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A B S T R A C T

Cryptococcus neoformans is notorious for causing severe pulmonary and central nervous system infections, 
particularly in immunocompromised patients. High mortality rates, associated with its tropism and adaptation to 
the brain microenvironment and its drug resistance profile, make this pathogen a public health threat and a 
World Health Organization (WHO) priority. This study presents the first reconstructed genome-scale metabolic 
model (GSMM), iRV890, for C. neoformans var. grubii, which comprises 890 genes, 2598 reactions, and 2047 
metabolites across four compartments. The GSMM iRV890 model was reconstructed using the open-source 
software tool merlin 4.0.2, is openly available in the well-established systems biology markup language 
(SBML) format and underwent validation using experimental data for specific growth and glucose consumption 
rates, and 222 nitrogen and carbon assimilation sources, with a 85 % prediction rate. Based on the comparison 
with GSMMs available for other pathogenic yeasts, unique metabolic features were predicted for C. neoformans, 
including key pathways shaping dynamics between C. neoformans and human host, as well as its underlying 
adaptions to the brain environment. Finally, the 96 predicted essential genes from the validated model are 
investigated as potential novel antifungal drug targets—including Erg4, Chs1, Fol1, and Fas1—which represent 
promising candidates for targeted drug development due to their absence in human cells.

1. Introduction

Cryptococcal meningitis is a disease caused by a few pathogenic 
basidiomycetous yeast species, namely Cryptococcus neoformans 
(C. neoformans) and Cryptococcus gatii. Three Cryptococcus species/var
iants cause cryptococcosis: C. neoformans var. grubii (serotype A), 
responsible for 95 % of Cryptococcus infections worldwide [1]; 
C. neoformans var. neoformans (serotype D) and Cryptococcus gattii (se
rotypes B and C) geographically restricted to tropical and/or subtropical 
regions [2].

These species are notorious for inducing severe pulmonary and 
central nervous system infections [3]. While these pathogens are 
harmless in healthy individuals, they pose a serious threat to 

immunocompromised patients, especially those with acquired immu
nodeficiency syndrome (AIDS) or those undergoing immunosuppressive 
therapies, causing severe meningoencephalitis and other serious 
neurological complications [4–6]. The latest systematic review, using 
data from more than 120 countries, estimates that cryptococcal men
ingitis affects 190000 people worldwide annually while being associated 
with a mortality rate of 76 % [7]. Cryptococcal infections are commonly 
treated with combination therapy, usually flucytosine with amphoter
icin B in the first induction stage, followed by consolidation and 
long-term maintenance with high-dose fluconazole [8]. 
Anti-cryptococcal monotherapy is regarded as non-optimal, as it carries 
the risk of drug resistance [9]. Yet, for the most part, due to limited drug 
access, fluconazole monotherapy is still used. An increase in fluconazole 
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resistance among C. neoformans isolates was observed in past decades 
[10,11]. Fluconazole resistance is particularly notorious in isolates from 
relapse disease [12]. Despite verified in vitro susceptibility, echino
candins are not used clinically to treat cryptococcosis due to intrinsic 
resistance in vivo [13], attributed to their inability to penetrate the 
blood-brain barrier. Another possible contributor to echinocandin 
resistance in Cryptococcus species is fungal cell wall melanization 
through the action of a fungal laccase, which uses the L-DOPA and 
dopamine found in the human brain as precursors [14]. Melanin is an 
important virulence factor in C. neoformans since it can neutralize 
oxidative stress radicals [15] and toxic compounds, including some 
antifungal drugs, such as caspofungin and amphotericin B [16,17].

Cryptococcus neoformans is widely spread in the environment, with 
worldwide distribution, in bird guano, soils and trees. Fungal particles 
are then inhaled by humans and other mammals [2]. This pathogen is 
known for its high resistance to harsh environments in nature and in 
mammalian hosts [18], and after inhalation into the host lungs, Cryp
tococcus can stay in a dormant latent granulomatous form for a long time 
[3]. However, tropism for the central nervous system is not yet fully 
understood [2,3]. Despite being a public health threat and a WHO pri
ority pathogen [19], C. neoformans still has many aspects of its peculiar 
metabolism associated with the central nervous system and interactions 
with the host that remain poorly understood [20].

Genome-scale metabolic models (GSMMs) are computational 
frameworks that reconstruct the full metabolic network of an organism 
based on its annotated genome, biochemical data, and physiological 
information [21]. These models consist of reactions, metabolites, and 
genes and are commonly represented in stoichiometric matrices that 
facilitate the simulation of metabolic fluxes through constraint-based 
modelling techniques such as Flux Balance Analysis (FBA). GSMMs 
provide a system-level view of metabolism, allowing researchers to 
predict cellular behaviour under various environmental and genetic 
conditions, explore metabolic capabilities, and design metabolic engi
neering strategies [22].

The development of GSMMs began in the early 2000s with the 
reconstruction of the first comprehensive model for Haemophilus influ
enzae [23], followed by other organisms including bacteria and yeast. 
Historically, GSMMs have been primarily used in the metabolic engi
neering of microbial cell factories, owing to their ability to simulate 
global metabolic behaviour and guide the optimization of value-added 
compound production [24]. Since then, advances in genomics, bioin
formatics, and computational tools have led to a rapid expansion in the 
number and accuracy of GSMMs across diverse organisms, including 
pathogenic fungi, and have enabled systems-level insights into 
host-pathogen interactions, drug target identification, and metabolic 
adaptations associated with survival and virulence [25–30].

This work presents iRV890, the first reconstructed GSMM for the 
human pathogen C. neoformans var. grubii, a frequent variant of these 
pathogenic species, is presented. The model is provided in the widely 
used SBML format to facilitate other researchers’ usage. Model valida
tion included comparison with experimental data for nitrogen and car
bon assimilation from phenotypic arrays covering 222 sources [31]. 
Specific growth and glucose consumption rates were experimentally 
quantitatively determined to validate the model’s predictive power. A 
set of essential genes derived from the validated model is predicted and 
discussed regarding their potential as novel antifungal drug targets.

Additionally, a comparison with GSMMs from other pathogenic yeast 
species and S. cerevisiae was performed to evaluate gene essentiality 
predictions and identify unique metabolic features of C. neoformans. 
Based on our findings, there is also discussion about some peculiar 
characteristics and pathways of this fungus relevant to its pathogenicity. 
The iRV890 model provides a promising platform for global elucidation 
of the metabolic features of C. neoformans var. grubii, with an expected 
impact in guiding the identification of new drug targets and under
standing the complex metabolism of this pathogen in the context of the 
human brain.

2. Materials and methods

2.1. Model development

The genome-scale metabolic model of C. neoformans var. grubii H99, 
designated as iRV890, was reconstructed using merlin 4.0.5 [32]
following the methodology described elsewhere [33] and further 
detailed in the Sections 2.2–2.6. OptFlux 3.0 [34] was then used for 
curation and the subsequent validation stages. The IBM CPLEX 12.10 
solver executed all computational analyses. The model is provided in 
SBML format in Supplementary Data 2 and can be exploited, for 
example, using the merlin platform, which offers a range of tools for 
simulation and gene essentiality analysis. A step-by-step tutorial de
tailing how to download merlin, import the model into merlin, and 
utilize the aforementioned tools is available at: https://merlin-sysbio.or 
g/documentation/.

2.2. Genome annotation and assembling of the metabolic network

The genome sequence of the C. neoformans var. grubii and the Tax
onomy ID 235443 were retrieved from the NCBI Assembly database, 
with the accession number ASM1180120v1 [35] and from the NCBI 
Taxonomy database [36], respectively. The genome-wide functional 
annotation was based on the taxonomy and frequency of similar se
quences through remote DIAMOND alignment [37] and similarity 
searches using the UniProtKB/Swiss-Prot database. Draft network as
sembly relied on protein-reaction associations available in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database [38], with all 
reactions categorized as spontaneous or non-enzymatic also incorpo
rated in the initial draft model. Hit selection was performed as described 
elsewhere [33], and phylogenetic proximity was implemented based on 
a phylogenetic tree from the literature [32]. This process was automated 
via the “Automatic workflow” merlin tool and then integrated into the 
draft model [32].

2.3. Reversibility, directionality and balancing

Reaction reversibility and stoichiometry curation involved a multi- 
step process combining automated and manual efforts. Initially, merlin 
assisted in correcting the direction and reversibility of reactions, uti
lizing references from remote databases like eQuilibrator [39] to predict 
reaction directionality as described by Dias et al. [33]. To ensure that all 
reactions in the network are balanced, the authors performed extensive 
manual curation, exploiting databases such as MetaCyc [40], Brenda 
[41], UniProt [42], FungiDB [43], RHEA [44], KEGG [38] and existing 
literature, and with the correct directionality. Supplementary Data 1
includes all manually edited reactions.

2.4. Compartmentalization and transport reactions

This model includes four compartments: extracellular, cytoplasm, 
mitochondrion, and peroxisome and one intercompartment, the cyto
plasmic membrane. The compartments for each enzyme were predicted 
using the DeepLoc - 2.0 [45] and directly imported to merlin. The 
transport reactions were automatically generated by TranSyT [46], a 
tool integrated in merlin, based on the public database TCDB [47]. 
Additional transport reactions across internal and external membranes 
for common metabolites, such as H2O, CO2, and NH3, often carried out 
without a transporter, were added to the model with no gene 
association.

2.5. Biomass equation

The biomass formation, depicted through an equation including 
proteins, DNA, RNA, lipids, carbohydrates, and cofactors, details the 
composition information for each macromolecule sourced from 
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literature or experimental data. All calculations were performed as 
described in previous methodology [48] and are detailed in Supple
mentary Data 1. ATP requirements for biomass production and 
growth-associated maintenance (GAM) were added to the biomass 
equation with a value of 25.65 mmol ATP/gDCW, based on the ATP 
requirements for the biosynthesis of cell polymers as reported in [49], 
and ATP requirements for non-growth-associated maintenance (NGAM) 
was inserted in the model by an equation with specific fixed flux 
boundaries inferred from Candida tropicalis [49]. The theoretical 
phosphorus-to-oxygen ratio used in the S. cerevisiae iMM904 metabolic 
model was applied to our model, adding three generic reactions 
contributing to this ratio:

Reaction R00081: 

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+
mito ↔ 2.0 H2Omito 

+ 4.0 Ferricytochrome cmito + 6.0 H+
cyto                                          (1)

Reaction R_Ubiquinol_Cytochrome_Reductase: 

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+
mito ↔ 1.0 

Ubiquinonemito + 2.0 Ferrocytochrome cmito + 1.5 H+
cyto                  (2)

Reaction T_ATP_Synthase: 

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+
cyto ↔ 1.0 ATPmito + 1.0 

H2Omito + 3.0 H+
mito                                                                       (3)

The final balance reaction: 

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiq
uinoolmito ↔ 3.0 ATPmito + 5.0 H2Omito + 2.0 Ubiquinonemito          (4)

2.6. Network simulation and model curation

Extensive manual curation was needed to correct gaps in some 
pathways during the model reconstruction process due to incorrect 
reversibility, incomplete reactions, annotation errors, and blocked me
tabolites. Each case was meticulously inspected and studied, and re
actions were edited, manually added to, or removed from the model 
based on evidence from the literature or deposited on databases such as 
KEGG pathways, MetaCyc, and FungiDB. The detailed list of all alter
ations is provided in Supplementary Data 1.

This process used merlin’s “Find blocked reactions” feature to support 
and accelerate the reconstruction. Additionally, BioISO, a tool based on 
the Constraints-Based Reconstruction and Analysis (COBRA) and Flux 
Balance Analysis (FBA) [50] frameworks, which is also integrated within 
merlin, identified potential network errors and further accelerated the 
gap-filling process.

2.7. Model validation

2.7.1. Strains and growth media
Cryptococcus neoformans var. grubii H99E strain, from the laboratory 

of Jennifer Lodge, was obtained from the Fungal Genomic Stock Center 
and routinely maintained in Yeast extract–Peptone–Dextrose (YPD), 
containing 20 g/L glucose (Merck, Darmstadt, Germany), 20 g/L 
peptone (Merck, Darmstadt, Germany), and 10 g/L yeast extract (Merck, 
Darmstadt, Germany). The parental KN99 and derived 
KN99_ΔCNAG_02553 were obtained from the deletion library created by 
the Madhani laboratory [51] through the Fungal Genetics Stock Center 
and grown on YNB medium, containing 1.7 g/L Yeast Nitrogen Base, 
without amino acids (Difco BD, England, United Kingdom) and 20 g/L 
inositol, used as carbon source. Synthetic minimal media (SMM), 20 g/L 
glucose (Merck, Darmstadt, Germany), 2.7 g/L ammonium sulphate 
(Merck, Darmstadt, Germany), 0.05 g/L magnesium sulphate (Rid
dle-de-Haen), 2 g/L potassium dihydrogen phosphate (Panreac, Barce
lona, Spain), 0.5 g/L calcium chloride (Merck, Darmstadt, Germany), 

and 100 µg/L biotin (Sigma), was used for batch cultivation experiments 
used to validate model predictions.

2.7.2. Aerobic batch cultivation
Cryptococcus neoformans var. grubii was batch cultivated in SMM or 

YNB medium. Exponential phase inocula were prepared with an Optical 
Density (OD) of 0.3 at 600 nm (Hitachi u2001), and cells were trans
ferred to Erlenmeyer flasks containing 250 mL of fresh medium and 
cultivated at 30 ºC with orbital agitation (250 rpm) for the duration of 
the experiment.

2.7.3. Cell density, dry weight, and metabolite concentration assessment
Throughout cell cultivation in SMM, 4 mL samples were collected 

every two hours for subsequent quantification of biomass and extra
cellular metabolites. Cell density was monitored by measuring 
OD600nm. For dry weight determination, culture samples were centri
fuged at 13,000 rpm for 3 minutes, and the resulting pellets were freeze- 
dried for 72 hours at − 80 ºC before being weighed. Extracellular me
tabolites, including glucose, ethanol, glycerol, and acetic acid, were 
identified and quantified by High-performance liquid chromatography 
(HPLC) on an Aminex HPX-87H Ion Exchange chromatography column, 
eluted with 0.0005 M H2SO4 at a flow rate of 0.6 mL/min at room 
temperature. Samples were analyzed in triplicate, and concentrations 
were determined using appropriate calibration curves. According to the 
manufacturer (Bio-Rad), the Aminex HPX-87H ion exchange column is 
optimized for analysing carbohydrates in solution with carboxylic acids, 
volatile fatty acids, short-chain fatty acids, alcohols, ketones, and 
neutral metabolites, making it ideally-suited for fermentation moni
toring, biological fluid analysis, and simultaneous profiling of mono
saccharides and organic acids. During the exponential growth phase, the 
specific growth rate, glucose consumption rate, and production rates of 
ethanol, glycerol, and acetic acid were calculated as described elsewhere 
[52].

2.7.4. Network simulation and analysis
All the phenotypic simulations were performed with Flux Balance 

Analysis (FBA) in OptFlux 3.0 using the IBM CPLEX solver, including 
gene and reaction essentiality, growth assessment, metabolite produc
tion and consumption, and carbon and nitrogen source utilization. For 
gene and reaction essentiality, in silico growth was simulated in envi
ronmental conditions mimicking RPMI medium and a biomass flux 
lower than 5 % of the wild-type strain was considered the threshold for 
essentiality after the respective gene/reaction knockout. Gene and re
action knockout was simulated by restraining its corresponding flux 
bounds to zero.

3. Results and discussion

3.1. Model characteristics

The C. neoformans var. grubii genome-scale metabolic model recon
structed herein and denominated iRV890, which comprises 890 genes 
associated with 2598 reactions, of which 683 correspond to transport 
reactions, and 2047 metabolites across four compartments (extracel
lular, cytoplasm, mitochondria, and peroxisome). The model is provided 
in SBML format in Supplementary Data 2. Among the 2598 reactions, 
1747 are cytoplasmic, 351 mitochondrial, 60 peroxisomal, and 440 are 
drains (exchange constraints used to simulate the import of media 
components or the leakage or export of extracellular metabolites).

During the manual curation process, a total of 639 reactions/genes 
required alterations, including 80 that were mass balanced, 518 that 
were corrected for reversibility, directionality, or added or removed 
from the model, and 41 whose annotation was corrected, as detailed in 
Supplementary Data 1.

The Biomass equation (Table 1) encompasses the cell’s major com
ponents and their respective and relative contributions, including DNA, 
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RNA, lipids, carbohydrates, and cofactors. The equation’s composition 
in carbohydrates [53] and lipids [54–56] was inferred from literature 
data for C. neoformans. The composition of proteins, DNA and RNA was 
determined by the e-BiomassX tool, where the whole genome sequence 
was used to estimate the amount of each deoxyribonucleotide as 
described in [57]. Total RNA in the cell was estimated using mRNA, 
rRNA, and tRNA as described in [24,57].

The translated genome sequence was used to calculate the amino 
acid composition using the percentage of each codon usage, as described 
in [57]. Essential metabolites were included in the biomass composition 
to qualitatively account for the essentiality of their synthesis pathways 
[58,59]. The growth and non-growth ATP requirements were adopted 
from S. cerevisiae [60].

3.2. Model validation

3.2.1. Carbon and nitrogen source utilization
In silico simulations were conducted using 222 compounds as the 

exclusive carbon or nitrogen sources under conditions mimicking those 
of the minimal medium reported in [31]. The in silico growth was 
compared to publicly available phenotypic microarray (Biolog platform) 
data for C. neoformans var. grubii performed in [31]. Base-level valida
tion of the GSMM in minimal medium was deemed sufficient to guar
antee connectivity, as it forced biomass production from the most 

fundamental metabolic precursors. In these conditions, validation relies 
on the model’s ability to reproduce experimentally observed behav
iours, such as glucose consumption and ethanol production, which were 
included in the model and have topologically direct relationships within 
the network. These quantifiable, primary metabolites ensure that the 
core structure and function of the model behave as expected, thereby 
validating the model without the need to include additional complexity 
beyond central metabolism. A total of 155 sole carbon sources and 67 
sole nitrogen sources were evaluated. For the analyses, stationary phase 
yeast conditions data was used after calculating the difference from the 
respective negative control group without any carbon or nitrogen 
sources. The iRV890 model correctly predicted growth in 85 % 
(133/155) of the carbon sources tested and 85 % (57/67) of the nitrogen 
sources (Supplementary Table 1).

In some cases of failed predictions, such as L-ornithine, glycerol 
(carbon source), amino acids or D-Glucosamine (nitrogen source), ge
netic information and the model include all the necessary steps to pre
dict their assimilation as sole carbon/nitrogen sources, but no growth 
was experimentally observed. In such cases, the failed prediction may be 
related to non-metabolic factors not considered in model simulations or 
due to inaccuracies regarding the annotation of transporters, which is 
still a big challenge in the current model development process [61]. In 
other cases, however, the prediction model failed because specific en
zymes are not yet characterized for C. neoformans despite growth in 

Table 1 
Biomass composition used in the model iRV890. The complete individual validated contributions of each metabolite are shown in Supplementary Data 1, alongside the 
literature references used to substantiate the metabolite composition in C. neoformans. When C. neoformans data was unavailable, data from other yeast species was 
used as a proxy.

Metabolite g/gDCW Metabolite g/gDCW

​ ​ ​
Lipids ​ Proteins
Lanosterol 0.000122 ​ L-Valine 0.019058
Zymosterol 0.000254 ​ L-Tyrosine 0.020501
Squalene 0.000209 ​ L-Tryptophan 0.006392
Ergosterol 0.000724 ​ L-Threonine 0.022013
Phosphatidylserine 0.005024 ​ L-Serine 0.027696
Phosphatidylinositol 0.004638 ​ L-Proline 0.015390
Phosphatidylcholine 0.031241 ​ L-Phenylalanine 0.022928
Phosphatidylethanolamine 0.017714 ​ L-Methionine 0.008274
Cardiolipin 0.002254 ​ L-Lysine 0.033668
Phosphatidic acid 0.000644 ​ L-Leucine 0.036895
Phosphatidylglycerol 0.000644 ​ L-Isoleucine 0.028492
Tetradecanoic acid 0.000020 ​ L-Histidine 0.010159
Hexadecanoic acid 0.000097 ​ L-Glutamate 0.029371
Octadecanoic acid 0.000038 ​ L-Cysteine 0.003902
Dodecanoic acid 0.000021 ​ L-Aspartate 0.023883
Decanoic acid 0.000011 ​ L-Asparagine 0.027060
Octanoic acid 0.000038 ​ L-Arginine 0.020979
Octadecanoic acid 0.000038 ​ L-Alanine 0.012706
(9Z)-Octadecenoic acid 0.000093 ​ Glycine 0.010258
(9Z,12Z)-Octadecadienoic acid 0.000116 ​ L-Glutamine 0.020550
(9Z,12Z,15Z)-Octadecatrienoic acid 0.000002 ​ ​
Triacylglycerol 0.032969 ​ Soluble Pool
Sterol esters 0.001127 ​ Pyridoxine 5′-phosphate 0.000833
​ ​ FAD 0.000833
Carbohydrates ​ Thiamine(1 +) diphosphate 0.000833
Chitin 0.005645 ​ NAD 0.000833
Mannan 0.033956 ​ Glutathione 0.000833
β (1,3)-Glucan 0.360399 ​ Riboflavin 0.000833
​ ​ Eumelanin 0.000833
Ribonucleotides ​ Ubiquinone− 6 0.000833
UTP 0.006713 ​ NADP 0.000833
GTP 0.006806 ​ COA 0.000833
CTP 0.005381 ​ FMN 0.000833
ATP 0.007101 ​ 5-Methyltetrahydrofolate 0.000833
​ ​ ​
Deoxyribonucleotides ​ ​
dTTP 0.016718 ​ ​
dGTP 0.017029 ​ ​
dCTP 0.015059 ​ ​
dATP 0.017193 ​ ​
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experimental conditions. Although the underlying genes and proteins 
are still unidentified, the comparison between the model predictions and 
experimental evidence suggests that the following enzyme activities are 
likely to be present in C. neoformans: 1.2.1.3 (aldehyde dehydrogenase), 
1.1.1.21 (aldose reductase), 3.1.1.65 (L-rhamnono-1,4-lactonase), 
1.1.1.56 (ribitol 2-dehydrogenase), 5.1.3.30 (D-psicose 3-epimerase), 
2.7.1.55 (allose kinase), 4.1.2.10 ((R)-mandelonitrile lyase), 5.3.1.3 
(D-arabinose isomerase), 3.2.1.86 (6-phospho-beta-glucosidase), 4.1.2.4 
(deoxyribose-phosphate aldolase), 3.2.1.86 (6-phospho-beta-glucosi
dase) and 1.1.1.16 (galactitol 2-dehydrogenase). Identifying and char
acterizing these predicted functions and their associated genes will 
enhance our understanding of specific carbon and nitrogen assimilation 
pathways for C. neoformans, potentially uncovering novel virulence 
mechanisms linked to host adaptation. Therefore, further investigation 
into these enzymes represents a valuable direction for future research. 
Altogether, the model achieved 85 % predictability, which is a high 
value, especially considering that the extensive list of carbon and ni
trogen sources tested includes many that are not commonly used in 
traditional metabolic and phenotypic experiments and thus lack 
biochemical characterization.

3.2.2. Growth parameters in batch culture
To quantitatively validate the model, the specific growth rate, 

glucose consumption rate, and metabolite production rates were 
experimentally determined and compared with in silico predicted 
values. For a glucose consumption rate of 1.72 mmol.gDCW− 1.h− 1, a 
specific growth rate of 0. 188 h− 1 was experimentally determined, 
leading to no detectable ethanol, glycerol, or acetate production. For 
model validation purposes, the system behaviour was simulated in silico 
using SMM medium and a fixed glucose uptake flux of 1.72 mmol.g− 1 

dry weight.h− 1, matching the experimentally determined value. Other 
nutrient fluxes were left unconstrained, as the system was glucose- 
limited under these conditions. The simulation predicted a specific 
growth rate of 0.128 h− 1, which differs only in 0.06 h− 1 from the 
experimentally determined value (Table 2). In these conditions, the 
model did not predict the formation of glycerol, acetic acid, or ethanol as 
by-products, which is consistent with the experimental data. Moreover, 
the model is accurate at predicting no growth of C. neoformans under 
anaerobic conditions, an expected observation since this pathogen is an 
obligate aerobic fungus [62].

3.3. C. neoformans unique metabolic features

The C. neoformans GSMM was compared with previously built 
models for Candida glabrata [58], Candida albicans [30], Candida auris 
[63] and S. cerevisiae [64] by others and us to uncover unique metabolic 
features of this pathogen. A comparison across the existing models was 
carried out based on shared EC numbers. After intersecting the EC 
numbers in each of the five models, 40 % (229/566) of the EC numbers 
were the same among all the tested yeasts (Fig. 1). Additionally, the 
remaining 17 % (96/556) were exclusive to the C. neoformans model and 
may represent unique metabolic features of this species relative to the 
remaining. We confirmed that none of these 96 EC numbers were 
associated with outdated, incomplete or incorrect reaction associations. 
However, a small subset of these 96 EC numbers may be present in other 
species included in the comparison but not accounted for in their 
respective GSMMs during reconstruction.

The metabolic features or pathways relevant in the context of fungal 
infection in the host brain were searched manually from the list of 96 
unique EC numbers found for C. neoformans (Supplementary Data 1) and 
compared to extant knowledge of these pathways being defence mech
anisms, or enabling host adaptation, through degradation or biosyn
thesis of specific metabolites. A few of these unique EC numbers with a 
higher potential of impacting C. neoformans pathogenesis are discussed 
below:

L-arabinitol 4-dehydrogenase and D-arabinitol dehydrogenase 
(1.1.1.12 and 1.1.1.287, respectively) are two enzymes that are required 
for L-arabinitol assimilation as a carbon source, which is a particular 
metabolic feature of C. neoformans when compared to other yeast species 
(Supplementary Table 1). Indeed, neither Candida species [30,66] nor 
S. cerevisiae [67] can assimilate L-arabitol unless genetically engineered 
[68]. Interestingly, environment isolates containing SNPs in the PTP1 
gene, encoding a C. neoformans arabitol transporter, were associated 
with increased patient survival, while a virulence defect was observed in 
BALB/c mice due to PTP1 gene deletion [69]. PTP1 expression was also 
highly induced in macrophage and amoeba infection [70]. Since arabitol 
is present in the cerebrospinal fluid [71], this pathway might feed from 
polyols in CNS and contribute to explaining the brain tropism of 
C. neoformans, compared to other fungal species.

L-gulonolactone oxidase and gluconolactonase (1.1.3.8 and 3.1.1.17, 
respectively) are two enzymes that participate in ascorbate metabolism, 
allowing the utilization of Inositol and D-glucuronate as the source for L- 
ascorbate biosynthesis (Fig. 2). Interestingly, two independent studies 
reported that ascorbate, an antioxidant, lowers the susceptibility to
wards fluconazole in C. neoformans [72,73]. However, this effect seems 
unrelated to its antioxidant role but with ascorbate-induced up-regula
tion of Upc2, a transcriptional regulator of genes involved in ergosterol 
biosynthesis, as shown in C. albicans [74]. The ability of C. neoformans to 
synthesize ascorbate from inositol is particularly noteworthy, given the 
abundance of inositol in the human brain [20] and the widespread use of 
fluconazole in treating infections. Further, ascorbate possibly contrib
utes to resistance to ROS. Having a mechanism to produce a compound 
that mitigates the toxicity of fluconazole and ROS could contribute to a 
significant adaptive advantage for this species.

Furthermore, the 1.1.3.8 and 3.1.1.17 enzymes are also significant 
for inositol assimilation as a carbon source through variation of the 
previous pathway. This pathway was suggested recently as an alterna
tive pathway in fungi for inositol assimilation, and since inositol is 
highly abundant in the human brain, this may represent a crucial 
metabolic feature for C. neoformans. Two of the reactions reported were 
recreated to implement this pathway in the model and attributed with 
the names R2_Inositol_Pathway and R1_Inositol_Pathway, although the 
corresponding EC numbers and genes have not been identified in the 
annotated C. neoformans genome [75]. This pathway was exclusively 
recreated from literature, and while it lacks validation studies, two 
possible genes were hypothesized as probable candidates for encoding 
the 1.1.1.69 enzyme, CNAG_02553 and CNAG_00126, predicted by 
OrthoMCL [76]. Additional pathways for inositol assimilation are re
ported for animals (Fig. 3.B) and bacteria (Fig. 3.C); however, since 
C. neoformans lacks almost all the enzymes in those pathways, we 
considered that the newly reported one in fungi [75] was the most 
probable to occur in this pathogen. Taking advantage of the available 
ΔCNAG_02553 deletion strain, we tested whether a strain deleted for 
this putative enzyme could be grown in inositol as a single carbon source 

Table 2 
Growth parameter values predicted by the iRV890 model and comparison with those determined experimentally.

Specific growth rate (h− 1) q (mmol g− 1 dry weight h− 1)

Glucose Ethanol Glycerol Acetic acid

In silico 0.128 1.72 0 0 0
In vitro 0.188 ± 0.025 1.72 0 0 0

R. Viana et al.                                                                                                                                                                                                                                   Computational and Structural Biotechnology Journal 27 (2025) 2336–2346 

2340 



compared to the parental strain. However, regardless of the 
CNAG_02553 gene, C. neoformans can utilize inositol as the sole carbon 
source in SMM (YNB, supplemented with glucose or inositol; data not 
shown). Eventually, it would be necessary to knock out both 
CNAG_00126 and CNAG_02553 genes to obtain a strain unable to grow 
in media containing inositol as the sole carbon source. Further scrutiny 
is required to address this issue.

L-rhamnose 1-dehydrogenase (1.1.1.377) is required for L-rhamnose 
assimilation as the sole carbon source. Rhamnose is used by some 
pathogens, for example, Pseudomonas aeruginosa, to produce rhamnoli
pids. It constitutes a relevant virulence factor in those bacteria, with 
roles in biofilm formation, hydrophobic nutrient uptake, and host im
munity evasion, characterized by increasing lung epithelial permeability 
[77,78] and macrophage phagocytosis inhibition [79]. Candida species 
[30,63,66] and S. cerevisiae (unless engineered) [80] cannot assimilate 
L-rhamnose, and thus, assimilation of rhamnose is a particular metabolic 
feature of C. neoformans when compared to these yeast species 
(Supplementary Table 1).

Tetracycline 11a-monooxygenase (1.14.13.231) is an enzyme that 
allows the direct conversion of tetracycline into 11a-hydroxytetracy
cline, reported to confer resistance to all clinically relevant tetracy
clines by efficient degradation of a broad range of tetracycline 
analogues. The hydroxylated product, 11a-hydroxytetracycline, is un
stable and leads to intramolecular cyclization and non-enzymic break
down to undefined products, completely neutralizing the tetracycline 
effects [81,82]. Although tetracyclines are generally used as antibacte
rial antibiotics and have poor antifungal activity, the presence of this 
enzyme in C. neoformans should be considered when designing tetra
cyclines against fungi.

3-phytase (3.1.3.8) is an enzyme involved in inositol metabolism that 
may be involved in the production of phytic acid from inositol, a primary 
storage molecule of phosphorus and inositol in fungi (although not in 
the pathogenic Candida species), bacteria and plants [83]. Interestingly, 
this pathway has been shown to play a key role in C. neoformans viru
lence. Indeed, it was previously reported that deletion of the gene 
encoding the enzyme (EC number 2.7.1.158) immediately preceding 
3-phytase leads to growth impairment and attenuated virulence in 
C. neoformans, associated with failed dissemination into the brain [84].

Hydroxyisourate hydrolase (3.5.2.17) is an enzyme essential for the 

assimilation of uric acid as the sole nitrogen source. Uric acid is a 
constitutive component of urine and bird guano. In bird guano, 70 % of 
the nitrogen is present in uric acid, with the rest consisting primarily of 
xanthine, urea, and creatinine [85]. Additionally, uric acid enhances the 
production of key cryptococcal virulence factors, including capsule and 
urease, an enzyme required for full fitness at mammalian pH and 
dissemination to the brain [86]. C. neoformans capsule is induced if uric 
acid is present [87].

L-tryptophan decarboxylase (4.1.1.105) catalyzes the conversion of 
L-tryptophan into tryptamine, which can then be converted into sero
tonin. It also shares structure with several aminergic neuromodulators. 
However, the reaction is bidirectional, and tryptamine can also be 
converted into L-tryptophan. While the role of this enzyme may be un
clear in C. neoformans, it is potentially related to the brain environment, 
specifically in the utilization of serotonin as a nitrogen source, through 
its conversion to L-tryptophan.

DOPA decarboxylase, tyrosinase and laccase (4.1.1.28, 1.14.18.1, 
and 1.10.3.2, respectively) are particularly important in C. neoformans, 
as they are involved in the biosynthesis of melanin. Most fungi possess 
multiple melanin biosynthetic pathways, while C. neoformans exclu
sively synthesize melanin through the L-DOPA pathway [88]. Melanin 
can neutralize oxidative stress radicals as well as protect the pathogen 
against the host immune system, and antifungal drugs, such as caspo
fungin and amphotericin B. L-DOPA and Dopamine are present in the 
human brain and serve as precursors for dopamine biosynthesis in this 
pathogen. However, the reason for C. neoformans exclusively using this 
pathway is unclear compared to other human pathogenic fungi.

3.4. Drug target analysis based on gene essentiality prediction

Pathogen GSMMs are particularly useful for identifying potential 
new drug targets among predicted essential genes. For that purpose, the 
behaviour of the system simulation using RPMI medium, mimicking the 
environmental conditions of human serum, yielded a list of 157 enzymes 
and 101 genes predicted to be essential in C. neoformans. Among these 
targets, some have been previously identified as essential genes in other 
pathogenic yeasts (see Table 3), indicating potential drug targets com
mon to all Candida species and C. neoformans. Notably, Erg11 and Fks1 
are already targets of currently used antifungals, fluconazole and 

Fig. 1. Multi-species comparison in terms of proteins with an associated EC number present in the C. neoformans iRV890, C. albicans iRV781, C. auris iRV973, 
S. cerevisiae iIN800 and C. glabrata iNX804 GSMMs. The multiple intersection was performed using jvenn [65].
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echinocandins, respectively. Additionally, Erg26, Erg27, Erg24, Erg4, 
Erg7, Erg12, and Erg13 have all been identified herein as potential drug 
targets within the ergosterol biosynthetic pathway. Erg4 is particularly 
interesting, as it lacks a human ortholog and may represent a superior 
candidate for designing compounds with enhanced selectivity and lower 
toxicity.

Similarly to Candida, which lacks a folate transporter [89] and relies 
on its de novo biosynthesis, C. neoformans seems to also lack a folate 
transporter, leading to the identification of Fol1, a multifunctional 
enzyme of the folic acid biosynthesis pathway, as a promising 
multi-yeast drug target. Furthermore, Fas1, a fatty acid synthase 
enzyme, and Chs1, a chitin synthase, also lack human orthologs and 
constitute promising alternative antifungal drug targets due to their 
relevant role in membrane and cell wall structure and integrity. Other 
noteworthy targets span various pathways, including purine meta
bolism, terpenoid backbone biosynthesis, pyrimidine metabolism, CoA 
biosynthesis, glycerophospholipid biosynthesis, and ubiquinone 
biosynthesis (Table 3). However, exploring these targets requires 
leveraging potential structural differences in the enzyme active site 
compared to their human counterparts. Since C. neoformans colonizes a 
different host environment and is phylogenetically distant from Candida 
spp., the evaluation extended to include potential new drug targets 

unique to this species and not shared by Candida spp. We identified only 
two such targets: the 1.14.18.1 tyrosinase, encoded by the gene 
CNAG_03009, and the 2.5.1.83 hexaprenyl diphosphate synthase, 
encoded by the gene CNAG_04375. While tyrosinase, responsible for 
melanin production, has a human ortholog (since humans also synthe
size melanin via the L-DOPA), hexaprenyl diphosphate synthase 
(2.5.1.83) is fungal-specific and may represent an interesting target. 
This enzyme plays a crucial role in terpenoid backbone biosynthesis, 
serving as a key contributor to precursor synthesis for ubiquinone 
biosynthesis.

4. Conclusions

The construction and validation of iRV890, the first genome-scale 
metabolic model for C. neoformans var. grubii, is presented herein. 
iRV890 constitutes a robust platform for exploring and elucidating the 
metabolic features of this poorly understood pathogen, particularly 
concerning its interaction within the central nervous system and the 
human host. By encompassing 890 genes associated with 1466 re
actions, this model offers a comprehensive view of the metabolic land
scape of the pathogen. Through in silico simulations, we predicted the 
use of more than 200 compounds as sole carbon or nitrogen sources, and 
after comparison to experimental data from phenotypic microarrays, we 
gained valuable insights into the metabolic capabilities of C. neoformans. 
The model correctly predicts 85 % of the sole carbon and nitrogen 
sources tested. The model was able to approximately predict the specific 
growth rate of the organism and confirmed its inability to grow under 
anaerobic conditions or to accumulate glycerol, acetic acid, or ethanol as 
metabolic by-products during growth in SMM, with glucose as the car
bon source. Additionally, we propose a list of yet unidentified enzymes 
expected to be present in C. neoformans, based on the carbon and ni
trogen utilization and with the potential to represent new host adapta
tion or virulence mechanisms, including new clues on the pathway for 
inositol utilization in C. neoformans.

Our investigation into the unique metabolic features of C. neoformans 
has unveiled several pathways and enzymatic activities proposed to play 
pivotal roles in fungal infection within the host brain. Some enzymes 
constitute important virulence factors, such as tyrosinase and laccase, 
enzymes responsible for the production of melanin, which has an 
important role in host immune evasion [15], infection proliferation and 
drug resistance [16,17]. Other enzymes are related to drug and stress 
resistance, such as tetracycline 11a-monooxygenase, L-gulonolactone 
oxidase and gluconolactonase. The remaining enzymes are directly 
related to alternative carbon/nitrogen source utilization and are 
important for environmental adaptation. For example, hydroxyisourate 
hydrolase is essential for uric acid assimilation as a nitrogen source, an 
important virulence factor mechanism, and 3-phytase is involved in 
inositol metabolism and storage, which is important for brain dissemi
nation. Although beyond the scope of this study, it would also be 
interesting to explore the use of the reconstructed model in the predic
tion of secondary metabolites of relevance that may be produced in the 
brain environment, and validate these predictions through metab
olomics analysis. It would also be important to evaluate the metabolic 
variability across C. neoformans clinical isolates, for example through 
genomic mining of biosynthetic gene clusters (BGCs), and compare it 
with virulence capacity.

In this work, we also propose several potential drug targets in 
C. neoformans. Notably, enzymes such as Erg4, Chs1, Fol1 and Fas1 
present promising opportunities for targeted drug development due to 
their absence in human cells, offering opportunities for selective and 
low-toxicity compounds. The CNAG_03009 and CNAG_04375 genes, 
encoding a tyrosinase and a hexaprenyl diphosphate synthase, are pre
sented as potential antifungal drug targets specific to C. neoformans. 
Further studies, in settings closely mimicking clinical conditions, are 
required to further validate the proposed targets. Additionally, they 
could provide key insights which may be leveraged to design and 

Fig. 2. C. neoformans pathway for ascorbate biosynthesis, with the respective 
C. neoformans var. grubii EC numbers in the iRV890 model. The 1.1.3.8 and 
3.1.1.17 enzymes, unique to C. neoformans among other pathogenic yeasts, are 
highlighted in purple.
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optimize effective drugs and new therapeutic protocols.
Our model contributes to a better understanding of C. neoformans 

metabolism, especially within the host environment. With this work, we 
propose new metabolic enzymes awaiting characterization and offer 
insights into key pathways and interactions shaping the dynamics be
tween host and pathogen and its adaptive strategies. We also propose 
some potential antifungal targets for C. neoformans and confirm the 
coverage of already identified targets for that species. These results hold 
promise for the discovery of novel drug targets and the complete 
comprehension of this pathogen metabolic network with an expected 

impact in combating cryptococcosis.
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Table 3 
Enzymes predicted to be essential in RPMI medium in 5 pathogenic fungal species, based on the screening of the genome-scale metabolic models of C. neoformans 
iRV890, C. auris IRV973, C. parapsilosis iDC1003, C. albicans iRV781, and C. glabrata iNX804. Grey rows highlight enzymes which are not encoded in the human 
genome. Data regarding the drug association was retrieved from the DrugBank database; only drugs with known pharmacological action against pathogens were 
selected.

C. 
neoformans

C. albicans C. glabrata C. parapsilosis C. auris S. 
cerevisiae

Human Pharmacological 
action

EC Number Pathway/Target

​ ​ ​ ​ ​ ​ ​ ​ ​
CNAG_04605 ERG26 CAGL0G00594g CPAR2_302110 CJI97_000938 ERG26 NSDHL ​ 1.1.1.170 Steroid
CNAG_00441 IMH3 CAGL0K10780g CPAR2_104580 CJI97_000080 IMD4 IMPDH - 1.1.1.205 Purine
CNAG_07437 ERG27 CAGL0M11506g CPAR2_801560 CJI97_004310 ERG27 DHRS11 - 1.1.1.270 Steroid
CNAG_06534 HMG1 CAGL0L11506g CPAR2_110330 CJI97_003299 HMG1 HMGCR - 1.1.1.34 Terpenoid backbone
CNAG_00117 ERG24 CAGL0I02970g CPAR2_405900 CJI97_003097 ERG24 TM7SF2 - 1.3.1.70 Steroid
CNAG_02830 ERG4 ERG4 ERG4 CJI97_002908 ERG4 - - 1.3.1.71 Steroid
CNAG_04692 CDC21 CDC21 CPAR2_206550 CJI97_005101 TMP1 TYMS - 2.1.1.45 Pyrimidine
CNAG_00700 ADE17 CAGL0A03366g CPAR2_202250 CJI97_002511 ADE17 ATIC - 2.1.2.3 Purine
CNAG_07373 URA2 CAGL0L05676g CPAR2_203160 CJI97_002269 URA2 CAD - 2.1.3.2 Pyrimidine
CNAG_06508 GSC1 FKS1 CPAR2_106400 FKS1 FKS1 - Echinocandins 2.4.1.34 1,3-beta-glucan
CNAG_03196 URA5 URA5 CPAR2_802790 CJI97_002422 URA5 UMPS - 2.4.2.10 Pyrimidine
CNAG_02853 ADE4 CAGL0M13717g CPAR2_208260 CJI97_001833 ADE4 PPAT - 2.4.2.14 Purine
CNAG_02084 BTS1 CAGL0H05269g CPAR2_302840 CJI97_003197 BTS1 GGPS1 - 2.5.1.1 Terpenoid backbone
CNAG_07780 ERG20 ERG20 CPAR2_103950 CJI97_001757 ERG20 FDPS - 2.5.1.10 Terpenoid backbone
CNAG_02787 C5_05130C CAGL0F05555g CPAR2_502760 CJI97_003836 CAB5 COASY - 2.7.1.24 CoA
CNAG_02976 CR_03740C CAGL0K11022g CPAR2_202590 CJI97_005311 FMN1 RFK - 2.7.1.26 Riboflavin
CNAG_02866 C6_02980C CAGL0H01551g CPAR2_602050 CJI97_004586 CAB1 PANK - 2.7.1.33 CoA
CNAG_05935 URA6 CAGL0L09867g CPAR2_105320 CJI97_000033 URA6 CMPK2 - 2.7.4.14 Pyrimidine
CNAG_06001 ERG8 ERG8 CPAR2_400710 CJI97_001215 ERG8 PMVK - 2.7.4.2 Terpenoid backbone
CNAG_03335 C5_00260W CAGL0D00550g CPAR2_304260 CJI97_000019 PRS1 PRPS1 - 2.7.6.1 Purine
CNAG_05384 C4_05210W CAGL0G03157g CPAR2_500260 CJI97_005306 PIS1 CDIPT - 2.7.8.11 Glycerophospholipid
CNAG_02795 ADE8 CAGL0F02761g CPAR2_211620 CJI97_002826 ADE8 GART - 2.1.2.2 Purine
CNAG_02609 COQ3 CAGL0I07601g CPAR2_602300 CJI97_005452 COQ3 COQ3 - 2.1.1.114 Ubiquinone
CNAG_00138 COQ5 CAGL0J06710g CPAR2_209250 CJI97_003704 COQ5 COQ5 - 2.1.1.201 Ubiquinone
CNAG_00040 ERG11 ERG11 ERG11 ERG11 ERG11 CYP51A1 Azoles 1.14.14.154 Steroid
CNAG_02844 PEL1 PGS1 CPAR2_805350 CJI97_000224 PEL1 PGS1 - 2.7.8.5 Glycerophospholipid
CNAG_02878 C6_01340C CAGL0H04389g CPAR2_602700 CJI97_005490 GEP4 PTPMT1 - 3.1.3.27 Glycerophospholipid
CNAG_00734 URA4 CAGL0J04598g CPAR2_100500 CJI97_002941 URA4 CAD - 3.5.2.3 Pyrimidine
CNAG_02294 ADE2 ADE2 CPAR2_805940 CJI97_004071 ADE2 PAICS - 4.1.1.21 Purine
CNAG_04961 URA3 URA3 URA3 CJI97_003384 URA3 UMPS - 4.1.1.23 Pyrimidine
CNAG_02786 FOL1 CAGL0J07920g CPAR2_303390 CJI971_001274 FOL1 - Sulfacetamide 4.1.2.25 Folate biosynthesis
CNAG_02786 FOL1 CAGL0J07920g CPAR2_303390 CJI971_001274 FOL1 - Sulfonamides 2.5.1.15 Folate biosynthesis
CNAG_05125 MVD CAGL0C03630g CPAR2_109530 CJI97_001340 MVD1 MVD - 4.1.1.33 Terpenoid backbone
CNAG_00909 CAB3 CAGL0L05302g CPAR2_800750 CJI97_003563 CAB3 PPCDC - 4.1.1.36 CoA
CNAG_03270 ADE13 CAGL0B02794g CPAR2_204960 CJI97_000801 ADE13 ADSL - 4.3.2.2 Purine
CNAG_00265 IDI1 CAGL0J06952g CPAR2_401630 CJI97_001183 IDI1 IDI1 - 5.3.3.2 Terpenoid backbone
CNAG_01129 ERG7 CAGL0J10824g CPAR2_301800 CJI97_005090 ERG7 LSS Oxiconazole 5.4.99.7 Steroid
CNAG_00143 ADE1 CAGL0I04444g CPAR2_500190 CJI97_003065 ADE1 PAICS - 6.3.2.6 Purine
CNAG_06314 ADE5,7 CAGL0H07887g CPAR2_208400 CJI97_001704 ADE5,7 GART - 6.3.3.1 Purine
CNAG_06314 ADE5,7 CAGL0H07887g CPAR2_208400 CJI97_001704 ADE5,7 GART - 6.3.4.13 Purine
CNAG_04192 ADE6 CAGL0K04499g CPAR2_204070 CJI97_002160 ADE6 PFAS - 6.3.5.3 Purine
CNAG_05759 ACC1 CAGL0L10780g CPAR2_804060 CJI97_001038 ACC1 ACACA - 6.4.1.2 Fatty acid
CNAG_02686 ERG12 CAGL0F03861g CPAR2_803530 CJI97_005606 ERG12 MVK - 2.7.1.36 Terpenoid backbone
CNAG_03311 ERG13 ERG13 CPAR2_701400 CJI97_004952 ERG13 HMGCS - 2.3.3.10 Terpenoid backbone
CNAG_02099 FAS1 CAGL0D00528g FAS1 CJI97_001309 FAS1 - - 2.3.1.86 Fatty acid
CNAG_01877 GUA1 CAGL0F03927g CPAR2_803560 CJI97_005609 GUA1 GMPS - 6.3.5.2 Pyrimidine
CNAG_03099 CHS1 CAGL0I04818g CPAR2_805640 CHS2 CHS2 - - 2.4.1.16 Chitin
​ ​ ​ ​ ​ ​ ​ ​ ​
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