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Haploidentical stem cell transplantation (haploSCT) has advanced to a common procedure
for treating patients with hematological malignancies and immunodeficiency diseases.
However, cure is seriously hampered by cytomegalovirus (CMV) infections and delayed
immune reconstitution for the majority of haploidentical transplant recipients compared to
HLA-matched stem cell transplantation. Three major approaches, including in vivo T-cell
depletion (TCD) using antithymocyte globulin for haploSCT (in vivo TCD-haploSCT), ex vivo
TCD using CD34 + positive selection for haploSCT (ex vivo TCD-haploSCT), and T-cell
replete haploSCT using posttransplant cyclophosphamide (PTCy-haploSCT), are currently
used worldwide. We provide an update on CMV infection and CMV-specific immune
recovery in this fast-evolving field. The progress made in cellular immunotherapy of CMV
infection after haploSCT is also addressed. Groundwork has been prepared for the creation
of personalized avenues to enhance immune reconstitution and decrease the incidence of
CMV infection after haploSCT.
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INTRODUCTION

HLA-haploidentical stem cell transplantation (haploSCT) has spread rapidly worldwide in recent
years. HLA-haploidentical donors sharing a single HLA haplotype with transplant recipients are
almost always available, so haploSCT can be performed for patients who are lacking HLA-matched
donors and/or are urgently needing transplantation. The major approaches for T-cell depletion are
in vivo T-cell depletion using antithymocyte globulin (ATG) (in vivo TCD-haploSCT), ex vivo T-cell
depletion (TCD) using CD34 + positive selection (ex vivo TCD-haploSCT), and T-cell replete
haploSCT using posttransplant cyclophosphamide (PTCy-haploSCT). Compared with HLA-
identical sibling transplantation, patients undergoing haploSCT usually receive more intensive
immunosuppressors to guarantee engraftment and later prevent graft-versus-host disease (GVHD).
Therefore, these patients always have impaired immune reconstitution after transplantation and
a high incidence of CMV infection and CMV disease (Figure 1). As the use of haploidentical
transplantation has increased substantially, we summarize current data on CMV infection and its
immune reconstitution after haploSCT during the last decade.
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INCIDENCE OF CYTOMEGALOVIRUS
INFECTION AFTER haploSCT

In Vivo TCD-haploSCT (Anti-Thymocytic
Globulin/ATG-Based)
Using the Beijing protocol at Peking University (1–7), there was
a high incidence of CMV reactivation early after haploSCT (59.5-
66%), whereas the rate of CMV disease was actually low (2.92-
17%). CMV DNAemia was initially detected after a median of 35
days with a mean duration of positivity of 15 days (5, 6). Most
(91.2%) cases of CMV gastroenteritis developed within 100 days,
whereas most (90.3%) cases of CMV retinitis were late onset with
Frontiers in Immunology | www.frontiersin.org 2
the cumulative incidence of CMV retinitis at 2.3% one year
(a median onset of 167 days) after haploSCT (6, 7). Einat
Shmueli et al. from Israel designed a conditioning protocol for
haploSCT including fludarabine, thiotepa, anti-thymocytic
globulin, and total body irradiation (8). After receiving
preemptive therapy, the incidence of CMV infection was 66.7%
in haploSCT, and 11.6% of haploSCT transplant recipients with
CMV reactivation developed CMV disease. Importantly, drug-
resistance mutations and clinically suspected resistance were
discovered only in haploSCT recipients (8), favoring
prophylactic over preemptive treatment in high-risk patients
and highlighting the need for better anti-CMV drugs.
FIGURE 1 | Overview of immune reconstitution to cytomegalovirus and cellular immunotherapy after three major approaches of haploidentical stem cell
transplantation (haploSCT). In vivo TCD-haploSCT, in vivo T-cell depletion (TCD) using antithymocyte globulin for haploSCT; Ex vivo TCD-haploSCT, ex vivo TCD
using CD34 + positive selection for haploSCT; PTCy-haploSCT, T-cell replete haploSCT using posttransplant cyclophosphamide. G-CSF, granulocyte-colony
stimulating factor; G-PBSC, G-CSF primed peripheral blood stem cells; G-BM, G-CSF primed bone marrow; HSC, hematopoietic stem cell; CMV, cytomegalovirus;
CNI, calcineurin inhibitors; MTX, methotrexate; MMF, mycophenolate mofetil; DLI, donor lymphocyte infusion; NK cell, natural killer cell; Treg, regulatory T cell; HSCT,
hematopoietic stem cell transplantation. Created with BioRender (https://biorender.com/).
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It remains unclear whether primary disease affects CMV
infection after haploSCT. Lan‐Ping Xu et al. from Peking
University conducted studies to confirm the feasibility of
haploidentical transplantation in patients with severe aplastic
anemia (SAA) as salvage therapy (9–12). CMV viremia occurred
in 51.7~84.00% of SAA patients. However, no difference in the
rates of early CMV disease between haploidentical patients
and matched related patients was found (9, 10). Consistently,
several centers in China obtained similar results for SAA patients
(13–15). The haploSCT cohorts with AML, MDS, or Ph+ ALL,
including haplo-cord-HSCT, had higher CMV viremia than the
HLA-matched HSCT cohorts (16–19), but the incidence of CMV
disease was not significantly different between the two groups.
Even in pediatric patients with MDS or patients with relapsed/
refractory acute lymphoblastic leukemia after CAR-T therapy
who underwent haploSCT, the incidence of CMV reactivation/
infection was less than 60%, and very few patients developed
CMV disease (20, 21).

Using a similar protocol, several transplant centers have
reported promising results for unmanipulated haploidentical
peripheral blood stem cell transplantation (PBSCT) (22, 23) or
cotransplantation of unrelated cord blood (UCB) (24–26) or
mesenchymal stem cells (MSCs) (27, 28). The 1-year cumulative
incidence of CMV DNAemia in patients with hematologic
malignancies was 23.5-41.7% in the matched sibling donor
(MSD)-SCT group versus 62.1-81.0% in the haploSCT group
with peripheral blood stem cells (PBSCs) (29, 30). The median
time to the onset of CMV DNAemia in the haploSCT group was
33 days (range, 10–159 days) with the 1-year cumulative
incidence of CMV disease at 7.9% (95% CI, 3.6–14.3%) (29).
In addition, a total of 19.4%-92% of these patients experienced
CMV reactivation after combination of haploSCT with UCB or
MSCs (24–28). There was no statistical significance in the
incidence of CMV viremia in terms of haplo-cord SCT vs
HLA-matched donor SCT (MD-SCT) or haplo-cord SCT vs
haploSCT (24–26).

As the use of ATG as a regimen for in vivo TCD and
immunosuppressants is limited by impaired immune restoration
and a high risk of severe infections, researchers are working on
their impact after haploSCT. Peking University performed a study
comparing 6mg/kg ATG versus 10mg/kg ATG in patients who
underwent haploSCT (31). The 1-year cumulative incidence of
CMV reactivation was similar between the ATG-6 and ATG-10
groups[(75.0% (66.8–83.2%) vs 78.6% (75.2–82.0%)]. Another
multicenter study investigated the impact of 7.5 mg/kg and 10.0
mg/kg rabbit ATG on GVHD and virus reactivation after
haploSCT (32). The 1-year incidence of CMV DNAemia was
higher in the 10.0 mg/kg group [83.4% (77.5-87.9)] than in the 7.5
mg/kg group [73.4% (67.2-79.4)], whereas the 2-year incidence of
CMV-associated diseases was also higher in the 10.0 mg/kg group
[5.9% (3.2–9.7%)] than in the 7.5 mg/kg group [1.5% (0.4–4.0%)].
YuWang et al. recently extended follow-up from this original trial
(33). They found that patients undergoing haploSCT benefit from
7.5 mg/kg ATG compared to 10.0 mg/kg ATG based on a balance
between GVHD and infection control. The data supports ATG
Frontiers in Immunology | www.frontiersin.org 3
(7.5 mg/kg) is potentially the standard regimen in this platform.
Researchers from Japan and the Republic of Korea later performed
haploSCT using low-dose thymoglobulin at 5 mg/kg (34, 35).
CMV reactivated in 41.67% and 72.7% of patients, but CMV
disease developed in 0 and 19.4% of patients, respectively. A recent
report from the Republic of Korea indicated that the cumulative
incidence of CMV DNAemia at 3 years was 45.7% (30.7-59.4) for
ATG (5-10 mg/kg)-based haploSCT (36). Moreover, a short-term
tacrolimus regimen for the prophylaxis of GVHD in haploSCT did
not increase the incidence of CMV infection compared with the
Cyclosporine A regimen (39.5% vs. 37.5%, p = 0.783) (37).

Ex Vivo TCD-haploSCT
CD34+ selection was initially used as a method for TCD, but it
resulted in delayed immune reconstitution and a high incidence
of opportunistic infections and nonrelapse mortality. The ex vivo
TCD techniques have developed from CD34+ selection, CD3+ cell
depletion, and ab+/CD19+ cell depletion to recent CD45RA+
depletion. Compared with CD34+ cell selection, after CD3+
cell depletion, the graft has more natural killer (NK) cells,
monocytes, and other immunomodulating cells with better
outcomes. Sameh Gaballa et al. retrospectively compared data
on patients undergoing a two-step (a fixed T cell infusion
followed 2 days later by cyclophosphamide, and then a CD34-
selected stem cell product infused) haploidentical or matched
related PBSCT for high-risk hematological malignancies and
aplastic anemia (38). Compared with the matched related
PBSCT group (matched related, 19%), the 100-day cumulative
incidence of CMV viremia was higher in the haploidentical
group (haploidentical, 67%). The median time to develop
CMV reactivation was 26 days in the haploSCT group and 36
days in the matched related PBSCT group.

The cumulative incidence of CMV DNAemia in patients with
acute leukemia was 73.5-81% after ex vivo ab T cell-depleted
haploSCT (39, 40). No patient developed CMV disease or died
(39). A more recent study explored the role of interim-foscarnet
prophylaxis in preventing CMV infection after ex vivo ab T cell-
depleted haploSCT in children between May 2012 and May 2018
(41). Forty (50.8%) of 81 patients developed CMV reactivation
at a median of 41.3 days (range, 13–132) after haploSCT.
The median duration of CMV reactivation was 28.5 days
(range, 1–179), and the peak PCR level was 3.82 log copies/mL
(range, 2.85–6.03) (41). In nonmalignant disease, ganciclovir/
foscarnet significantly decreased CMV reactivation incidence
(43.7% vs. 78.3%), whereas the prophylaxis strategy had no
significant impact in patients with hematological malignancies.
No significant difference was found in the rate of CMV disease
according to prophylaxis method. It suggests that this intensified
antiviral strategy may be necessary for ab T cell-depleted
haploSCT patients with nonmalignant disease who require
higher doses of ATG.

Through TCR a+b+/CD19+ cell-depleted haploSCT, it is
feasible to transfer to the transplant recipient both donor
hematopoietic stem cells (HSCs) and hematopoietic
progenitors as well as NK and gd T cells, which could protect
October 2021 | Volume 12 | Article 732826
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against leukemia and life-threatening infections, including
posttransplant lymphoproliferative disease (PTLD). A total of
7.27-75% of patients undergoing TCR a+b+/CD19+ cell
depleted HSCT experienced CMV reactivation (42–46). Most
patients experienced CMV viremia during the first month after
haploSCT (days +1 to +24) (45). In a report including three
sickle cell disease and 11 thalassemia patients, Gaziev J et al.
stated that viral reactivation occurred in the vast majority of
patients after TCR a+b+/CD19+ cell–depleted haploSCT, with
CMV reactivation in 64%, although no cases of CMV were
noted (47).

After removal of potentially alloreactive CD45RA+ cell
depletion, memory T cells, including virus-specific T cells left
in grafts, could shorten viremia and reduce GVHD (48). B M
Triplett et al. reported data from 17 patients with poor-prognosis
hematologic malignancy who underwent haploSCT with
CD45RA-depleted grafts after a reduced intensity conditioning
regimen without TBI or serotherapy (49). Three patients of 17
received anti-CMV treatment after CMV reactivation. None of
the patients experienced CMV disease, and all of them cleared
CMV viremia without donor lymphocyte infusion (DLI). Early
T-cell reconstitution was directly linked to the CD45RA-depleted
graft content. This group then compared 41 patients receiving
CD3‐depleted (CD3dep recipients) grafts with 26 receiving
CD45RA‐depleted grafts (CD45dep recipients) after haploSCT
(50). CD3dep recipients were more likely to develop CMV
reactivation—23 (56%) vs 5 (19%). All CD3dep recipients with
CMV received treatment, and eight (36%) were also infused with
donor lymphocytes for CMV, whereas CMV treatment was
needed for only three of the five CD45RAdep recipients.
Although three CD3dep recipients died with active CMV
viremia, CMV was not detected in CD45RAdep recipients at
the time of death. It seems that CD45RA-depleted haploSCT
confers enhanced T-cell recovery and reduced infection without
increase in severe GVHD among these ex vivo TCD methods.

PTCy-haploSCT
PTCy is a method of in vivo T cell depletion that mainly acts on
alloreactive T cells after haploSCT. CMV reactivation was
noticed in 42%-69.2% of patients who underwent PTCy-
haploSCT (51–58). A total of 2.8%-4.5% of patients
experienced CMV-associated disease (51, 52). CMV
reactivation occurred at a median time of 35-39 days (51, 52,
57). The median time to first episode of CMV DNAemia was 33
days (range, −7 to 123 days) after haploSCT (58). Moreover, the
CMV DNA peak load was remarkably higher in haploSCT
recipients, but the mortality by days 180 and 365 did not differ
among comparison groups (55). Garcıá-Cadenas Irene et al.
studied the impact of HLA donor matching on infection in
patients receiving PTCy-based alloSCT (59). They found that
haploSCT recipients had a higher incidence of CMV infection/
reactivation at 18 months than other transplant modalities [(61%
(95% CI: 41–74%) vs. 44% (95% CI: 31–54%)], whereas lethal
infections were uncommon across all these groups. In their
study, severe infections were common in transplant patients
using PTCy. A more recent CIBMTR analysis reported (51) that
PTCy increased the risk of CMV infection among CMV-
Frontiers in Immunology | www.frontiersin.org 4
seropositive recipients in both haploSCT and matched sibling
donor HSCT compared with calcineurin inhibitor–based sibling
donor transplantation, suggesting intensive CMV prevention
strategies in all receiving PTCy. This is supported by the fact
that an intensified method to prevent CMV reactivation
correlated with a lower incidence of CMV reactivation (67%
intensified group versus 81% traditional group) and less CMV
disease (0% hybrid/intermediate dose versus 8% traditional dose)
without increased toxicity after PTCy-haploSCT compared with
a traditional antiviral prophylaxis regimen (60).

Primary disease and conditioning regimen could also impact
CMV infection after PTCy-haploSCT. CMV reactivation post
engraftment was noted in 43.7% and 62% of transplant recipients
with primary immune deficiency disorders (PIDs) (61) and
relapsed/refractory SAA (62) undergoing PTCy-haploSCT,
respectively. R V Raj et al. then investigated the effect of
conditioning intensity on the incidence of viral infection after
PTCy-haploSCT (63). Their study found that challenging viral
infections after haploSCT cause significant morbidity in this
patient population. It appears that the incidence of viral
complications is higher following myeloablative doses of
busulfan-containing conditioning regimens (63). Emmanuel
Katsanis et al. recently performed a single center phase I study
substituting day +4 PTCy with bendamustine (PT‐BEN)
following myeloablative conditioning and T‐cell replete
haploidentical bone marrow transplantation (64). CMV
reactivation was notably less common in trial patients receiving
PTCy/BEN, with one out of eight at-risk (seropositive recipient
and/or seropositive donor) of experiencing CMV reactivation,
whereas 71.4% of the at‐risk PTCy patients reactivated CMV.

Compared with bone marrow (BM) as a graft source, PBSCs
could yield higher CD34+ cell counts but were possibly
accompanied by increased GVHD; however, no difference in
GVHD was observed in haploSCT (65). A total of 46-68% of
patients with PTCy-haploSCT and PBSC grafts had
posttransplant CMV viremia (65–69). The median time to
viremia was 24 days (range: 3–68). CMV disease occurred in
17-28.8% of patients with CMV viremia (65, 68). Sirolimus with
micophenolate mofetil (MMF) has recently been regarded as an
alternative to calcineurin inhibitor-containing approaches, as
this combination has a decreased risk of acute renal failure,
decreased incidence of CMV reactivation, and better regulatory
T cell reconstitution. Some groups have introduced PTCy plus
sirolimus andMMF (PT-CY-Sir-MMF) as GVHD prophylaxis in
allo-HSCT, regardless of donor type (70, 71). CMV DNAemia
occurred in 52-63% of patients after haploSCT. The cumulative
incidence of CMV DNAemia in patients who received pre-
emptive antiviral therapy at one year was 39% (95% CI, 31–
47%), and the 1-year cumulative incidence of CMV disease was
2.6% (95% CI, 0.09–5%) (70).

ATG+ PTCy-haploSCT
As ATG is usually used to reduce the risk of graft rejection and
GVHD, it is assumed that ATG combined with PTCy in T-cell
replete-haploSCT would minimize GVHD risk but not impact
engraftment and risk of relapse. Princes Margaret Cancer Centre
from Canada established unmanipulated haploidentical PBSC
October 2021 | Volume 12 | Article 732826
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transplantation following RIC with ATG (total 4.5 mg/kg), PTCy
(cyclophosphamide 50 mg/kg/day i.v. on days +3 and +4), and
cyclosporine as a GVHD prevention strategy (72–74). CMV
reactivation occurred in 74% of cases with CMV disease in
11.5% of cases (72). Cheng‐Hsien Lin et al. retrospectively
compared the cumulative incidence of CMV DNAemia, two‐
year OS, and leukemia‐free survival rates in acute leukemia
patients with MSD, matched unrelated donor (MUD), and
haploidentical donor allografts (ATG: 2 mg·kg-1 day-1, from
day -3 to day -2; PTCy) (75). The cumulative incidences of CMV
DNAemia at day 180 in the haploidentical groups were 85.7%,
which were higher than those in the MSD and MUD allo‐HSCT
groups. For the haploidentical groups, CMV DNAemia was
detected at a median time of 29 days.

Yu Wang et al. from Peking University initiated a prospective
study in patients with a standard-dose ATG/granulocyte colony-
stimulating factor (G-CSF)-based regimen (ATG-PTCy)
followed by low-dose PTCy (14.5 mg/kg on days 3 and 4) for
haploSCT (76, 77). The 100-day cumulative incidence of CMV
reactivation in the ATG-PTCy cohort was markedly higher than
that in the ATG cohort (74% vs 30%), with a comparable
incidence of CMV disease between the two cohorts (8% vs 8%)
(77), indicating that dual T cell depletion with PTCy and ATG
may bring about a higher incidence of CMV reactivation.

Comparison Among These Approaches
Published data have been inconsistent on the incidence of CMV
reactivation and CMV disease after haploSCT (Table 1). It
indicates that haploSCT carries a substantially higher risk for
CMV infection compared with HLA‐matched related or
unrelated allo‐HSCTs, but this seemed not to impact overall
and non‐relapse mortality. Hence, some data suggest the use of
prophylactic anti-CMV antivirals when PTCy is used because a
higher incidence of CMV reactivation was associated with the
use of PTCy (51, 60). Surprisingly, a systematic review and meta-
analysis of studies on haploSCT in idiopathic AA suggested that
the addition of PTCy correlated with a lower risk of CMV
viremia (10.4%) to a larger extent than MTX-containing
(55.7%) and other (38.6%) regimens (79). The opposite results
can be partly explained by the absence of an approved threshold
of viral load to initiate anti-CMV treatment, considering the
different transplant centers. The heterogeneous CMV serological
status in the donor/recipient on account of geographical and
ethnological characteristics is another possible explanation
because the CMV seroprevalence is usually much higher
(>=90%) in adult populations of China than in Europe and the
USA (80–84). This issue could be better investigated in a future
clinical trial.

Johanna Tischer et al. retrospectively compared the incidence
of virus infections and outcome in two different haploSCT
settings (78). The first approach was the combination of T cell
repletion and T cell depletion (CD6 deletion) using ATG prior to
haploSCT (cTCR/TCD group). The second was T cell repletion
(TCR) using high-dose posttransplantation cyclophosphamide
(TCR/PTCy group). CMV reactivation occurred more frequently
in the cTCR/TCD group (57%) than in the TCR/PTCy group
(31%). Furthermore, pre-emptive treatment of CMV reactivation
Frontiers in Immunology | www.frontiersin.org 5
was successful in the TCR/PTCy group, whereas CMV DNA
became undetectable in only 50% of the cTCR/TCD group.
CMV-SPECIFIC IMMUNE
RECONSTITUTION AND ITS
ASSOCIATION WITH CMV REACTIVATION
AFTER haploSCT

CMV-Specific T Cell (CTL)
We previously investigated CMV-specific T cell (CMV-CTL)
reconstitution post in vivo TCD-haploSCT (85–87). The CD8+ T
cell number in transplant recipients was comparable to that of
controls at day 60 after transplantation. The median number of
CMV-CTLs and their subsets was equal to those of the controls
from day 30 to day 360. In addition, haploSCT recipients had a
high frequency of CMV-CTLs with strong proliferation
capacities and interferon-g production at one year after
transplantation (86). CMV-specific T cells with the central
memory CD45RO+CD62L+ cell phenotype were significantly
expanded when CMV was reactivated early after transplantation
(87). Ruri Kato et al. demonstrated that there were considerably
lower maximum numbers of CMV-CTLs in the CMV
antigenemia resolved group than in the persistent group
(median, 22.15 vs. 50 cells/ml) (88). Nevertheless, CMV-CTLs
reached a peak more quickly in the resolved group than in the
persistent group (median, 21 vs. 78 days) (88).

M Noviello et al. retrospectively explored either CD34
selection or posttransplant sirolimus as GVHD prophylaxis for
haploSCT recipients (89). At 30 days, 21.7% of patients had
CMV-specific T cells higher than 1 sfc/mL measured by enzyme-
linked immunosorbent spot (ELISPOT), whereas CMV viremia
occurred in only one patient who received anti-CMV treatment.
At 90 days, 29.0% of patients reached this threshold, and no
patients experienced clinically relevant viremia. At 180 days,
52.9% of patients finally reached the threshold, and none of them
experienced CMV viremia. They found the protective value of 1
CMV sfc/mL against CMV reactivation posttransplant (89).

Dixie Huntley et al. performed a multicenter observational
study to monitor CMV-specific T cell kinetics in PTCy-
haploSCT patients and compared it with HLA-matched
transplantation (58). In their analysis, CMV DNAemia
developed at a similar frequency with equal numbers of CMV-
specific T-cell at most time points examined between PTCy-
haploSCT and MRD/MUD recipients. CMV DNAemia did not
affect CMV-specific CD8+ and CD4+ T-cell reconstitution by
the end of the follow-up period (day +180) in either allo-HSCT
modality. They claimed that PTCy-haploSCT recipients may
restore CMV-specific T-cell immunity to the same extent as
HLA-matched allo-HSCT patients (58). The same group also
reported that CMV infection was related to high levels of CD27
−CD28− T cells, which behave like Tregs (90). They found a
suboptimal correlation between CMV-specific CD4+ or CD8+ T
cells and Tregs in peripheral blood (PB), which was weaker in
patients with CMV reactivation prior to immunological
monitoring. This suggests that recovery of PB Tregs and that
October 2021 | Volume 12 | Article 732826
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TABLE 1 | Selected reports on CMV infection after haploidentical stem cell transplantation.

CMV
eactivation

CMV
disease

Clinical outcome/Comments Reference

-day 64% 4% 2-year relapse (18%); 3-year
OS (67%), LFS (63%), NRM
(18%). More CMV-seropositive
patients became antigenemia-
positive than CMV-seronegative
patients.

(4)

50% 6.85% CMV DNAemia was found to be
a poor prognostic factor in
terms of NRM and OS. HBsAg
seropositivity was associated
with an increased risk of
cytomegalovirus DNAemia.

(5)

80% 1-year CMVR
2.3%

CMVR was a rare complication
after haploidentical HSCT but
that the risk was greater in
patients with multiple risk
factors.

(6)

2.92% 1 year NRM 34.9% in patients
with CMV diseases

(7)

30% 1% 3-year OS (89.0%); FFS
(86.8%)

(9)

70% 1.12% 3-year OS (86.1 ± 3.7%); FFS
(85.0 ± 3.9%)

(10)

00 ± 0.29% 1.96% 1- and 3-year OS 83.5 ± 5.4%
(the probabilities of FFS were
equal to the OS)

(11)

20% NR 3-year OS (84.5 ± 5.0%); FFS
(82.7 ± 5.2%)

(12)

90% 4.88% 3-year OS (80.3 ± 5.1%); FFS
(76.4 ± 5.1%); GFFS (79.0 ±
8.6%)

(13)

47% 2.05% 4-year OS (81.4 ± 3.3%); GFFS
(69.2 ± 3.9%)

(24)

90% 0 2-year OS 77.3% (27)

30% 0 1-year OS 71.60 ± 17.00% (14)

08% 3.85% TRM 3.8% (100-day), 11.5%
(1-year), 15.4% (2-year); OS
84.6% (follow-up of 1313.2
days)

(15)

4 ± 5.1% 1.06% 3-year OS 74.9 ± 2.4%; LFS
73.8 ± 4.8%; relapse rates 14.3
± 4.0%; NRM 12.3 ± 3.5%

(16)

00% 4.00% 2-year relapse 27.0% ± 5.6%;
PFS 59.3% ± 5.8%; OS 63.0%
± 5.8%; GRFS 42.6% ± 5.9%

(17)
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Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assays
measuring

CMV
DNAemia

Cutoff values for
CMV reactivation
or reactivation
needing PET

r

Y Wang et al. 2013 China 756 AML (321); ALL
(299); CML (136)

BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY CsA+MMF+short-
term MTX

Real-time
PCR or with
a CMV pp65
antigenemia
test

NR 100

Y Chen et al. 2016 China 248 AL (201); CML (32);
Others (15)

BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 or
1.5mg/kg×4d

Modified BUCY
(241); TBI+CY
+Me-CCNU (7)

CsA+MMF+short-
term MTX

Real-time
PCR (RT-
PCR)

A viral load of
>500 copies/ml for
two consecutive
readings 5 days
apart

59.

CH Yan et al. 2020 China 1466 AML (801); ALL
(490); MDS (175)

BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY
(1416); TBI+CY
+Me-CCNU (50)

CsA+MMF+short-
term MTX

Automated,
real-time,
quantitative
PCR assay

A detection
threshold of >1000
copies/ml was
defined as positive

64.

XY Meng el al. 2020 China 3862 AML (36); ALL (51);
MDS (14); CML (4);
SAA (2); Others (6)

BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY
or TBI+CY+Me-
CCNU
BUCY (SAA)

CsA+MMF+short-
term MTX

Real-time
PCR

A limit of detection
of 509 IU/mL

NR

LP Xu et al. 2016 China 101 SAA BM
+PBSC
(100); BM
(1)

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

BUCY CsA+MMF+short-
term MTX

NR NR 68.

LP Xu et al. 2017 China 89 SAA (69); VSAA (20) BM
+PBSC
(78); BM
(9); PBSC
(2)

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

BUCY CsA+MMF+short-
term MTX

NR NR 51.

LP Xu et al. 2018 China 51 SAA BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

BUCY CsA+MMF+short-
term MTX

NR NR 84.

LP Xu et al. 2017 China 52 pediatric
patients

SAA (32); VSAA (20) BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

BUCY CsA+MMF+short-
term MTX

NR NR 69.

Y Lu et al. 2018 China 41 SAA BM
+PBSC

in vivo TCD-haploSCT r-ATG 7.5 mg/kg
(total dose) ATG-
F 20mg/kg (total
dose)

BUCY Tacro+MMF+short-
term MTX

PCR Higher than 500
copies/mL

65.

L Liu et al. 2020 China 146 SAA (75); VSAA
(71); SAA with PNH
clone (15)

BM (15);
PBSC (4);
BM +
PBSC
(127)

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

BUCY CsA+MMF+short-
term MTX

Real-time
PCR

NR 42.

Z Liu et al. 2017 China 44 SAA (31); VSAA (13) BM
+PBSC
+MSCs

in vivo TCD-haploSCT r-ATG 3.125
mg/kg×4d

BUCY CsA+MMF+short-
term MTX

NR NR 65.

Z Wang et al. 2014 China 17 children
and
adolescents

SAA (11); VSAA (5);
2nd HSCT (1)

BM
+PBSC
+MSC

in vivo TCD-haploSCT r-ATG 5mg/
kg×4d (-4 to -1);
ALG 20mg/kg/
day d-4 to -1

Flu+BUCY CsA+MMF+short-
term MTX
+basiliximab

Real-time
PCR

NR 82.

L Gao et al. 2014 China 26 SAA (16); VSAA (10) BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Flu+CY CsA+MMF+short-
term MTX

PCR NR 23.

Y Lu et al. 2021 China 377 AML BM
+PBSC

in vivo TCD-haploSCT r-ATG 7.5-
10mg/kg; ATG-F
20mg/kg

Modified BUCY,
n=118; Intensified
BU-based MAC,
n=259

CsA+MMF+short-
term MTX

Real-time
quantitative
PCR

NR 67.

Jiafu Huang
et al.

2020 China 75 patients
aged over
50 years

AML (60); MDS (15) BM
+PBSC

in vivo TCD-haploSCT r-ATG 7.5-
10mg/kg

BUCY or BF or
TBI+CY

CsA+MMF+short-
term MTX

PCR NR 64.
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TABLE 1 | Continued

MV
tivation

CMV
disease

Clinical outcome/Comments Reference

0 3-year DFS and 3-year OS
81.9%

(20)

0 2-year OS 64%; RFS 56%;
relapse 12%; NRM 33%

(19)

8.51% 2-year OS 63.8%; LFS 59.5% (18)

NR 2-year LFS 65.6%; OS 77.0% (21)

(Short-
cro);
(CsA)

NR 2-year OS 59.3% (Short-term
Tacro), 55.7% (CsA); 2-year
DFS 65.1% (Short-term Tacro),
61.4% (CsA)

(37)

75.0%
) and
(ATG-10)

0.89%
(ATG-6) and
5.36%
(ATG-10)

1-year relapse 7.6% (ATG-6),
4.6% (ATG-10); NRM 8.1%
(ATG-6), 10.3% (ATG-10); OS
88.4% (ATG-6), 87.0% (ATG-
10); DFS 84.3% (ATG-6);
86.0% (ATG-10)

(31)

0 1-year OS 33.3%, PFS 24.3%,
RR 59.0%, and NRM 16.7%

(34)

19.40% OS 52.3% (mismatched) and
55.3% (matched); GRFS
40.6% (mismatched) and
42.2% (matched); Relapse
22.5% (mismatched) and 8.6%
(matched); NRM 28.9%
(mismatched) and 27.1%
(matched)

(35)

NR 14-month OS 53.28% (28)

NR 3-year OS (66.6 ± 6.2)%; RFS
(62.0 ± 6.5)%; relapse (24.2 ±
6.4)%; NRM (16.9 ± 5.1)%

(25)

y 59.8%
aploSCT)
.6%
CT)

2.88% 2-year relapse 25.9% (Cord-
HaploSCT) and 53.2%
(HaploSCT); NRM 38.8%
(Cord-HaploSCT) and 24.6%
(HaploSCT); OS 35.5% (Cord-
HaploSCT) and 22.7%
(HaploSCT); PFS 35.5% (Cord-
HaploSCT) and 17.9%
(HaploSCT)

(26)

(Continued)
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Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assays
measuring

CMV
DNAemia

Cutoff values for
CMV reactivation
or reactivation
needing PET

C
reac

P Suo et al. 2020 China 27 MDS BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY CsA+MMF+short-
term MTX

Quantitative
PCR

PET was given
when a single
CMV DNA > 1000
copies/mL or 600
copies/mL were
observed twice.

59.30%

P Ke et al. 2018 China 48 MDS BM (9);
PBSC (1);
BM
+PBSC
(38);
coinfusion
of the
cord
blood

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY CsA+MMF+short-
term MTX

NR NR 42%

L Gao et al. 2015 China 47 Ph+ ALL BM
+PBSC

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

TBI+Ara-C+CY CsA+MMF+short-
term MTX

NR NR 38.30%

H Zhao et al. 2020 China 55 ALL BM
+PBSC or
PBSC

in vivo TCD-haploSCT NR BUCY+TBI or
nonmyeloablative
regimens

NR NR NR 56.10%

L Gao et al. 2017 China 174 AML (73); ALL (61);
CML (22); MDS (18)

BM
+PBSC

in vivo TCD-haploSCT ATG-F 5mg/
kg×4d

CCNU+BU+CY
+Ara-C (AML,
CML and MDS)
CY+TBI+Ara-C
(ALL)

CsA/Tacro+MMF
+short-term MTX

PCR NR 39.5%
term T
37.5%

Y Wang et al. 2014 China 224 AML (106); ALL
(91); CML (14); MDS
(13)

BM
+PBSC

in vivo TCD-haploSCT r-ATG 1.5 mg/
kg×4d, n=112;
r-ATG 2.5 mg/
kg×4d, n=112

Modified BUCY,
n=218; TBI
based regimen,
n=6

CsA+MMF+short-
term MTX

Real-time
Taqman
CMV DNA
PCR

>600 copies/mL 1-year
(ATG-6
78.6%

S Kako et al. 2017 Japan 12 AML (5); ALL (1);
CMML (1); Ph+ ALL
(2); NHL (1); LCS (1);
PMF (1)

PBSC in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×2d (-4 to -3)

BU+Mel, n=2; CY
+TBI, n=6; Flu
+Mel+TBI, n=3;
Flu+BU+TBI, n=1

CsA+short-term MTX NR NR 41.67%

GJ Min et al. 2020 Korea 186 AML BM or
PBSC

in vivo TCD-haploSCT r-ATG 1.25 mg/
kg×4d

Flu+BU+TBI CsA+short-term MTX Real-time
quantitative-
PCR

NR 72.70%

L Zhu et al. 2015 China 25 AML (7); ALL (17); Bi-
lineage AL (1)

BM
+PBSC
+MSC
(21) or BM
+MSC (4)

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d (-4 to -1)

BU+Ara-C+CY CsA+MMF+short-
term MTX

NR NR 92%

J Xu et al. 2020 China 72 T-ALL BM or
PBSC or
BM
+PBSC
combined
with CB

in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d (-4 to -1)

Modified BUCY CsA+MMF+short-
term MTX

PCR NR 19.40%

J Wang et al. 2019 China 139 AML (100); ALL (39) BM
+PBSC or
BM
+PBSC
+UCB

in vivo TCD-haploSCT ATG-F 5 mg/
kg×4d

BUCY+Me-
CCNU+FLAG/
CLAG, n=96; TBI
+CY+Me-CCNU
+FLAG/CLAG,
n=43

CsA+MMF+short-
term MTX

Real-time
PCR

NR 100-da
(Cord-H
and 47
(HaploS
a
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MV
tivation

CMV
disease

Clinical outcome/Comments Reference

55.0% 1-year 7.9% 3-year NRM 30.5% (CMV
DNAemia+) and 13.7% (CMV
DNAemia-); 3-year OS 55.0%
(CMV DNAemia+) and 60.4%
(CMV DNAemia-)

(29)

62.1% 1-year 8.1% 3-year NRM 24.0% (HaploSCT)
and 10.2% (MSD); relapse
39.0% (HaploSCT) and 22.6%
(MSD); DFS 45.7% (HaploSCT)
and 78.9% (MSD)

(30)

11.6% The high rate of drug resistance
as interlinked with severe
disease in haplo-HSCT
recipients.

(8)

NR 3-year OS 84.4%; 3-year TRM
11.2%

(36)

MV and
irus)

4.35% The 2-year probability of both
OS and DFS was 91.1%

(42)

nal 81%;
53%;
diatedose

8%
(Traditional),
0% (Hybrid),
and 0%
(Intermediate
dose)

100-day NRM 0 (Traditional),
13% (Hybrid), and 13%
(Intermediate dose); 100-day
OS 100% (Traditional), 80%
(Hybrid), and 87% (Intermediate
dose)

(60)

5.26% 100-day TRM 0% and 1-year
TRM 15%; 5-years OS 80%

(43)

(GCV/
.4% vs
.6%)

15.4%; no
significant
difference in
the incidence
of CMV
disease
according to
prophylaxis
method

Interim-FCV prophylaxis
effectively prevented CMV
reactivation in those undergoing
ab T cell-depleted haploSCT.

(41)

NR 81.5% survived at last follow-up (44)

(AML
ALL

0 1-year DFS 42%; OS 54% (39)

16.67% 3-year DFS 58.3% (45)
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Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assays
measuring

CMV
DNAemia

Cutoff values for
CMV reactivation
or reactivation
needing PET

C
reac

XN Gao et al. 2020 China 110 AML (58); MDS (6);
CML (4); MDS/MPN
(1); ALL (38), NHL
(3), PCL (1)

PBSC in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY,
n=95; TBI+CY,
n=3; Flu+BU,
n=4; BU+FLAG,
n=8

CsA+MMF+short-
term MTX

Real-time
quantitative
PCR

CMV DNA loads
exceeded 1000
copies/mL

1-year

HH Li et al. 2017 China 94 AML (46); Therapy-
related AML (6); MDS
transformed AML (5);
MDS-refractory
anemia with excess
blast (1); ALL (26);
CML (5); Lymphoma
(5)

PBSC in vivo TCD-haploSCT r-ATG 2.5 mg/
kg×4d

Modified BUCY,
n=60; TBI+CY,
n=28; BF, n=6

CsA+MMF+short-
term MTX

NR NR 1-year

E Shmueli
et al.

2014 Israel 102 Congenital disease;
SAA; hematological
malignancy; solid
tumor

NR in vivo TCD-haploSCT ATG* Flu+TT+TBI NR Real-time
PCR

Higher than 50
copies/mL

66.70%

SS Park et al. 2021 Korea 46 SAA PBSC in vivo TCD-haploSCT r-ATG 5-10 mg/
kg

TBI+Flu Tacro+short-term
course MTX

NR NR 45.70%

A Bertaina
et al.

2014 Italy 23 SCID (8); SAA (4); FA
(4); IPEX (1); CAMT
(1); SDS (1);
UNC13D-mutated
HLH (1); DOCK-8-
mutated HIEs (1);
Osteopetrosis (1);
Thalassemia (1)

PBSC ex vivo TCD-haploSCT
(ab+ T and CD19+ B
cells depletion)

r-ATG 4 mg/
Kg×3d (-5 to -3)

BU+TT+Flu, n=3;
Treo+TT+Flu,
n=4; Treo+Flu,
n=8; Flu+CY ±
TBI, n=8

No
posttransplantation
pharmacologic
GVHD prophylaxis

NR NR 38% (
adenov

AE
Hammerstrom
et al.

2018 USA 86 Leukemia (75);
Lymphoma (8); MM
(1); AA (2)

BM (83);
PBSC (3)

PTCy-haploSCT No Mel+TT+Flu MMF+Tacro pp65 CMV
antigenemia
assay or
PCR.

CMV antigenemia
with ≥1 cell/million
or detectable CMV
DNA

Traditio
Hybrid
Interme
71%

R Mitchell
et al.

2019 Australia 19 Primary
immunodeficiency
disease; HLH; FA;
AML; ALL

PBSC;
BM

ex vivo TCD-haploSCT
(ab+ T and CD19+ B
cells depletion)

ATG* Treo+Flu+TT; Bu
+Flu+TT; Treo
+Flu; Bu+CY+Flu;
Flu+CY; Flu+Mel
+TT; TBI+Flu+Mel
+TT

MMF (n=11) or CsA
(=3) or combination
CsA/MMF (n=5), or
no prophylaxis (n=1)

CMV PCR
screening

NR 50.00%

SH Kang et al. 2021 Korea 81 Malignant disease
(45); Nonmalignant
disease (36)

PBSC ex vivo TCD-haploSCT
(ab T lymphocyte
depletion)

Malignant
disease r-ATG
(2 mg/kg at -8d
and 1 mg/kg at
-7d);
Nonmalignant
disease r-ATG
(2.5 mg/kg/day,
-8d to -6d)

Flu+CY+TBI NR Quantitative
real-time
PCR

>2.49 log copies/
mL

50.8%
FCV 44
GCV 6

I Airoldi et al. 2015 USA 27 ALL (9); AML (6);
SCID (4); FA (3);
Hyper-IgE syndrome
(1); Refractory
cytopenia of
childhood (2);
Kostmann syndrome
(1); Osteopetrosis
(1); SDS (1)

PBSC ex vivo TCD-haploSCT
(TCR-ab+/CD19+
lymphocytes depletion)

No TBI+TT+Mel; TBI
+TT+CY; TBI+TT
+Flu; Treo+TT
+Mel; BU+TT
+Flu; BU+CY
+Mel; Treo+TT
+Flu; Treo+Flu;
TBI+CY+Flu; BU
+Flu

No
posttransplantation
pharmacologic
GVHD prophylaxis

NR NR 55.50%

L Kaynar et al. 2017 Turkey 34 AML (24); ALL (10) PBSC ex vivo TCD-haploSCT
(TcRab-depletion)

ATG-F 30 mg/kg
(-12 to -9)

Flu+TT+Mel MMF PCR NR 73.5%
66.7%
90.0%

HF Nazir et al. 2020 Oman 12 FHLH PBSC ex vivo TCD-haploSCT
(CD3/CD19 depletion)

ATG-F 10 mg/kg
(-6 to -3)

Treo+TT+Flu
+Rituximab

CsA or Tacro or No
pharmcologic
prophylaxis

PCR CMV viral load
exceeded 500
copies/mL

75.00%
C

2

;
)
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MV
tivation

CMV
disease

Clinical outcome/Comments Reference

NR 5-year OS 71.1%; RFS 86.9%;
TRM 16.3%

(40)

y 67% 0 3-year OS 70%; PFS 68%;
NRM 10%

(38)

4.29% 2-year OS 48%, TRM 26% (53)

0 OS 78% (TCR group) and 84%
(CD34 group); DFS 69% (TCR
group) and 39% (CD34 group)

(47)

1.69% 2-year OS 50.8% (46)

4.50% 1-year OS 70.3% (55)

y 61%, 1-
%, 2-year

NR 2-year OS 79%; 2-year EFS
70%

(62)

15% 51% survived at last follow-up (69)

in PTCy-
ith 71.4%

NR 2-year OS 83.3% in PTCy-BEN
with 58.3% in PTCy

(64)

th 61% 2.50% 18-month OS 71.3%; PFS
67.4% with no differences by
donor type

(59)

h 40% in 0 (RIC) and
7% (MAC)

NR (63)

16.67% Post-transplant CMV viremia
was not associated with a
statistical difference in overall
survival

(65)

2.38% 1-year NRM 14%; EFS 75%;
OS 82%; GRFS 47%. A higher
cumulative incidence of CMV
DNAemia requiring pre-emptive
antiviral therapy in the
haploidentical cohort.

(70)

15% 1-year OS 56%; DFS 48% (71)
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Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assays
measuring

CMV
DNAemia

Cutoff values for
CMV reactivation
or reactivation
needing PET

C
reac

F Erbey et al. 2018 Turkey 21 ALL (14); AML (7) PBSC ex vivo TCD-haploSCT
(TcRab-depletion)

r-ATG 20mg/kg
(-13 to -9)

Flu+TT+Mel MMF with or without
CsA

PCR
screening

NR 81.00%

S Gaballa
et al.

2016 USA 50 AML (27); MDS or
MPD (3); ALL (14);
NHL (5); AA (1)

DLI +
CD34-
selected
stem cell

PTCy-haploSCT No TBI (12 Gy over
4 day)

Tacro+MMF PCR NR 100-da

R Crocchiolo
et al.

2015 Italy 70 HL (35); NHL (20);
MM (2); AL (11); CLL
(2)

BM (66);
PBSC (4)

PTCy-haploSCT No NMA, n=48; RIC,
n=16; MAC, n=6

Tacro/CsA+MMF PCR Threshold of CMV
viremia for PET
was 3300 copies/
mL

54.00%

J Gaziev et al. 2018 USA 54 Thalassemia (45);
Sickle cell anemia (7);
HbS-b thalassemia
(2)

PBSC
and/or BM

ex vivo TCD-haploSCT
(CD34 selection of
PBSCs and BM, n=32;
CD34 selection of
PBSCs and CD3/CD19
depletion of BM, n = 8;
TCRab/CD19 depletion
of PBSCs, n = 14)

r-ATG 12.5 mg/
kg over 4 days,
n=6; ATG-F 50
to 25 mg/kg
over 5 days,
n=48

BUTT10CY200
preceded by
HuAzFlu or
BUTT10CY200
preceded by Flu
with/without
Rituximab
prophylaxis

CsA
+methylprednisolone
or CsA+MMF

reverse-
transcription
PCR

NR 64.00%

L Prezioso
et al.

2019 Italy 59 AML (32); ALL (6);
NHL (6); HL (8); MF
(4); MDS (2); MM (1);
PCL (1)

PBSC
(24);
CD34+
(35)

ex vivo TCD-haploSCT
(abTCR/CD19+
depletion or selection of
the CD34+ cells)

r-ATG 1.5 mg/kg
×4d (-9 to -6)

Flu+TT No
posttransplantation
pharmacologic
GVHD prophylaxis

PCR NR 7.27%

D Huntley
et al.

2020 Spain 118 AL (43); CL (9);
Lymphoma (26)
MDS/MM/
Myelofibrosis (25);
Other (15)

PBSC
(110); BM
(8)

PTCy-haploSCT Only one patient
received ATG

MAC,n=35; RIC,
n=83

CsA or Tacro RealTime
CMV PCR

31 IU/ml or 137
IU/ml at different
centers

63.90%

LJ Arcuri et al. 2020 USA 87 SAA BM (81);
PBSC (3);
BM
+PBSC (3)

PTCy-haploSCT 12 patients
received r-ATG

Flu+CY+TBI CsA+MMF or Tacro
+MMF

Positive
antigenemia
or PCR

NR 100-da
year 62
62%

M Slade et al. 2017 USA 104 AML (70); ALL (11);
MDS (11); Other (12)

PBSC PTCy-haploSCT NR MAC, n=43;
NMA, n=61

CsA+MMF or Tacro
+MMF

PCR >40 000 IU/mL 55.00%

E Katsanis
et al.

2020 USA 17 AL,CML, NHL BM PTCy/BEN-haploSCT
(9); PTCy-haploSCT (8)

No TBI+Flu or BU
+Flu+Mel

MMF+Tacro PCR NR 12.5%
BEN w
in PTC

GC Irene et al. 2021 Spain 40 AL/MDS (28); MPN
(1); Lymphoid
malignancies (9);
Others (2)

PBSC or
BM

PTCy-haploSCT No RIC,n=1;MAC,
n=39;

Tacro Quantitative
PCR

PET: a level of
DNAemia of
>1000 IU/ml in one
blood sample or
two consecutive
samples with a
level of >500 IU/
mL

18-mo

RV Raj et al. 2016 USA 43 AML/MDS (27); ALL
(5); Myeloma (4);
NHL/HL (4); Others
(3)

BM (22);
PBSC (21)

PTCy-haploSCT No Flu+CY+TBI,
n=23; Flu+Bu
+CY, n=15; Flu
+Mel+TBI, n=5

Tacro+MMF Quantitative
nucleic acid
amplified
tests
(NAAT)

NR RIC wi
MAC

SR Goldsmith
et al.

2016 USA 138 AML (93); MDS (15);
Other (30)

PBSC PTCy-haploSCT No MAC, n=58; RIC,
n=80

Tacro+MMF or other Real-time
qPCR

NR 58.00%

J Montoro
et al.

2020 Spain 42 AL (15); MM (5);
Lymphoproliferative
disorders (13); MDS
(5); MPD (4)

BM (5);
PBSC (37)

PTCy-haploSCT No TBF-MAC, n=9;
TBF-RIC, n=2;
BU+Flu+CY,
n=11

MMF+Sirolimus Quantitative
real-time
PCR assays

NR 52.00%

N Cieri et al. 2015 Italy 40 AML (22); ALL (5);
MDS (1); CML (1); HL
(6); NHL (5)

PBSC PTCy-haploSCT No Flu+Treo+Mel MMF+Sirolimus Quantitative
PCR

PET was started
when CMV DNA
copy number was
more than 1000

63.00%
y
n

t
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MV
tivation

CMV
disease

Clinical outcome/Comments Reference

NR 2-year Relapse 19% (Control
group) and 19% (PTCy group);
PFS 73% (Control group) and
70% (PTCy group); OS 78%
(Control group) and 79% (PTCy
group)

(67)

1.45% Two-year OS 62% (Cohort 1);
65% (Cohort 2); 50% (Cohort
3); 42% (Cohort 4)

(56)

y 42% 100-day
2.8%

2-year mortaligy 49.5% (51)

4.88% 3-year OS 80.3% ± 5.1%; 3-
year FFS 76.4% ± 5.1%

(13)

61.0 ± 1-year 8.0%
± 2.9%

3-year OS 45.6% ± 5.6%; LFS
44.2% ± 5.9%

(23)

0 76.5% survived at a median of
223 days

(49)

pleted
D45RA-
d 19%

NR 180-day mortality CD3dep
recipients 22% vs CD45RAdep
recipients 15.4%

(50)

4.50% Median of PFS 19.9 months;
Median of OS 33.5 months

(52)

2.12% 12-month OS 64%; 12-month
PFS 57%

(54)

y 69.2% 0 CMV reactivation was not
associated with OS, RFS,
relapse incidence, or NRM.

(57)

4.23% PTCy-haploSCT recipients may
reconstitute CMV-specific T-cell
immunity to the same extent as

(58)

(Continued)
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Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assays
measuring

CMV
DNAemia

Cutoff values for
CMV reactivation
or reactivation
needing PET

C
reac

copies/mL or
increased more
than.5 log in
peripheral blood
plasma.

N Stocker
et al.

2020 France 19 AML (10); MPN (1);
MDS (1); ALL (4);
NHL (3)

PBSC PTCy-haploSCT 2.5 mg/kg, n=3;
5 mg/kg, n=16

RTC, n=13; TT
+etoposide+CY
+RIC, n=6

CsA+MMF Quantitative
PCR

PET was initiated
when CMV was
above 1000 IU/mL

46.00%

Crocchiolo R
et al.

2016 Italy and
France

207 AL (44); HL (54); NHL
(61); MM (13); MDS/
MPS (25);
Drepanocytosis (1)

PBSC
(111); BM
(96)

PTCy-haploSCT NR NMA/RIC,
n=181; MAC,
n=26

NR NR NR 42.00%

SR Goldsmith
et al.

2021 USA 757 AML/ALL/MDS BM or
PBSC

PTCy-haploSCT No MAC or RIC/
NMA

Tacro or CsA PCR NR 180-da

Y Lu et al. 2018 China 41 SAA (28)/VSAA (13) BM
+PBSC

in vivo TCD-haploSCT ATG-r 7.5 mg/
kg, n=42; ATG-F
20 mg/kg, n=47

BU+Flu+CY Tacro+MMF+short-
term MTX

PCR Higher than 500
copies/mL in
plasma

65.90%

W-R Huang
et al.

2016 China 130 AML; ALL; CML;
Lymphoma

PBSC in vivo TCD-haploSCT r-ATG 2.5 mg/
kg/day -5d to
-2d

Modified BUCY,
n=90; Modified
BF, n=32; TBI
+CY, n=8

CsA+MMF+short-
term MTX

PCR NR 1-year
5.3%

BM Triplett
et al.

2015 USA 17 ALL (6); AML (9);
MLL (1); MDS (1)

PBSC ex vivo T-cell depletion
(CD45RA-depletion)

No TLI+Flu+CY+TT
+Mel

Sirolimus or MMF PCR NR 17.65%

BM Triplett
et al.

2018 USA 67 ALL (28); AML (22);
MLL (4); MDS (8);
Lymphoma (3); CML
(2)

PBSC ex vivo T-cell depletion
(CD3-depletion,n=41;
CD45RA-depletion,
n=26)

No CD3-depleted:
Flu+TT+Mel
+OKT3 (n = 21)
or alemtuzumab
(n=20)+Rituximab
CD45RA-
depleted: Flu+TT
+Mel+lymphoid
irradiation+CY

a short (<60 days)
course of MMF

Quantitative
PCR

NR CD3-d
56%, C
deplete

A Fayard et al. 2019 France 381 AL/MDS (208); HL/
NHL (115); MPN (31);
MM/solitary
plasmacytoma (15);
chronic leukemia
(10); bone marrow
failure syndrome (2)

BM (103);
PBSC
(278)

PTCy-haploSCT No RIC, n=307;
MAC, n=73

an anticalcineurin
+MMF

A single
pp65
antigen-
positive
leukocyte or
a positive
viremia in
peripheral
blood

NR 48.80%

A Esquirol
et al.

2021 Spain 236 AML (76); MDS (39);
ALL (22); NHL (39);
HL (31); CLL (8);
CML/MPN (12); MM
(5); biphenotypic
acute leukemia (2);
aplasia (1);
prolymphocytic
leukemia (1)

BM (45);
PBSC
(191)

PTCy-haploSCT NR Flu+BU; Flu+Bu
+CY; TBF; Other

CsA+MMF or Tacro
alone

PCR >1000 IU/mL 69.00%

Monzr M. Al
Malki et al.

2017 USA 119 Acute leukemia (80);
bone marrow failure
(15); lymphoma (11);
chronic leukemia (6);
hemoglobinopathies
(5); MM (2)

PBSC
(81); BM
(38)

PTCy-haploSCT NR MAC, n=46; RIC/
NMA, n=73

Tacro/MMF PCR NR 100-da

D Huntley
et al.

2020 Spain 71 Acute leukemia (24);
Chronic leukemia (6);
Lymphoma (15);

PBSC
(65); BM
(6)

PTCy-haploSCT No MAC, n=17; RIC,
n=54

Tacro-based, n=41;
MMF-based, n=15

Real-time
PCR

Higher than
600 IU/ml or higher
than IU/ml at
different centers

59.70%
e
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g

ia

Cutoff values for
CMV reactivation
or reactivation
needing PET

CMV
reactivation

CMV
disease

Clinical outcome/Comments Reference

patients undergoing HLA-
matched allo-HSCT

NR 43.70% 6.25% Overall mortality 37.5%; OS
62.5%; Cytokine release
syndrome (CRS) 75%

(61)

e PET was initiated if
viral reactivation
was detected
(higher than 400
copies/mL)

58.00% 0 2-year OS 78%; 2-year DFS
73%

(66)

PET was started
when plasmatic
CMVDNA higher
than 1000 copies/
mL or increased
>0.5 log.

61% (68%,
haploSCT)

13.79% Relapse 44% (68)

NR 74% 8% 1-year OS 48.1%; NRM 38.2% (72)

e >200 copies/ml 58% 4% 1-year OS 58.8 (44–70.9)%; 1-
year RFS 53.3 (38.8–65.8)%

(73)

e NR cTCR/TCD
42.9%; TCR/
PTCy 14.8%

7.14%
(cTCR/TCD)
and 0 (TCR/
PTCy)

cTCR/TCD: 1-year OS 39%,
RFS 38%; TCR/PTCY: 1-year
OS 59%; RFS 55%

(78)

L, acute leukemia; MDS, myelodysplastic syndromes; AA, aplastic anemia; SAA, severe
onic myelomonocytic leukemia; MM, multiple myeloma; NHL, non-Hodgkin lymphoma;
cytoid dendritic cell neoplasm; PCL, plasma cell leukemia; SCID, severe combined
tic thrombocytopenia; SDS, Shwachmann-Diamond syndrome; HLH, hemophagocytic
d hyper-IgE syndrome; FHLH, familial hemophagocytic lymphohistiocytosis; MPD,
MPS, myeloproliferative syndrome; MLL, mixed lineage leukemia; BM, bone marrow;
blood; DLI, donor lymphocyte infusion; TCD, T-cell depletion; PTCy, posttransplant

n cyclophosphamide regimen; CCNU, lomustine; Me-CCNU, simustine; Ara-c, cytosine
ranulocyte colony-stimulating factor; Flu, fludarabine; TT, thiotepa; Treo, treosulfan; Mel,
-myeloablative; RIC, reduced-intensity conditioning; RTC, reduced toxicity conditioning;
ganciclovir; FCV, foscarnet; TCR, T-cell-replete; HLA, human leukocyte antigen; CMVR,
t-related mortality; GVHD, graft-versus-host disease; aGVHD, acute graft-versus-host
S, event-free survival; DFS, disease-free survival; RFS, relapse-free survival; RR, relapse

Luo
et

al.
C
M
V-S

pecific
Im

m
unity

A
fter

haploS
C
T

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

O
ctober

2021
|
Volum

e
12

|
A
rticle

732826
11
Group Year Country haploSCT
Sample
size

Primary Disease (n) Stem cell
source

(n)

Graft manipulation Dose of ATG Conditioning (n) GVHD prophylaxis Assay
measuri

CMV
DNAem

Myelofibrosis/MDS
(18); Other (5)

R Uppuluri
et al.

2019 India 16 Primary immune
deficiency disorder

BM (6);
PBSC (10)

PTCy-haploSCT NR Flu+Mel, n=5; Flu
+Treo, n=3; Treo
+Flu+TBI, n=3;
Treo+Flu, n=1;
Flu+Treo+TBI,
n=4

NR NR

SR Solomon
et al.

2015 USA 30 AML (16); ALL (6);
CML (5); MDS (1);
NHL (2)

PBSC PTCy-haploSCT No Flu+TBI Tacro+MMF Quantitati
CMV PCR

C Oltolini et al. 2020 Italy 145 Myeloid disorders
(106); Lymphoid
disorders (39)

PBSC PTCy-haploSCT No MAC, n=110;
RIC, n=35

sirolimus+MMF,
n=141; CsA+MMF,
n=3

PCR

AD Law et al. 2018 Canada 50 AML (28); MDS (8);
MPN (6); ALL (2);
Lymphoma (5);
BPDCN (1)

PBSC PTCy-haploSCT r-ATG 4.5 mg/kg Flu+BU+TBI CsA NR

MQ Salas
et al.

2020 Canada 52 AML (29); MDS (8);
MPN (5); ALL (3);
Lymphoproliferative
disease (6); BPDCN
(1)

PBSC PTCy-haploSCT r-ATG 4.5 mg/kg Flu+BU+TBI CsA Quantitati
PCR

J Tischer et al. 2015 Germany 55 AML (33); CML (2);
ALL (7); SAA (1);
NHL (14); CLL (2)

BM
+PBSC

ex vivo T-cell depletion
(cTCR/TCD: CD6-
depleted G-CSF-
mobilized peripheral
blood stem cells); PTCy-
haploSCT

cTCR/TCD: r-
ATG 20 mg/kg
for 5 days; TCR/
PTCY: No ATG

RIC or MAC CsA+MTX or Tacro
+MMF or MMF

Quantitati
real-time
PCR

HaploSCT, haploidentical stem cell transplantation; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; A
aplastic anemia; VSAA, very severe aplastic anemia; Ph+, Philadelphia chromosome-positive; PNH, paroxysmal nocturnal hemoglobinuria; CMML, ch
PCR, polymerase chain reaction; PET, preemptive therapy; LCS, Langerhans cell sarcoma; PMF, primary myelofibrosis; BPDCN, blastic plasma
immunodeficiency; FA, Fanconi anemia; IPEX, immunodeficiency with polyendocrinopathy and enteropathy X-linked; CAMT, congenital amegakaryocy
lymphohistiocytosis; UNC13D-mutated HLH, UNC13D-mutated hemophagocytic lymphohistiocytosis; DOCK-8-mutated HIEs, DOCK-8–mutate
myeloproliferative disease; HL, Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; CL, chronic leukemia; MPN, myeloproliferative neoplasm;
PBSC, peripheral blood stem cells; HSCT, hematopoietic stem cell transplant; MSC, mesenchymal stem cell; CB, cord blood; UCB, umbilical cor
cyclophosphamide; ATG, anti-thymocyte globulin; ATG-F, ATG-Fresenius; r-ATG, ATG-Genzyme; BU, busulfan; CY, cyclophosphamide; BUCY, busulfa
arabinoside; BF, busulfan fludarabine regimen; FLAG, fludarabine+ cytarabine + granulocyte colony-stimulating factor; CLAG, cladribine + cytarabine + g
melphalan; Az, azathioprine; Hu, hydroxyurea; TBI, total body irradiation; TBF, thiotepa busulfan fludarabine; MAC, myeloablative conditioning, NMA, non
TLI, total lymphoid irradiation; CMV, cytomegalovirus; CsA, cyclosporine A; Tacro, tacrolimus; MMF, mycophenolate mofetil; MTX, methotrexate; GCV,
cytomegalovirus retinitis; RRM, relapse-related mortality; OS, overall survival; LFS, leukemia-free survival; NRM, non-relapse mortality; TRM, transpla
disease; FFS, failure-free survival; GFFS, GVHD-free and relapse-free survival; GRFS, GVHD-free relapse-free survival; PFS, progression-free survival; EF
rate; MSD, matched sibling donor; NR, not reported.
*The dose of ATG is not mentioned in the paper.
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of CMV-specific T-cell subsets show distinct kinetics,
particularly after CMV reactivation.

More recently, Jasper J. P. van Beek et al. conducted longitudinal
analysis of high-dimensional T-cell immunophenotypes in 21
recipients of PTCy-haploSCT (91). CMV-specific T-cells were
primed early after PTCy-haploSCT and initially showed a
proliferating/activated phenotype, that was quickly replaced by a
terminal effector phenotype, while uncontrolled viral replication
associated with lower abundance of distinct CMV-specific CD4+
T-cell immunophenotypes, hinting at a possible role of these cells
in CMV control. CMV-specific T-cell features were similar to those
of the CMV-seropositive donor one year posttransplantation,
implying reestablishment of physiological homeostasis.

NK
NK cells similarly play an essential role in defense against
infections and leukemia relapse after hapoSCT. Fengyan Jin
et al. explored NK cell dynamics in 29 patients after haploSCT
between August 2011 and November 2014 (92). IFNg-producing
NK cells expanded in 19 patients after CMV reactivation, and the
percentages of IFNg-producing NK cells in these patients greatly
increased from day 60 to 180 after transplantation compared to
those of their donors. The percentage of KIR-expressing NK cells
and IFNg-producing NKG2C+ NK cells was significantly higher
in haploSCT recipients with CMV reactivation than in those
without CMV reactivation. Moreover, CMV reactivation was
associated with expansion of the CD56brightCD16dim/−DNAM1+

NK cell subset between days 30 and 90 after haploSCT (93).
Patients with increased CD56brightCD16dim/−DNAM1+ NK cells
also had a remarkably higher CMV viral load (93).

Letizia Muccio et al. reported that CMV reactivation boosted the
arrival of mature NK cells in pediatric patients with hematological
malignancies receiving HLA-haploSCT after removal of both abT
cells and CD19 B cells (94). A memory-like NK cell subset
expressing NKG2C and CD57 progressively expanded in most
children. NKG2C+CD57+ NK cells were detected by month 3 after
allo-SCT and expanded until at least month 12. These cells
characteristically expressed high levels of killer Ig-like receptors
(KIRs) and leukocyte inhibitory receptor 1 (LIR-1) and low levels of
Siglec-7, NKG2A and interleukin-18Ra. Additionally, they poorly
secreted interferon-g in response to interleukin-12 and interleukin-
18. The compromised response to these cytokines as well as their
highly differentiated profile may reflect their skewing toward
immune control of human cytomegalovirus.

Xiang‐Yu Zhao et al. from Peking University previously
found that donor-recipient KIR ligand matching decreased
CMV reactivation and refractory CMV infection by day 100
post-transplantation (95). This indicates that donor-recipient
KIR ligand matching might improve the NK cell licensing
process and promote NK cell-mediated control of CMV
reactivation. The same group then prospectively assessed NK
cell reconstitution in patients undergoing matched sibling
transplantation and haploSCT (96). CD107a was increasingly
expressed in NK cells after versus before CMV reactivation at
days 60, 100, and 180 after transplantation, but CMV
reactivation did not impact the maturation process of NK cells
after transplantation. In addition, KIR expression and NKp30
Frontiers in Immunology | www.frontiersin.org 12
expression were lower on NK cells in patients with CMV
reactivation than in those without CMV reactivation at day 30.
The NK-to-T-cell (NK/T) ratio was persistently higher in
patients with CMV reactivation than in those without CMV
reactivation from 30 days to one year after haploSCT.

An emerging report from Elisa Zaghi et al. demonstrated
impaired adaptive NK cells expanded after CMV reactivation
in PTCy-haploSCT (97). By a longitudinal single-cell
computational profiling of multiparametric flow cytometry,
they found that CMV accelerates NK cell immune recovery
with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/
NKp30lo NK cells. The number of this subset is associated
with CMV reactivation, further increases in recipients with
multiple viral reactivations and persists for months after the
infection. The transcriptional characteristics of FACS-sorted
CD158b1b2jpos NK cells confirmed the capacity of CMV to
deregulate NKG2C, NKG2A, and NKp30 gene expression,
thus mediating the expansion of NK cells with adaptive traits.
These results imply that the dysfunction/exhaustion of
“adaptive” KIRpos NK cells in patients with CMV reactivated is
induced, at least partially, by the CMV-induced expression of
checkpoint inhibitors.

gd T
Fifty pediatric patients undergoing ab T cell-depleted haploSCT
between August 2012 and December 2015 were analyzed (98).
CMV reactivation developed in 19 transplantations at a median of
30 days (range, 13-318 days) after haploSCT. Higher gd T cells
were observed in patients without CMV reactivation than in
patients with CMV reactivation at day 30 (197.8 ± 153.9 vs
53.9 ± 58.7). There was a significantly higher incidence of CMV
reactivation in patients with a low percentage of gd T cells at day
30 than in patients with a high percentage of gd T cells (78.0 ±
15.3% vs 22.2 ± 13.9%). No difference in day 30 gd T cells was
found between patients with and without CMV disease.

Irma Airoldi et al. prospectively monitored the functional and
phenotypic characteristics of gd T cells up to 7 months after ab+
T cells and CD19+ B cells depleted haploSCT in 27 children (44).
They reported that gd T cells are the foremost T-cell population
in patients during the first weeks and are mainly derived from the
graft content and expanded in vivo after transplantation. Central
memory cells predominated very early after haploSCT for both
the Vd1 and the Vd2 subsets. Vd1 cells are specifically expanded
in patients with CMV reactivation and are more cytotoxic than
those of children without reactivation.

CMV-specific T-cell, NK cell, and gd T-cell are vital to
immune control of CMV infection post haploSCT, but it seems
that gd T-cell is more likely responsible for viral reactivation in
the context of ex vivo TCD-haploSCT. Although NK cells and gd
T cells are the first lymphocytes that recover after
transplantation, CMV-specific T cells are dominant in number
in case of viral infection. The majority of studies state that
impaired T-cell and NK-cell reconstitution and increased risk
of CMV infection after haploSCT, so seeking factors influencing
CMV-specific immune reconstitution and interventions to
improve immune reconstitution is urgent at the moment.
Although data from Dixie Huntley et al. supported similar
October 2021 | Volume 12 | Article 732826
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incidence of CMV infection and restored CMV-specific T cells
after PTCy-haploSCT compared to MRD/MUD transplantation
(58), the scarce number of MUD and MRD recipients and more
sirolimus used in PTCy-haploSCT group preclude any definitive
conclusion and further studies are warranted to validate
their findings.
CELLULAR IMMUNOTHERAPY OF
CMV INFECTION

Delayed CMV-specific immune reconstitution has been
consistently associated with the development of CMV infection
and CMV disease after allo-SCT. Accordingly, adoptive transfer
of CMV-specific T cells has been employed to treat CMV
infection. Several clinical trials and case reports have
confirmed the safety and efficacy of this strategy for the
prophylaxis and treatment of CMV infection after haploSCT.
Table 2 lists cellular approaches currently in clinical trials and
serves as evidence that CMV-targeting immune-based
interventions could provide a safe, novel treatment option
while offering clinical benefit to CMV reactivated recipients
after haploSCT.
Therapeutical CMV-Specific
T-Cell Approaches
Feuchtinger T et al. treated 18 patients after allo-SCT fromHLA–
mismatched/haploidentical or HLA–matched unrelated donors
with polyclonal CMV-specific T cells (99). These T cells were
generated by isolation of interferon-g–producing cells after
stimulation with pp65 antigen. Patients with refractory CMV
disease or viremia received a mean of 21 × 103/kg pp65-specific T
cells. CMV infection was cleared, or viral burden was
significantly decreased in 83% of these patients, even in
patients with CMV encephalitis. Viral control was related to
improved antiviral T-cell reconstitution and in vivo expansion of
CMV-specific T cells in 12 of 16 evaluable cases without inducing
GVHD or acute side effects.

In another CMV infection refractory cohort (100), 27 of 32
treated patients after haploSCT cleared CMV within four weeks
after adoptive T-cell therapy without recurrence. After cellular
transfer, CMV-specific T cells expanded in vivo with improved
cytokine production and proliferation ability. In addition, the
expression of programmed death-1 (PD-1) on CMV-specific T
cells was reduced. In the early effective group, patients who
cleared viremia within four weeks after T-cell infusion, CMV-
specific CD8+ IFN-g+ and CD4+ IFN-g+ T cells were rapidly and
massively expanded in vivo, whereas in the late effective group,
there was no significant expansion of CMV-specific T cells.
Xiang-Yu Zhao et al. further evaluated the safety and efficacy
of donor-derived CMV-specific cytotoxic T cells (CTLs) as a
first-line therapy for CMV infection after haploSCT (101). They
observed that first-line therapy with CTLs significantly reduced
the incidence of CMV infection with lower 1-year treatment-
related mortality and better 1-year overall survival. Moreover,
Frontiers in Immunology | www.frontiersin.org 13
first-line therapy with CTLs promoted the recovery of CTLs in
patients, which correlated with CMV clearance.

A case report described two patients with drug-resistant CMV
encephalitis after haploSCT successfully received donor CMV-
specific CTLs (102). In the first case, a 27-year-old male
developed CMV encephalitis during ganciclovir maintenance
treatment after haploSCT. After administering foscarnet and
donor CMV-specific CTLs, CMV-DNA of his cerebrospinal
fluid (CSF) was negative by RT-PCR, and the lesions on brain
magnetic resonance imaging (MRI) were reduced. Another case,
a 57-year-old female, also experienced CMV encephalitis during
maintenance treatment with ganciclovir after haploSCT. After
intrathecal treatment with donor CMV-specific CTLs, the CMV
load of the CSF was reduced.

Prophylactic DLI
Prophylactic and therapeutic DLI are administered to improve
posttransplant immune restoration to reduce both infectious
complications and disease relapse. Michael Maschan et al.
investigated low-dose memory (CD45RA-depleted) donor
lymphocyte infusion (mDLI) after ab T-cell depleted HSCT
(103–105). The incidence of CMV reactivation was 45-50% in
the experimental mDLI arm and 54-55% in the control arm. The
median duration of CMV viremia was 3 weeks (range, 1-9) in the
prospective cohort and 4 weeks (range, 1-26) in the historical
cohort (105). Memory DLI was associated with improved CMV-
specific T-cell reconstitution in a subcohort of CMV IgG
seropositive recipients. Analysis of a subcohort of CMV
seropositive recipients indicated remarkably better CMV-
specific T-cell reconstitution on day 30 in the experimental
arm (104). Compared to that of the historical cohort,
restoration of CMV-specific immunity at day 30 was
significantly enhanced in the prospective cohort (40% versus
25%) (105). Luca Castagna et al. prospectively evaluated a
CD45RA+ depleted DLI in terms of reducing viral infection
early after PTCy-haploSCT (106). CMV reactivation occurred in
28% of patients. Although the majority of the patients received
the planned three infusions, only one patient developed grade 2
acute GVHD, and two patients had moderate chronic GVHD.

Therapeutic DLI
Park HJ et al. reported the successful treatment of refractory CMV
colitis after PTCy-haploSCT using CD45RA+ depleted DLI (107).
After failure of ganciclovir and foscarnet, granulocyte colony-
stimulating factor-primed, CD45RA+ depleted DLI was
administered to treat refractory CMV colitis. CMV pp65-specific
CTLs were found in recipients four weeks after DLI. Meanwhile,
diffuse wall thickening involving the entire colon was also
normalized in the abdominal CT scan.

As manipulated DLI approaches are still not widely used due
to high cost and intensive labor, unmanipulated donor
lymphocytes (U-DLIs), if feasible by harvesting CTLs directly
from the peripheral blood of seropositive donors, are used for
refractory or relapsed patients with CMV infection. Researchers
from Turkey enrolled five pediatric patients receiving U-DLI for
CMV infection after transplantation (108). Among them, three
patients underwent haploSCT. One patient who was
October 2021 | Volume 12 | Article 732826
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transplanted from an unrelated donor received U-DLI from his
haploidentical mother. CMV titers were dramatically reduced
after U-DLI in these patients.
SUMMARY AND OUTLOOK

Despite the use of prophylactic or preemptive treatments, CMV
infection remains an obstacle for successful haploSCT and the
improvement of immunologic reconstitution is the primary strategy
for infection prevention. A higher rate of CMV reactivation occurred
early after haploSCT compared to HLA-matched HSCT, but CMV
disease rates were low after haploSCT, particularly in in vivo TCD-
haploSCT and PTCy-haploSCT. It results from expansion of CMV-
specific central memory T-cells in the setting of CMV antigenemia or
acceptable CMV-specific T-cell reconstitution. Traditional ex vivo
Frontiers in Immunology | www.frontiersin.org 14
TCD-haploSCT successfully prevents lethal GVHD without any
posttransplantation immunosuppression, but the small number of
T cells in the graft results in impaired immune recovery, which could
be overcome by novel ex vivo TCD-haploSCT and adoptive cellular
therapy. In vivo TCD-haploSCT and PTCy-haploSCT indicated low
treatment‐related mortality (TRM) and an acceptable safety profile,
which appears to compare favorably with ex vivo TCD-haploSCT in
terms of infections. However, synergistic immunosuppression by
PTCy and ATG has led to a higher incidence of CMV infection.
We now have a better understanding of CMV reactivation and
immune reconstitution post haploSCT. Our data demonstrate that
novel ex vivo TCD techniques followed by prophylactic and
therapeutic DLI, a low dose of ATG, an intensified antiviral
prophylaxis regimen, sirolimus-containing immunosuppressors and
CMV-specific cellular immunotherapy can boost immune recovery
and decrease the incidence of CMV reactivation. Furthermore, the
TABLE 2 | Ongoing clinical trials using cytomegalovirus-specific cellular immunotherapy for allo-SCT patients including haploidentical SCT (accessed on 5 Oct 2021,
ClinicalTrials.gov).

Intervention Patients Enrollment Phase Duration NCT number Status

Donor-derived viral specific T-cells
(VSTs)

Stem cell transplant recipients who have evidence of viral
infection or reactivation

450 Phase 1/
Phase 2

2014-
2024

NCT02048332 Recruiting

HLA-matched VSTs EBV, CMV, adenovirus, and BK infections post allogeneic SCT 47 Phase 1 2021-
2024

NCT04013802 Recruiting

Multivirus (CMV, EBV, AdV)-specific
T cells

Chemo-refractory viral infections after allo-HSCT 149 Phase 3 2019-
2022

NCT04832607 Recruiting

Third party donor derived CMVpp65
specific T-cells

CMV Infection or persistent CMV viremia after allogeneic
hematopoietic stem cell transplantation

41 Phase 2 2014-
2022

NCT02136797 Recruiting

Adaptive NK cells infusion post
transplantation

CMV infection in patients post haploidentical transplantation 30 Not
Applicable

2020-
2021

NCT04320303 Recruiting

CMV-specific T cells Relapsing or therapy refractory CMV infection after allogeneic
stem cell transplantation

20 Phase 2 2016-
2022

NCT03067155 Recruiting

CMV cytotoxic T cells (CTLs)
manufactured with the Miltenyi
CliniMACS Prodigy Cytokine Capture
System

Refractory cytomegalovirus (CMV) infection post allogeneic
hematopoietic stem cell transplantation (AlloHSCT), with
primary immunodeficiencies (PID) or post solid organ
transplant

20 Phase 2 2018-
2023

NCT03266640 Recruiting

Direct infusions of donor-derived
virus-specific T-cells using the
Cytokine Capture System

Recipients of hematopoietic stem cell transplantation with
post-transplant viral infections

12 Phase 2 2014-
2022

NCT02007356 Recruiting

Emergency access to CMV pp65/IE-
1 specific cytotoxic T lymphocytes

Recipients of allogeneic stem cell transplants with persistent or
therapy refractory Infections

20 Phase 1 2008-
2014

NCT00769613 Active,
not
recruiting

Viral specific T-Lymphocytes by
Cytokine Capture System (CCS)

Infection with adenovirus, cytomegalovirus or Epstein-Barr
Virus after hematopoietic cell transplantation or solid organ
transplantation and in patients with compromised immunity

25 Phase 1/
Phase 2

2021-
2028

NCT04364178 Recruiting

CMV specific adoptive t-cells Opportunistic cytomegalovirus infection occurring after stem
cell transplant

20 Early
Phase 1

2016-
2022

NCT02982902 Recruiting

Virus specific T-cell (VST) infusion Enhancing T-cell reconstitution before or after hematopoietic
stem cell transplantation

60 Phase 1/
Phase 2

2018-
2023

NCT03475212 Active,
not
recruiting

CMV-specific T-cells CMV in pediatric and adult immunocompromised patients or
recipients of allogeneic stem cell transplantation

20 Phase 1 2020-
2026

NCT03798301 Recruiting

Allogeneic cytomegalovirus-specific
cytotoxic T lymphocytes

CMV reactivation or infection in participants who have
undergone stem cell transplant or solid organ transplant

10 Early
Phase 1

2020-
2021

NCT03665675 Recruiting

Adoptive cell immunotherapy Prophylaxis of cytomegalovirus infection in haploidentical
transplantation of hematopoietic progenitors

15 Phase 2 2021-
2022

NCT04056533 Not yet
recruiting

Adoptive transfer of selected
cytomegalovirus-specific cytotoxic
T lymphocytes (CMV-CTL)

Patients at risk of CMV Disease after allogeneic stem cell
transplantation (SCT)

78 Phase 2 2009-
2013

NCT00986557 Recruiting

Donor derived cytomegalovirus
specific T lymphocytes

Treatment of cytomegalovirus infection after allogeneic
hematopoietic stem cell transplantation

30 Phase 4 2016-
2021

NCT03004261 Recruiting
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majority of patients receiving the RIC regimen might be less
susceptible to infections (63). In this context, it would be essential
to perform a prospective study comparing the risk of infectious
complications after in vivo TCD-haploSCT vs. ex vivo TCD-
haploSCT or PTCy-haploSCT in patients who received a similar
conditioning regimen.

CMV reactivation is associated with delayed immune
reconstitution, although this reactivation could also leave a
profound imprint on the recovering T cell compartment long-
term following allo-SCT (91, 109, 110). Several studies have
reported that CMV serostatus and CMV reactivation may be
more predictive of T-cell restoration after allo-SCT than GVHD,
highlighting the deep impact of this virus on reconstituting T-
cells, considering the high incidence of CMV reactivation after
haploSCT. More importantly, CMV infection is increasingly
recognized as an immunomodulator in cancer patients (111),
even in the context of allo-SCT, which is associated with a
decreased risk of leukemia relapse, although it is still
conflicting (112–115). There is evidence of a bidirectional
relationship between CMV reactivation and acute GVHD (116,
117). We should take these into account and balance the merit
and disadvantage of taking steps to enhance CMV-specific
immune reconstitution and decrease CMV infection.
Frontiers in Immunology | www.frontiersin.org 15
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