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Exosomes affect the initiation and progression of cancers. In the tumor

microenvironment, not only cancer cells, but also fibroblasts and immunocytes secrete

exosomes. Exosomes act as a communicator between cells by transferring different

cargos and microRNAs (miRNAs). Drug resistance is one of the critical factors affecting

therapeutic effect in the course of cancer treatment. The currently known mechanisms

of drug resistance include drug efflux, alterations in drug metabolism, DNA damage

repair, alterations of energy programming, cancer stem cells and epigenetic changes.

Many studies have shown that miRNA carried by exosomes is closely associated with

the development of drug resistance mediated by the above-mentioned mechanisms.

This review article will discuss how exosomal miRNAs regulate the drug resistance.
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INTRODUCTION

Chemotherapy, radiotherapy, surgery, and targeted therapy are important modalities of cancer
treatment. However, the emergence of drug resistance leads to dismal prognosis in cancer patients.
As an emerging therapeutic target and diagnostic biomarker, exosomal miRNAs play vital roles
in tumor invasion, metastasis and progression. Studies have found that the occurrence and
development of drug resistance is closely related to miRNA carried by exosomes (1–5). In this
review article we discuss several classic mechanisms that exosomal miRNA involves in drug
resistance. Also, we summarize the role of exosomal miRNA mediated drug resistance in different
types of cancers.

THE BIOGENESIS OF EXOSOME AND miRNA

Exosomes are extracellular vesicles (EV) with the size ranges between 30 and 100 nm. Exosomes
are released to the extracellular environment after the fusion of the multivesicular body (MVB) or
late endosomes with the plasma membrane (6). It was first described in 1983 as “seems to be akin
to reverse endocytosis” (7), and has gradually recognized an important factor in oncology research
(8). Many studies have shown that exosome can promote the intercellular communication (9) by
transferring varieties of cargos, such as nucleic acid, proteins and metabolites (10–16).
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FIGURE 1 | The biogenesis of exosomal miRNA. miRNA genes are transcribed into primary miRNA (pri-miRNA). The pri-miRNA is cleaved by Dorsha complex to

produce precursor miRNA (pre-miRNA) and exported into the cytoplasma. Subsequently, pre-miRNA is processed by Dicer complex to become mature miRNA.

Mature miRNA is sorted into exosomes and released to the extracellular space. With the recipient cell uptake exosomes, the miRNA entered the cell and mediates

gene suppression by targeted translational repression and mRNA degradation.

microRNA (miRNA) is an important cargo that delivered by
exosomes (17). miRNAs usually consist of 19–25 nucleotides.
It can regulate post-transcriptional silence of target genes.
Following the transcription of miRNA gene, a small hairpin-
shaped RNA called pre-miRNA is generated. The pre-miRNA
is exported into cytoplasm and processed by Dicer, a kind
of RNase III-type endonuclease, and subsequently releases a
small RNA duplex (18, 19). The RNA duplex will unwind
after loading onto an Argonaute (AGO) protein and forming
RNA-induced silencing complex (RISC) (20). Once binding
to a RISC, the miRNA is complementary pairing with the
mRNA. Depending on whether miRNA and mRNA are fully
bind, two different mechanisms occur: (1) mRNA specifies
cleavage if miRNA is sufficiently complementary to mRNA;
(2) the productive translation is inhibited when miRNA is
insufficiently complementary to mRNA (21, 22). Therefore,
miRNA can regulate various physiological and pathological
activities (Figure 1).

THE CURRENT UNDERSTANDING OF
CANCER DRUG RESISTANCE

Cancer drug resistance can be divided into intrinsic and acquired
resistance. Intrinsic resistance occurs before receiving therapy,
which limits the use of anticancer drugs. Acquired resistance may

develop during treatment even if some drugs have anticancer
effects at the early stage (23). Drug resistance seriously impacts
the effectiveness of chemotherapy and molecular targeted
therapies, ultimately leading dismal prognosis and tumor relapse.

Because of genomic instability, tumors may include a
diverse collection of cells that possess different sensitivity
to treatment (24). The positive selection of drug-resistant
tumor subpopulation causes drug resistance. Therefore, accurate
assessment of tumor heterogeneity is important to address drug
resistance (25). The application of high-throughput screening
technology facilitates the identification of genotype and helps
predict drug response, providing convenience to individual
therapy. In the past few years, microfluidic chips show
tremendous promise in the study of tumor heterogeneity and
the establishment of preclinical models (26). Grosselin et al. (27)
set up a high-throughput droplet microfluidics platform. On this
platform, the single cell chromatin landscapes of thousand cells
can be profiled. They used the patient-derived xenograft models
of acquired resistance to chemotherapy and target therapies in
breast cancer and found a common chromatin signature between
drug-sensitive and resistant cells (27). This technique paves the
way to study the role of chromatin heterogeneity.

The limited cancer models hinder the clinical prediction
of drug efficacy. Therefore, it is urgent to establish more
reasonable, advanced and high-throughput cancer models to

Frontiers in Oncology | www.frontiersin.org 2 April 2020 | Volume 10 | Article 472

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Exosomal miRNA and Drug Resistance

deal with drug resistance and explore the underlying factor of
heterogeneous patient responses. Gao et al. (28) established about
1,000 patient-derived tumor xenograft models (PDXs) with a
diverse set of driver mutation using high-throughput screening
technology. It has been demonstrated that these PDXs have
the potential to predict patient response to targeted therapies
and perform in vivo compound screens (28). Furthermore, a
3D model of tumor tissue made up of numerous different cell
types can better mimic tumor microenvironment and provide
the similar information about clinical response. Kather et al.
developed a 3D model of tumor tissue which reproduced key
features of colorectal cancer (CRC) and based on the individual
patient data, yielding in silico tumor explant (29).

Combinations of drugs are also the effective way to overcome
or bypass drug resistance (30). Epidermal growth factor receptor
tyrosine kinase inhibitor (EGFR TKI) is beneficial for the
treatment of non-small cell lung cancer with EGFR mutation
(31). However, after treatment with EGFR TKI for 10–14
months, the efficacy declines (32), the primary and acquired drug
resistance limits their clinical benefit (33). To combat resistance,
in addition to developing new drugs, drugs combinations
through a so-called bypass signaling mechanism, is an excellent
choice (34). In addition, nanomedicine approach can be used
to encapsulate and co-delivery drugs in specific materials to
improve their bioavailability and thus overcome drug resistance
(35, 36). The application of high-throughput drug screening can
identify the effective drug combination regimens. Using high-
throughput screening technology, researchers identified that
potassium antimony tartrate in combination with topotecan can
significantly enhance the sensitivity of non-small cell lung cancer
and colorectal cancer to cis-diamminedichloroplatinum/cisplatin
(CDDP). It was found that topotecan impairs the ability to repair
CDDP-induced DNA damage (37). DNA damage repair is a
classic mechanism by which cells develop drug resistance, as
detailed later in this article.

Cancer biomarkers are present in tumor tissue or serum
that help to detect cancers in their early stage, simplified the
prognosis of cancer development (38). Cancer biomarkers help
stratify patients to receive specific therapeutics. Biomarker could
be DNA, mRNA, protein and various cellular metabolites (39).
Over the past years, many advances have been made in the
detection and evaluation of cancer biomarkers (40–44). In the
next section, we will detail the development of exosomal miRNA
as cancer biomarkers.

EXOSOMAL miRNA AS A REGULATOR
AND BIOMARKER IN CANCER

Exosomal miRNA is involved in the proliferation, invasion,
migration and drug resistance of various cancers. Therefore,
exosomal miRNA has the potential to be the biomarkers for
cancer diagnosis and treatment. In Table 1, we summarize some
recent researches on various exosomal miRNA as regulators and
biomarkers in various cancers.

Breast cancer (BC) is a highly prevalent cancer and the
second leading cause of cancer-related death among women
(95, 96). MiR-9 is a classic miRNA in cancer development. Baroni

TABLE 1 | Exosomal miRNA as regulators and biomarkers in different cancers.

Cancer type Exosomal miRNA References

Breast cancer miR-9; miR-222; miR-105; miR-10b;

miR-122; miR-1246

(45–50)

Colon cancer miR-146a-5p; miR-200b; miR-193a;

miR-125-3p; miR-25-3p; miR-27a;

miR-130a

(14, 51–55)

Gastric cancer miR-139; miR-130a; miR-21;

miR-423-5p; miR-451; miR-10b-5p;

miR-195-5p; miR-20a-3p;

miR-296-5p

(4, 16, 56–59)

Lung cancer miR-23a; miR-126; miR-96;

miR-222-3p; let-7a-5p; miR16;

miR-322; miR-497; miR-17

(60–65)

Liver cancer miR-1237-3p; miR-335; miR-320a;

miR-103; miR-18a; miR-221;

miR-222; miR-224; miR-101;

miR-106b; miR-122; miR-195

(66–70)

Ovarian cancer Let-7; miR-200; miR-29a-3p;

miR-21-5p; miR-205; miR-145;

miR-200c; miR-940; miR-6126;

miR-1246; miR-100; miR-320;

miR-23a

(12, 71–77)

Pancreatic cancer miR-21; miR-155; miR-365;

miR-1231; miR-155; miR-301a;

miR-1246; miR-4644; miR-3976;

miR-4306

(78–83)

Prostate cancer miR-1290; miR-375; miR-21-5p;

miR-196a-5p; miR-501-3p;

miR-1246

(84–87)

Oral cancer miR-382-5p; miR-1246; miR-21;

miR-34a-5p

(88–91)

Nasopharynx cancer miR-23a; miR-24-3p; miR-9 (92–94)

et al. indicated that exosomal miR-9 has the ability to induce
human breast fibroblasts to have cancer associated fibroblasts
(CAFs)-like properties (45). Exosome transferring miR-222 can
promote BC cells migration and invasion by activating Nuclear
factor-κB (NF-κB) (46). Exosomal miRNA also regulate tumor
growth by influencing the metabolic reprogramming of BC cells.
Yan et al. suggested that BC cells secrete exosomal miR-105
to promote tumor growth through the regulation of metabolic
reprogramming in stromal cells (47).

Exosomal miRNA regulates tumor growth in other cancers
as well. In colorectal cancer (CRC), transforming growth factor-
beta (TGF-β) significantly contributes to the upregulation of
exosome-meditated miR-200b, which promotes colorectal cancer
cell proliferation by suppressing the expression of p27 in target
cells. (51). Li et al. demonstrated that the absence of exosomal
miR-148b derived from CAFs is the cause of invasion and
metastasis in endometrial cancer (97). In lung cancer, Wu et al.
indicated that exosomal miR-96 is associated with proliferation,
migration and drug resistance by directly binding to wild-type
LMO7 gene (60).

The expression of some exosomal miRNA in cancers is
specific. The specificity enables exosomal miRNA to become
cancer biomarkers. Sohn et al. proposed that serum exosomal
miRNAs have the potential to become novel biomarkers
for hepatocellular carcinoma (66). Moreover, Huang et al.
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FIGURE 2 | The mechanism of drug resistance in cancer cells. a. Drug efflux by the ATP-binding cassette (ABC) transporter superfamily. b. The dysfunction of drug

metabolism by drug inactivation or lack of drug activation. c. The excessive production of lactate leads to TME acidosis. The acidic TME makes cancer cells a strong

survival advantage and drug resistance. d. DNA damage repair is a classic mechanism for drug resistant. e. Drug resistant-cancer cells are often accompanied by

downregulation of intracellular apoptotic proteins or up-regulation of anti-apoptotic proteins. f. Targeting therapy of CSCs by inhibiting EMT has become an effective

way to anticancer and prevent drug resistance.

extracted serum-derived exosome from patients with gastric non-
cardia adenocarcinoma and detected the expression of miRNA.
They identified the expression of miR-195-5p, miR-20a-3p,
and miR-196-5p in exosomes and found that these miRNAs
significantly increased. This finding provided a reference for
clinical application and diagnosis using exosomal miRNAs (56).

THE MECHANISM OF CANCER DRUG
RESISTANCE WITH EXOSOMAL miRNA

The mechanism of drug resistance is complex, the currently
known mechanisms of drug resistance include drug efflux (98),
mutation of drug target (99, 100), alterations in drug metabolism
(101), DNA damage repair (102, 103), alterations of energy
programming, cancer stem cells and epigenetic changes (104,
105). Most of these processes were regulated by exosomal
miRNA (Figure 2). Different treatments have been developed
to circumvent these resistance mechanisms (106–112). In this
section we associate several mechanisms of drug resistance
with miRNAs.

Drug Efflux and Metabolism in Cancers
Drug resistance is always accompanied by the dysfunction
of pharmacokinetic factors, that are absorption, distribution,
metabolism and elimination (ADME) of drugs. Exosomal

miRNA participate drug resistance by interfering drug efflux and
metabolism as well.

The excessive drug efflux is a classic mechanism of drug
resistance. The human ATP-binding cassette (ABC) transporter
superfamily is closely associated with the excessive efflux of drug.
In the ABC transporter superfamily, several ATP-driven efflux
transporters are the classic regulator of drug efflux: ABCB1 (P-
gp/MDR1), ABCC1 (MRP1), ABCG2 (BCRP), ABCC2, MDR4
and MDR5 (113–118). The efficacy of drugs is closely related
to the concentration of the drug inside the cells. In drug
resistant-tumor cells, overexpression of these ABC transporters
pumps anticancer drug out of cells, decreasing the concentration
of drugs.

Tumor-derived exosomal miRNA cargo regulates the
expression of ABC transporters and facilitates drug resistance
in tumor cells. ABCB1 is one of the ABC transporters, some
researchers reported that ABCB1 enriched in microvesicles
and exosomes shed by drug-resistant cells (119). These EVs
transfer ABCB1 to drug-sensitive cells, making the recipient
cells express functional ABCB1 and acquiring drug resistance.
However, the half-life of ABCB1 is shorter than 24 h and the
transfer of ABCB1 is unstable (120). The resistant mechanism
of drug-sensitive cells cannot be merely explained by the
transfer of ABCB1. Sousa conjectured in his review that
ABCB1 may co-transport with miRNA so that ABCB1 can be
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expressed stably for a long time (121). After that, exosomal
miRNA modulates transcripts in recipient cells to acquire
resistance phenotype (122). For example, exosomal miR-1246
secreted by ovarian cancer (OC) cells inhibits the expression
of Cav1 and upregulates ABCB1 expression to induce tumor-
promoting phenotype and drug resistance. Based on the
preclinical experiments in vivo, miR-1246 inhibitor treatment
in combination with chemotherapy shows great potential in
the treatment of OC (12). Exosomal miRNA is a double-edged
sword in the occurrence and development of drug resistance.
Some miRNAs have positive effects in drug resistance, while
some can enhance the chemosensitivity of cancer cells. Liu
et al. found that exosome-transmitted miR-128-3p down-
regulates the expression of MDR5, decreasing oxaliplatin efflux
and improving chemosensitivity of oxaliplatin-resist cells in
colorectal cancer (123).

The activation of drug is related to the corresponding
enzymes in body. The prodrug is activated by enzyme action,
or the drug is metabolized into an inactive form due to some
enzymes in vivo. For example, gemcitabine is metabolized by
deoxycytidine kinase (dCK) and incorporate with nucleosides
in DNA and RNA, preventing DNA from replicating properly.
Cytidine deaminase (CDA) is an enzyme that metabolizes
gemcitabine to become an inactive form. When the tumor
emerges drug resistance, it is often accompanied by the
inactivation of dCK or activation of CDA, leading to gemcitabine
degradation or inactivation and eventually causing drug
resistance (78, 124, 125). Exosomal miRNA is involved in drug
metabolism. In pancreatic adenocarcinoma, tumor associated
macrophages secrete exosomes that transferring miR-365 to
induce gemcitabine-resistance (79). The specific mechanism is
thatmacrophage-derived exosomes (MDE) transfermiR-365 into
pancreatic ductal adenocarcinoma (PDAC) cells. Once miR-
365 entered PDAC cells, the concentration of triphosphate-
nucleotide (NTP) is increasing. NTP can compete with
phosphorylated gemcitabine for DNA incorporation, so that it
prevents activation of gemcitabine. Moreover, exosomal miR-365
upregulates the expression of CDA and promotes the inactivation
of gemcitabine leading to gemcitabine resistance (79).

Metabolic Reprogramming and TME
Acidosis
Energy reprogramming has been accepted as a hallmark of
cancer (126). In order to maintain survival, proliferation
and dissemination, cancer cells need to reprogram their
metabolism to ensure the increasing energy demand (127–
129). Mitochondrial oxidative phosphorylation (OXPHOS) and
glycolysis are two major metabolic pathways to generate
adenosine triphosphate (ATP) to support physiological activities
in our daily life. A common characteristic in primary and
metastatic cancer is the upregulation of glycolysis (130).
Glycolysis usually occurs in an anoxic condition. However, even
in aerobic conditions, cancer cells undergo aerobic glycolysis by
reprogramming the glucose metabolism and glycolysis is still
widespread in TME. This phenomenon is called Warburg Effect.
An important reason of this effect is that during glycolysis,
glucose is metabolized into pyruvate and lactate. In cancer cells,
excessive production of lactate leads to TME acidosis (131).

The acidic TME largely contributes to the immunologic escape,
because the decrease in extracellular pH leads to the reduction
of cytotoxic T- cell function, thus the cancer cells can acquire
a strong survival advantage which promotes cancer metastasis,
invasion and drug resistance (132–134).

Regulation of glycolysis is one of the ways to inhibit cancer
drug resistance (134). The GLUT family is closely related to
glucose transport into cells. GLUT1, one of the family members
in GLUT, is upregulated in many malignant tumors (135). The
upregulation of GLUT1 is associated with mammalian target
of rapamycin (mTOR) and the activation of mTOR increases
glycolysis and promotes drug resistance (132). The decreased
expression of miR-100 is involved in drug resistance in several
cancer. mTOR is a target gene of miR-100-5p which binds
to the 3′UTR directly and decreases the expression of mTOR
and enhances chemo-sensitive of cancer cells. Qin et al. (136)
indicated in their study that the expressing of miR-100-5p is
not only related to the cell itself, but also to the extracellular
microenvironment. Exosome as a messenger for intracellular
communication, the concentration of miR-100-5p in exosomes
is reflected the content in surrounding microenvironment. The
downregulation of miR-100-5p in microenvironment leads to
cisplatin resistance in lung cancer cells (136). In addition,
TP53INP1 is also a stress protein, which has been indicated
to play a tumor suppressive role by regulating metabolic
homeostasis (137). Fang et al. showed that CAF derives exosomal
miR-106b, which promotes gemcitabine resistance by directly
targeting TP53INP1 (138).

DNA Damage Repair
As a target of anticancer drugs, DNA damage induces cancer
cell death. Genotoxic agents are designed for damaging DNA or
preventing the synthesis of new DNA to inhibit cell proliferation.
Genotoxic agents are classified as direct damage, such as cisplatin;
and indirect damage, such as topoisomerase inhibitors (24).
However, in addition to cell death, DNA damage response (DDR)
includes the DNA damage repair (139).

DNA damage repair is originally a way to maintain genomic
stability in cells. However, DNA damage repair has also been
found to be a resistance mechanism because of the widespread
use of genotoxic agents (140). DNA repair mechanisms can be
briefly divided into the following four categories: (a) Nucleotide
excision repair (NER): NER works in a way that is suitable for
repairing bulky DNA lesions by using DNA ligase to attach repair
patch to the damage DNA regions, which is associated with
platinum agent resistance. (b) Base excision repair (BER): BER
works through repairing a small number of bases and performing
some modification, such as alkylation and oxidative lesions. This
repair mechanism is related to the resistance of genotoxic agents
nitrosoureas. (c) Mismatch repair (MMR): MMR participates
in the modification of oxidation and methylation by bypassing
the lesions to replicate. (d) DNA double-strand break repair:
Double-strand break (DSB): DSB is the most toxic form of DNA
damage. Two main repair pathways of DSB are non-homologous
end joining (NHEJ) and homologous recombination (HR)
(139, 141). Briefly, these two repair pathways have their own
characteristics. NHEJ is more rapid, while HR is more complex
and accurate. This mechanism is applicable to the damage
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induced by topoisomerase inhibitors, temozolomide (TMZ) and
some alkylating agents (142).

Exosomal miRNA is a regulator to inhibit DNA damage
repair. XRCC4 is a major participator of NHEJ, which forms a
heterodimer with DNA ligase IV and covalently joins the broken
DNA (143). There have been reports of XRCC4 linked to TMZ
resistance in earlier years. XRCC4 is a direct target of miR-151a,
the low expression of which leads to the upregulation of XRCC4
and triggers the DNA repair that makes cell resistant to TMZ.
To investigate the effects of exosomal miR-151a on cancer cells,
researchers incubated glioblastoma multiforme (GBM) receptor
cells with exosomes secreted by TMZ-resistant cells and TMZ-
sensitive cells. The result shows that GBM receptor cells co-
cultured with TMZ-resistant exosomes have stronger resistance
to TMZ. However, when researchers restore miR-151a in TMZ-
resistant exosomes, the TMZ resistance of GBM recipient cells
is significantly decreases (144). This study shows that exosomes
have the ability to transfer chemoresistance to sensitive cancer
cells and exosomal miR-151a has the potential to become a
prognostic factor in GBM treatment.

Deregulation of Apoptosis
Resisting cell death is a characteristic of cancers, which leads
the unlimited proliferation of cancer cells and the development
of drug resistance (145, 146). Drug resistant-cancer cells are
often accompanied by downregulation of intracellular apoptotic
proteins or up-regulation of anti-apoptotic proteins.

Exosome secreted by drug-resistant cells can transmit the
resistance to neighboring cells. Zhang et al. (147) indicated
that exosomal miR-214 mediates gefitinib resistance in non-
small cell lung cancer (NSCLC). Compared with sensitive
cancer cells, the miR-214 in exosomes secreted by gefitinib
resistant-cells is significantly increased. Gefitinib resistant-cells
secreted exosomal miR-214 could confer gefitinib resistance
in NSCLC by suppressing cell apoptosis (147). In addition
to cancer cells, exosomes secreted by stroma cells also act
on resistant targets by transferring miRNA, making cancer
cells to acquire drug resistance. Paclitaxel is a common agent
for the treatment of ovarian cancer. However, the efficacy of
paclitaxel treatment is greatly reduced if the ovarian cancer
cells develop resistance to paclitaxel. By using sequencing
technology, Au Yeung et al. (148) identified that miR-21
isomiRNAs have higher expression level in the exosomes of
cancer-associated adipocytes (CAAs) and CAFs than in those
from ovarian cancer cells. After exosomal miR-21 transship
to ovarian cancer cells, miR-21 binds to apoptotic protease
activating factor 1 (APAF1) and the expression of APAF1
is downregulated (148). APAF1 combined with cytochrome c
(Cyt-c) and dATP to form apoptosomes, increasing caspase-9
and caspase-3, leading to massive mitochondrial damage and
finally inducing cell apoptosis (149). Therefore, the decrease
of APAF1 has the ability to suppress apoptosis and eventually
cause drug resistance in cancer cells. This result showed that in
omental tumor microenvironment, cancer cells have a negative
effect on neighboring stromal-derived exosomal miR-21 and
acquire malignant phenotype, including drug resistance (148).
Moreover, exosomal miR-196a derived from CAFs confers

cisplatin resistance in head and neck cancer (HNC). In order
to explore the mechanism of exosomal miR-196a in HNC cells,
Qin et al. (150) used miRecords algorithm and finally found the
target of exosomal miR-196a: CDKN1B and ING5. CDKN1B and
ING5 exhibit different functions in miR-196a-mediated cisplatin
resistance. ING5 gene is a major gene to regulate apoptosis.
Therefore, they proposed that exosomal miR-196a promote
cisplatin-resistance in HNC cells by suppressing apoptosis of
cancer cells (150).

Epithelial-to-Mesenchymal Transition
(EMT) and Cancer Stem Cells (CSCs)
In the process of cancer growth, genetic and non-genetic
factors induce biological heterogeneity, resulting in phenotypic
difference of tumors. The phenotypic diversity of malignant
cancers is considered as a significant driver that induces
drug resistance.

The cancer stem cells (CSCs) concept provides a good
explanation for the association between heterogeneity and the
resistance of cancer cells. Because of the renewal properties
and genomic instability, CSCs are closely related to the
proliferation, metastasis, and recurrence of cancer (151).
Epigenetic regulation has a great contribution to the behaviors
of cancer cells. Epigenetic differences between CSCs and non-
CSCs have a great possibility that caused by epithelial-to-
mesenchymal transition (EMT) (152). When epithelial cells
transform into mesenchymal cells, cancer cells acquire the
properties of migration and invasion and even drug resistance
(153–155). What’s interesting lies on the study that shows that
EMT only occurs in tumors with CSCs (156–158). In tumor
microenvironment, CSCs comprise a small proportion of total
cells in tumor, most of the cancer cells are non-CSCs (157).
However, the traditional cancer treatment merely kills most of
the non-CSCs and the CSCs are retained. These residual CSCs
eventually induce tumor recurrence and drug resistance through
differentiation (159–162).

In recent years, targeting therapy of CSCs by inhibiting
EMT has become an effective way to treat cancers and
prevent drug resistance (163–167). EMT is an effective target
to affect drug resistance. Exosomal miR-32-5p is proved to
induce multidrug resistance in hepatocellular carcinoma via
the PI3K/AKT pathway to promote EMT and angiogenesis
(168). CSCs themselves also secret exosomes to induce
drug resistance. MiR-155 is a classic and multifunctional
modulating miRNA which is overexpressed in multiple
malignant cancers (169). Santos et al. (170) carried out a
study which supports a putative mechanism of exosomal
miRNA transmission between cancer cells: miR-155 is enriched
in exosomes secreted by CSCs and drug resistant cells. In
addition, they observed the downregulation of E-Cadherin
(E-Cad) and upregulation of mesenchymal biomarkers,
which demonstrated that CSCs and drug resistant cells have
the ability to trigger the EMT process in recipient cells by
transferring exosomal miR-155 and eventually lead to the
recipient cells possess resistance (170). In pancreatic cancer cells,
the gemcitabine-resistant CSCs can secret miR-210 enriched
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TABLE 2 | Summary of common anticancer drugs and exosomal miRNA involved in drug resistance.

Anticancer drug type Agents Cancer type Exosomal miRNA Resistance mechanism References

Antimetabolites 5-FU Hepatocellular Carcinoma miR-32-5p Promote angiogenesis and EMT (168)

Gemcitabine Pancreatic Cancer miR-365 Prevent gemcitabine activation and

promote gemcitabine inactivation

(79)

Non-small Cell Lung Cancer miR-222-3p Directly target the promoter of SOCS3

to transfer malignant phenotypic trait

(63)

Pancreatic Cancer miR-210 Inhibit GEM-induced cell cycle arrest,

antagonize GEM-induced apoptosis,

and promote tube formation and cell

migration

(171)

Pancreatic Cancer miR-155 Suppressing the key

gemcitabine-metabolizing enzyme,

DCK

(78)

Pancreatic Cancer miR-106b Promote GEM resistance of cancer

cells by directly targeting TP53INP1

(138)

Platinum compounds Cisplatin Head and Neck Cancer miR-196a Exosomal miR-196a derives from

CAFs binds novel targets, CDKN1B

and ING5, to endow HNC cells with

cisplatin resistance

(150)

Gastric Cancer miR-21 Suppress cell apoptosis and enhance

activation of PI3K/AKT signaling

pathway by down-regulation of PTEN

(16)

Lung Cancer miR-100-5p Exosomes confer recipient cells’

resistance to cisplatin in an exosomal

miR-100-5p-dependent manner with

mTOR as its potential target both in

vitro and in vivo

(136)

Non-small Cell Lung Cancer miR-425-3p Exosomal miR-425-3p facilitated

autophagic activation in the recipient

cells by targeting AKT1, eventually

leading to chemoresistance

(172)

Carboplatin Breast Cancer miR-222/223 Exosomal miR-222/223 promote

quiescence in a subset of cancer cells

and confers drug resistance

(173)

Oxaliplatin Colorectal Cancer miR-128-3p miR-128-3p suppress EMT and

increased intracellular oxaliplatin

accumulation

(123)

Colorectal Cancer miR-46146 Directly target PDCD10 and induce

oxaliplatin chemoresistance

(174)

Topoisomerase inhibitor Doxorubicin Gastric Cancer miR-501 Downregulate BLID, inactivate

caspase-9/-3 and phosphorylate Akt

(175)

Microtubule poisons Paclitaxel Ovarian Cancer miR-21 Target APAF1 and confer

chemoresistance

(148)

Ovarian Cancer miR-1246 Target Cav1/p-gp/M2-type

Macrophage Axis

(12)

Gastric Cancer miR-155-5p Induce EMT and chemoresistant

phenotypes

(176)

Molecular targets

agents

Imatinib Chronic Myeloid Leukemia miR-365 Inhibit expression of pro-apoptosis

protein in sensitive CML cells

(177)

Trastuzumab Breast Cancer miR-567 Suppress autophagy and reverse

chemoresistance by targeting ATG5

(178)

Gefitinib Non-small Cell Lung Cancer miR-214 – (147)

exosomes. Gemcitabine-resistant CSCs enhance drug resistant
by transferring exosomal miR-210 to gemcitabine-sensitive
cells (171).

During these years, more and more studies have revealed
that different types of cells secrete exosomal miRNA in

tumor microenvironment and participate in the process of
drug resistance. The drug resistant mechanism of exosomal
miRNA on several common anticancer chemotherapeutic
agents and molecular targeted agents are summarized
in Table 2.
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CONCLUSIONS

Drug resistance is an eternal topic in cancer treatment. In
this article, we discussed the role of exosomal miRNA in
different mechanisms of drug resistance. Some of them act as
“communicators” and some of them “biomarkers” that facilitate
communication between cancer cells with other cancer cells
or cancer cells with tumor microenvironment, enriching the
knowledge background about the diagnosis of cancer. However,
drug resistance in cancer is not caused by only one or several
mechanisms, it is the combined action of the intrinsic (such
as mutation) and extrinsic (such as drug inactivation) factors.
Although progress has been made in suppressing the emergence
of drug resistance, there is still a long way to go to eradicate
the problem of drug resistance. Nevertheless, the knowledge of
exosomal miRNA will provide some clues to help exploring the
secret of cancer drug resistance.
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