowsazure/
https://doi.org/10.1371/journal.pone.0230722

17. Wu T, Chen C, Wang K. Security Analysis and Enhancement of a Certificateless Searchable Public Key

Encryption Scheme for IIoT Environments. IEEE Access. 2019, 7:49232–49239.

18. Boneh D, Crescenzo G, Ostrovsky R, Persiano G. Publickey encryption with keyword search. In: Proc.

EUROCRYPT 2004. LNCS, 2004, 3027:506–522.

19. Wu L, Zhang Y, Ma M, et al. Certificateless searchable public key authenticated encryption with desig-

nated tester for cloud-assisted medical Internet of Things. ANN TELECOMMUN. 2019, 74(7-8):423–

434.

20. Xu P, He S, Wang W, et al. Lightweight Searchable Public-key Encryption for Cloud-assisted Wireless

Sensor Networks. IEEE T IND INFORM. 2018, 14(8):3712–3723.

21. Khader D. Introduction to attribute based searchable encryption. In: Proc. CMS 2014. LNCS, 2014,

8735:131–135.

22. Ning J, Xu J, Liang K, et al. Passive Attacks Against Searchable Encryption. IEEE T INF FOREN SEC.

2018, 14(3):789–802.

23. Baek J, Safiavi-Naini R, Susilo W. Public key encryption with keyword search revisited. In: Proc. ICCSA

2008. 2008, 1249–1259.

24. Huang Q, Li H. An efficient public-key searchable encryption scheme secure against inside keyword

guessing attacks. Inf Sci. 2017, 403–404:1–14.

25. Li H, Huang Q, Shen J, et al. Designated-server identity-based authenticated encryption with keyword

search for encrypted emails. Inf Sci. 2019, 48:330–343.

26. Xie R, Xu C, He C, Zhang X. Lattice-based searchable public-key encryption scheme for secure cloud

storage. INT J WEB GRID SERV, 2018, 14(1)3–20.

27. Zhang Y, Li Y, Wang Y. Conjunctive and disjunctive keyword search over encrypted mobile cloud data

in public key system. MOB INF SYST. 2018, 2018:1–11.

28. Zhang X, Tang Y, Wang H, Xu C, et al. Lattice-based proxy-oriented identity-based encryption with key-

word search for cloud storage. Inf Sci. 2019, 494:193–207.

29. Zhang X, Xu C, Wang H, Zhang Y, et al. FS-PEKS: Lattice-based Forward Secure Public-key Encryp-

tion with Keyword Search for Cloud-assisted Industrial Internet of Things. IEEE T DEPEND SECURE.

2019, 1–15.

30. Byun JW, Rhee HS, Park HA, et al. Off-line keyword guessing attacks on recent keyword search

schemes over encrypted data. In: Proc. SDM 2006. LNCS, 2006, 4165:75–83.

31. Yau W C, Heng S H, Goi B M. Off-Line Keyword Guessing Attacks on Recent Public Key Encryption

with Keyword Search Schemes. In: Proc. ATC 2008. LNCS, 2008, 5060:100–105.

32. Rhee H, Park J, Susilo W, et al Trapdoor security in a searchable public-key encryption scheme with a

designated tester. J SYST SOFTWARE. 2010, 83(5):763–771.

33. Sun L, Xu C, Zhang M, Chen K, Li H. Secure searchable public key encryption against insider keyword

guessing attacks from indistinguishability obfuscation. Sci China Inf Sci. 2018, 61(3) 038106.

34. Xu P, Jin H, Wu Q, Wang W. Public-key encryption with fuzzy keyword search: A provably secure

scheme under keyword guessing attack. IEEE T COMPUT. 2013, 62(11):2266–2277.

35. Chen R, Mu Y, Yang G, et al. Dual-server public-key encryption with keyword search for secure cloud

storage. IEEE T INF FOREN SEC. 2016, 11(4):789–798.

36. Lu Y, Wang G, Li J. Keyword guessing attacks on a public key encryption with keyword search scheme

without random oracle and its improvement. Inf Sci. 2019, 479:270–276.

37. Xie R, He C, Xie D, et al. A secure ciphertext retrieval scheme against Insider KGAs for mobile devices

in cloud storage. SECUR COMMUN NETW. 2018, 2018:1–7.

38. He D, Ma M, Zeadally S. Certificateless public key authenticated encryption with keyword search for

industrial internet of things. IEEE T IND INFORM. 2018, 14(8):3618–3627.

39. Ma M, He D, Khan MK, et al. Certificateless searchable public key encryption scheme for mobile health-

care system. COMPUT ELECTR ENG. 2018, 65:413–424. https://doi.org/10.1016/j.compeleceng.

2017.05.014

40. Liu C, Zhu L, Wang W, Tan Y. pattern leakage in searchable encryption: attacks and new construction.

Inf Sci. 2013, 265–188. https://doi.org/10.1016/j.ins.2013.11.021

41. Wang B, Chen T, Jeng F. Security improvement against malicious server’s attack for a dPEKS scheme.

International Journal of Information and Education Technology. 2011, 1(4):350–353, 2011.

42. Al-Riyami S S, Paterso KG. Certificateless public key cryptography. In: Proc. ASIACRYPT 2003.

LNCS, 2003, 2894:452–473.

43. Peng Y, Cui J, Ying Z. Certificateless public key encryption with keyword search. CHINA COMMUN.

2014, 11(11):100–113. https://doi.org/10.1109/CC.2014.7004528

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 23 / 24

https://doi.org/10.1016/j.compeleceng.2017.05.014
https://doi.org/10.1016/j.compeleceng.2017.05.014
https://doi.org/10.1016/j.ins.2013.11.021
https://doi.org/10.1109/CC.2014.7004528
https://doi.org/10.1371/journal.pone.0230722

44. Ma M, He D, Kumar N, et al. Certificateless searchable public key encryption scheme for industrial inter-

net of things. IEEE T IND INFORM. 2018, 14(2):759–767. https://doi.org/10.1109/TII.2017.2703922

45. Boneh D, Franklin M. Identity-based encryption from the weil pairing. In: Proc. CRYPTO 2001. LNCS,

2001, 2139:213–229.

46. Boyen X. The uber-assumption family. In: Proc. Pairing 2008, LNCS, 2008, 5209:39–56.

47. He D.Chen Y, Joux JA. A one round protocol for tripartite Diffie-Hellman. In: Proc. ANTS 2000. LNCS,

2000, 1838:385–393.

48. Lynn B, et al. Pairing-based crytography library. 2013, (https://crypto.stanford.edu/pbc/).

PLOS ONE Security analysis and certificateless searchable public key authenticated encryption

PLOS ONE | https://doi.org/10.1371/journal.pone.0230722 April 9, 2020 24 / 24

https://doi.org/10.1109/TII.2017.2703922
https://crypto.stanford.edu/pbc/
https://doi.org/10.1371/journal.pone.0230722

