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Abstract. Totally implanted venous access ports (TIVAPs), 
which are typically used in oncological chemotherapy and 
parenteral nutritional support, are convenient and safe, and 
thus offer patients a higher quality of life. However, inser‑
tion or removal of the device requires a minor surgical 
operation. Long‑term complications (>30 days post inser‑
tion), such as catheter migration, catheter‑related thrombosis 
and infection, are major reasons for TIVAP removal and 
are associated with a number of factors such as body mass 
index and hemoglobin count. Since management of compli‑
cations is typically time‑consuming and costly, a predictive 
model of such events may be of great value. Therefore, in the 
present study, a predictive model for long‑term complications 
following TIVAP implantation in patients with lung cancer 
was developed. After excluding patients with a large amount 
of missing data, 902 patients admitted to The First Affiliated 
Hospital with Nanjing Medical University (Nanjing, China) 
were ultimately included in the present study. Of the included 
patients, 28 had complications, indicating an incidence rate of 
3.1%. Patients were randomly divided into training and test 

cohorts (7:3), and three machine learning‑based anomaly 
detection algorithms, namely, the Isolation Forest, one‑class 
Support Vector Machines (one‑class SVM) and Local Outlier 
Factor, were used to construct a model. The performance of 
the model was initially evaluated by the Matthew's correlation 
coefficient (MCC), area under curve (AUC) and accuracy. The 
one‑class SVM model demonstrated the highest performance 
in classifying the risk of complications associated with the 
use of the intracavitary electrocardiogram method for TIVAP 
implantation in patients with lung cancer (MCC, 0.078; AUC, 
0.62; accuracy, 66.0%). In conclusion, the predictive model 
developed in the present study may be used to improve the 
early detection of TIVAP‑related complications in patients 
with lung cancer, which could lead to the conservation of 
medical resources and the promotion of medical advances.

Introduction

Lung cancer is the most prevalent malignancy worldwide, 
the incidence of which has increased annually among the 
elderly for the past 40 years according to the surveillance, 
epidemiology and end results (SEER) database (1). Treatment 
modalities for lung cancer include surgery, radiotherapy, 
chemotherapy, targeted therapy, antiangiogenic therapy and 
immunotherapy. Among these treatment modalities, chemo‑
therapy is the cornerstone of adjuvant or palliative therapy. 
Routinely, the drugs for chemotherapy are administered 
through a central venous access, such as central venous cath‑
eters (CVCs), peripherally inserted catheters (PICCs) or totally 
implanted venous access ports (TIVAPs). PICCs are often 
used for short‑term treatment (up to 3 months) in the periop‑
erative or intensive care setting, while CVCs and TIVAPs are 
used for medium to long‑term treatments (months to years) 
such as total parenteral nutrition and chemotherapy. Potential 
complications of central venous accesses usually include 
short‑term (≤30 days of insertion) and long‑term complica‑
tions (>30 days post insertion). Short‑term complications may 
present with symptoms of hemorrhage, hemothorax, pneu‑
mothorax, air embolism, cardiac arrhythmias or nerve palsy. 
Long‑term complications mainly include catheter migration, 
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catheter‑related thrombosis and infection (2‑4). These three 
types of central venous access reduce repeated venipuncture 
and avoid focal venous injury and tissue necrosis caused by 
repeated administration of anticancer therapies. Furthermore, 
TIVAPs have lower reported rates of catheter‑related blood‑
stream infections (CRBSIs) than the other two types of central 
access (5). TIVAPs are also more optimal for bathing and 
swimming, which are restricted with external vascular access, 
and may appeal to patients concerned about the psychological 
implications of the presence of visible non‑implanted catheters. 
A meta‑analysis by Yeow et al (6) reported that TIVAPs were 
superior to CVCs and PICCs in terms of complication rate 
and quality of life without compromising cost‑effectiveness. 
However, insertion or removal of TIVAPs requires a minor 
surgical operation, and long‑term complications are major 
reasons for removal, which include pocket infection, CRBSI, 
catheter‑related thrombosis and catheter migration (7‑9). 
According to the literature, the incidences of catheter‑related 
infection, thrombosis and migration were 3‑10%, 1.06‑11.4% 
and 0.05‑3.5%, respectively (10‑12). Since management of 
complications is typically time‑consuming and costly, a risk 
prediction model of related events may be of great value. 
However, such models are not well established at present. The 
main focus of the present study is to explore the risk factors for 
long‑term complications after TIVAP placement and construct 
a predictive model.

Machine learning, with its powerful and efficient compu‑
tational capabilities, can assist in the diagnosis of diseases 
through well‑trained models (13). Thus far, machine learning 
has been widely used in foundation and clinical medicine, 
new drug development and public health (14‑16). Machine 
learning‑based abnormality detection overcomes the data 
imbalance problems encountered in the real healthcare 
world (17). To the best of the authors' knowledge, the present 
study is the first to develop a machine learning‑based risk 
prediction model for long‑term complications associated with 
TIVAP implantation in patients with lung cancer.

Materials and methods

Patients and variables. The present retrospective, low‑risk 
study was approved by The Ethics Committee of The First 
Affiliated Hospital with Nanjing Medical University (Nanjing, 
China; approval no. 2022‑SR‑518) and informed patient 
consent was waived. Clinical data between January, 2016 and 
December, 2018 were obtained from the inpatient recording 
system. The patient inclusion criteria were as follows: i) Aged 
≥60 years (according to the World Health Organization 
criteria for the age classification of older individuals in devel‑
oping countries); ii) pathologically diagnosed with lung cancer 
and requiring chemotherapy; and iii) had TIVAP implanted 
by a physician and a nurse in the operation room and aided 
by ultrasound guided venipuncture and intracavitary elec‑
trocardiogram (IC‑ECG) guided tip localization (18,19). 
Patients with large amount of missing data were excluded 
from the study. There were 666 males and 236 females, with 
a median age of 67.23±0.52 (range 60‑90) years. The primary 
end point in the present study was long‑term complications 
and all complications were diagnosed by the current gold 
standard (3,20,21).

By searching the relevant literature (2,22‑32), the data 
collected in the present study were as follows: i) Demographic 
characteristics, including age, sex, body mass index (BMI), 
smoking history, thrombus history, history of catheter place‑
ment, comorbidities, pleural effusion, cough, pathological 
type based on WHO standard (33) and tumor stage based on 
the 8th Edition of the TNM Classification of the International 
Association for the Study of Lung Cancer (34); ii) labora‑
tory indicators, including white blood cell (WBC) counts, 
platelet (PLT) counts, hemoglobin (HB), D‑dimer, activated 
partial thromboplastin time (APTT), fibrinogen, albumin 
(ALB), total bilirubin and creatinine (Cr); iii) medication for 
lung cancer, including platinum, pemetrexed, bevacizumab, 
docetaxel, paclitaxel, radiotherapy, leukocyte stimulant and 
PLT stimulant; and iv) data related to the TIVAPs, including 
implantation site (right or left side of the body), catheter length 
and operation time

Model development. The occurrence and detection of abnor‑
malities is the focus of disease prediction. Anomaly detection, 
also known as outlier detection, was used to build the predic‑
tive model in the present study (35). Anomaly detection has a 
wide range of applications in various scenarios, such as earth 
sciences, traffic monitoring, early diagnosis of diseases and 
disease outbreak detection (36‑38). To improve the accuracy 
of the developed model and to identify relevant risk factors 
that have not yet been recognized, all data were incorporated 
into the model. 

The modeling process, in which machine learning algo‑
rithms suitable for supervised learning tasks [including 
Isolation Forest (iForest), Local Outlier Factor (LOF) and 
one‑class Support Vector Machines (one‑class SVM)] were 
used, was divided into steps. First, the collected data were 
pre‑processed, including missing value processing, feature 
selection and standardization. The tools used for this step were 
Pandas version 1.5.2 (https://github.com/pandas‑dev/pandas), 
Numpy version 1.26.0 (https://github.com/numpy/numpy) 
and Seaborn version 0.12.2 (https://github.com/mwaskom/ 
seaborn). The dataset was then divided into training and test 
sets, ensuring that model training was performed on a represen‑
tative sample of data, while retaining an independent dataset 
for evaluation. Second, the model parameters were adjusted 
(contamination=28/902) according to the data distribution 
after initializing the model. Training was then performed 
on the training set, from which patterns and relationships 
between input features and implanted outcomes were learned. 
During the training process, the algorithm parameters were 
iteratively adjusted to minimize the prediction error using 
GridSearchCV in the hyperparameter tuning. The tool used for 
this step was scikit‑learn (sklearn) version 1.2.2 (https://github.
com/scikit‑learn/scikit‑learn). Finally, a model evaluation was 
performed and the receiver operating characteristic curves 
(ROC) were plotted. The tool for plotting ROC was matplotlib 
version 3.7.1 (https://github.com/matplotlib/matplotlib). A total 
of five common metrics were introduced, including accuracy, 
precision, recall, F1 score and area under the curve (AUC), 
to evaluate the performance of the model with the test set. In 
general, the higher the accuracy, precision, and recall of the 
model and the closer the F1 score is to 1, the more optimal the 
performance of the model. In addition, Matthew's correlation 
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coefficient (MCC) was introduced, which provided a more 
accurate assessment of performance with the unbalanced data 
sets to inform clinical decision‑making and risk management. 
All the models were analyzed using Python version 3.10.5 
(https://www.python.org/downloads/release/python‑3105/).

Statistical analysis. Continuous variables are presented as 
the mean ± SD, while categorical variables are presented 
as numbers (n) and frequencies (%). Comparisons were 
conducted using χ2 test or Fisher's exact test with scipy version 
1.10.1 (https://github.com/scipy/scipy). P<0.05 was considered 
to indicate a statistically significant difference.

Results

Patient clinical characteristics in the training and test sets 
and the occurrence of complications. A total of 902 patients 
were included in the present study (Fig. 1). As shown in 
Table Ⅰ, the training and test sets consisted of 631 and 
271 patients, respectively. The median age of the training and 
test set was 67.35±0.42 and 67.10±0.62 years respectively. 
Males accounted for 74.8% of the training set and 71.6% of 
the test set. A total of 28 patients (3.1%) developed complica‑
tions. There were no significant differences between the two 
sets except in the number of patients administered docetaxel 
or leukocyte stimulant (P<0.05; Table Ⅰ), which suggested 
that the feature distribution of the two datasets was similar 
after data pre‑processing, ensuring that the model had good 
generalization ability.

Feature selection; correlation analysis with heatmaps. 
Seaborn was used to construct correlation‑based heatmaps 
(Fig. 2), to perform full factor analysis and to determine any 
correlations with the occurrence of complications. According 
to the heatmap, the factors that may be associated with compli‑
cations include history of thrombosis, comorbidities, pleural 
fluid, adenocarcinoma, tumor stage, APTT, BMI, site and 
time of implantation, WBC, HB, D‑dimer, ALB, Cr, antineo‑
plastic agents and leukocyte stimulants. Among these factors, 
those with a correlation coefficient of ≥0.05 were BMI, HB, 
implantation time, docetaxel and leukocyte stimulants. 

One‑class SVM model performs the best among the three 
models. The performance of the one‑class SVM model (MCC, 
0.078; AUC, 0.62; accuracy, 66.0%) was significantly superior 
than the iForest (MCC, 0.015; AUC, 0.48; accuracy, 94.0%) 
and LOF (MCC, ‑0.017; AUC, 0.51; accuracy, 96.0%; Fig. 3 
and Table II) models. The classification reports for patients in 
category 0 (without complications) and category 1 (with compli‑
cations) provided more detailed performance metrics (Table II). 
Overall, the one‑class SVM model had a positive MCC, 
a relatively balanced recall and performed well in the task.

Discussion

Different algorithms have different performances for specific 
datasets. In the present study, three common anomaly detec‑
tion algorithms were applied to the same training set and their 
performances were compared. These three algorithms were 
chosen due to the following: i) iForest excels at identifying 

outliers by constructing random trees and isolating anomalies 
in shorter paths. iForest does not assume any potential data 
distributions and can effectively handle large datasets (39); 
ii) LOF is sensitive to local context, which is important in 
the healthcare setting as subtle changes may indicate abnor‑
malities. Moreover, LOF is less affected by noise and different 
densities, which is consistent with the inherent variability 
of medical data (40); and iii) one‑class SVM can implement 
boundary learning, it builds a hyperplane around most data 
points to isolate a few classes (anomalies). Additionally, 
one‑class SVM is flexible to capture the complex relationships 
between risk factors by tweaking the kernel function and 
performs well when dealing with unbalanced datasets (41,42). 
In summary, iForest, LOF and one‑class SVM were selected 
in the present study due to their effectiveness in detecting 
anomalies, robustness to noise, processing high‑dimensional 
data and capturing complex relationships.

The early identification of high‑risk groups for long‑term 
complications is important to improve the quality of life of 
patients with cancer and to reduce the waste of medical 
resources. To the best of our knowledge, the present study 
was the first to present a model that has been built on top of 
an anomaly detection algorithm. The results of the present 
study indicated that the one‑class SVM model had the 
highest performance with an MCC, AUC and accuracy of 
0.078, 0.62 and 66.0%, respectively. Reducing the occurrence 
of complications has always been the focus of healthcare 
professionals. To date, a number of factors such as catheter 
material, age, BMI, severe coughing, time interval from 
first use to placement, site of placement, hypoalbuminemia 
and leukopenia, have been identified in patients with cancer 
suffering from TIVAP‑related complications (26,31,43‑46).

Due to data sparseness, the present study was not able 
to evaluate the contribution of each variable to classification 
accuracy. However, the correlation‑based heat map suggested 
that BMI, HB, implantation time, docetaxel and leukocyte 
stimulants may be closely related to the occurrence of 

Figure 1. Study flowchart. Clinical data from January 2016 to December 
2018 were collected from the inpatient and laboratory systems of The First 
Affiliated Hospital with Nanjing Medical University (Nanjing, China). 
All TIVAP implantation procedures were completed by a physician in the 
operating room aided by ultrasound‑guided venipuncture and intracavitary 
electrocardiogram (IC‑ECG)‑guided tip localization. Patients with a large 
amount of missing data were excluded from the study. Ultimately, 902 patients 
were included in the present study. Included patients were randomly divided 
into the training and test sets (7:3). TIVAP, totally implanted venous access 
port; IC‑ECG, intracavitary electrocardiogram.
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Table Ⅰ. Baseline characteristics of the training (n=631) and test (n=271) sets.

Variables Training set Test set P‑value

Age, years 67.35±0.42 67.10±0.62 0.354
Sex, n (%)   1.000
  Female 159 (25.2) 77 (28.4) 
  Male 472 (74.8) 194 (71.6) 
BMIa, n (%)   0.532
  0 336 (53.2) 157 (57.9) 
  1 38 (6.0) 9 (3.3) 
  2 210 (33.3) 83 (30.6) 
  3 47 (7.4) 22 (8.1) 
Smoking history, n (%)   0.976
  No 251 (40.0) 117 (43.2) 
  Yes 380 (60.0) 154 (56.8) 
Thrombosis history, n (%)   0.461
  No 573 (90.8) 251 (100.0) 
  Yes 58 (9.2) 20 (0.0) 
CVC history, n (%)   1.000
  No 629 (99.7) 271 (100.0) 
  Yes 2 (0.3) 0 (0.0) 
Comorbidities, n (%)   0.759
  No 271 (42.9) 125 (46.1) 
  Yes 360 (57.1) 146 (53.9) 
Pleural effusion, n (%)   0.421
  No 358 (56.7) 144 (53.1) 
  Yes 273 (43.3) 127 (46.9) 
Pathological typeb, n (%)   
  1 376 (59.6) 153 (56.5) 0.338
  2 164 (26.0) 83 (30.6) 0.833
  3 71 (11.3) 30 (11.1) 0.760
  4 4 (0.6) 2 (0.7) 1.000
  5 14 (2.2) 8 (3.0) 1.000
Tumor stagec, n (%)   0.482
  1 72 (11.4) 47 (17.3) 
  2 59 (9.4) 33 (12.2) 
  3 141 (22.3) 58 (21.4) 
  4 259 (41.0) 95 (35.1) 
  5 58 (9.2) 23 (8.5) 
WBC, n (%)   0.758
  Normal, 3.5‑9.5x109/l 547 (86.7) 228 (84.1) 
  Abnormal 84 (13.3) 43 (15.9) 
PLT, n (%)   0.686
  Normal, 125‑350x109/l 562 (89.1) 238 (87.8) 
  Abnormal 69 (10.9) 33 (12.2) 
HB, n (%)   0.056
  Normal, 115‑150 g/l 490 (77.7) 208 (76.8) 
  Abnormal 141 (22.3) 63 (23.2) 
Albumin, n (%)   1.000
  Normal, 40‑55 g/l 192 (30.4) 81 (30.0) 
  Abnormal 439 (69.6) 190 (70.0) 
Total bilirubin, n (%)   0.287
  Normal, 5.1‑19 µmol/l 587 (93.0) 254 (93.7) 
  Abnormal 44 (7.0) 17 (6.3) 
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Table Ⅰ. Continued.

Variables Training set Test set P‑value

Cr, n (%)   0.515
  Normal, 41‑81 µmol/l 524 (83.0) 211 (77.9) 
  Abnormal 107 (17.0) 60 (22.1) 
D‑Dimer, n (%)   0.438
  Normal, ≤0.55 mg/l 287 (45.4) 116 (42.8) 
  Abnormal 344 (54.5) 155 (57.2) 
Fibrinogen, n (%)   1.000
  Normal, 2‑4 g/l 412 (65.3) 178 (65.7) 
  Abnormal 219 (34.7) 93 (34.3) 
APTT, n (%)   0.929
  Normal, 25‑31.3 sec 473 (75.0) 194 (71.6) 
  Abnormal 158 (25.0) 77 (28.4) 
Implant sited, n (%)   0.590
  1 274 (43.4%) 112 (41.3%) 
  2 307 (48.7%) 137 (50.6%) 
  3 16 (2.5%) 4 (1.5%) 
  4 34 (5.4%) 18 (6.6%) 
Depth, cm 23.58±0.27 23.36±0.43 0.231
Time, min 11.34±0.32 11.28±0.46 0.448
Treatments n (%)   
  Platinum   1.000
  No 54 (8.6) 19 (7.0) 
  Yes 577 (91.4) 252 (93.0) 
  Pemetrexed   0.870
  No 261 (41.4) 123 (45.4) 
  Yes 370 (58.6) 148 (54.6) 
  Bevacizumab   0.858
  No 598 (94.8) 262 (96.7) 
  Yes 33 (5.2) 9 (3.3) 
  Docetaxel   0.049e

  no 559 (88.6) 239 (88.2) 
  yes 72 (11.4) 32 (11.8) 
  Paclitaxel   0.661
  No 467 (74.0) 193 (71.2) 
  Yes 164 (26.0) 78 (28.8) 
  Radiotherapy   1.000
  No 526 (83.4) 224 (82.7) 
  Yes 105 (16.6) 47 (17.3) 
  Leukocyte‑stimulant   0.012e

  No 173 (27.4) 61 (22.5) 
  Yes 458 (72.6) 210 (77.5) 
  PLT‑stimulant   0.874
  No 525 (83.2) 222 (81.9) 
  Yes 106 (16.8) 49 (18.1) 
Complications n (%)   
  No 610 (96.7) 264 (97.4) 
  Yes 21 (3.3) 7 (2.6) 

a0 represents the normal range (18.5‑23.9), 1 represents underweight (≤18.4), 2 represents overweight (24‑27.9) and 3 represents obese (≥28). 
b1 represents adenocarcinoma, 2 represents squamous cell carcinoma, 3 represents small cell lung cancer, 4 represents metastatic lung cancer 
and 5 represents other cancer types. c1 represents stage I, 2 represents stage II, 3 represents stage III, 4 represents stage IV and 5 represents the 
other stages. d1 represents left axillary vein, 2 represents left internal jugular vein, 3 represents right axillary vein and 4 represents right internal 
jugular vein. e Indicates that the difference is statistically significant. BMI, body mass index; CVC, central venous catheters; WBC, white blood 
cell; PLT, platelet; HB, hemoglobin; Cr, creatinine; APTT, activated partial thromboplastin time.
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Figure 2. Correlation‑based heatmap. (A) Seaborn was used to construct correlation‑based heatmaps to perform full factor analysis and to determine any corre‑
lations with the occurrence of complications. (B) The detailed heatmap shows that the history of thrombosis, comorbidities, pleural fluid, adenocarcinoma, 
tumor phase, APTT, BMI, site and time of implantation, WBC, HB, D‑dimer, ALB, Cr, antineoplastic agents and leukocyte stimulants may be associated 
with the development of complications. APTT, activated partial thromboplastin time; BMI, body mass index; WBC, white blood cell; HB, hemoglobin; ALB, 
albumin; Cr, creatinine.
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long‑term complications following port implantation. These 
findings were consistent with the real‑world observations 
such that the occurrence and progression of an outcome event 
are often influenced by a combination of several factors. A 
previous study assessing the risk of venous thromboembolism 
in patients with cancer included BMI, HB and WBC count in 
the risk score (47), suggesting that the relationship between 
BMI, HB, leukocyte stimulants and catheter related thrombosis 
should be further studied using prediction models. Adverse 
reactions to antitumor drugs should also be noted. For instance, 
docetaxel may cause bone marrow suppression, manifesting 
as neutropenia, thrombocytopenia or anemia (48). This will 
undoubtedly increase the incidence of TIVAP‑related infec‑
tions. Hypoalbuminemia was found to be an independent risk 
factor for infections (26). However, the relationship between 
albumin correction and improved prognosis was not defini‑
tively identified; it can be further explored in larger datasets 
in the future. In the present study, the duration of implantation 
was shown to be associated with the development of long‑term 
complications. However, a multicenter prospective French 
cohort study (ONCOCIP) showed that an average surgery 

duration of 25 min was not a risk factor (49). Therefore, this 
factor needs to be verified by further research.

In conclusion, a machine learning‑based prediction model 
for the long‑term complications associated with TIVAPs in 
patients with lung cancer was developed in the present study. 
The model will help to identify individuals at high risk of 
complications, which can improve their quality of life and 
prevent unnecessary waste of medical resources. However, 
the present study did have several limitations. First, since it 
was a single‑center retrospective study, the generalizability 
of the conclusions was limited. Second, all of the partici‑
pants were older (aged ≥60 years) and had a small number 
of complications. Third, no predictive model was developed 
for specific complications, which was mainly due to the low 
complication rate in the dataset. Therefore, predictive models 
for specific complications among individuals of different 
ages with other diseases should be developed in the future 
by building larger sample sets or conducting multicenter 
collaborative studies.
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