Hindawi Publishing Corporation
International Scholarly Research Notices
Volume 2014, Article ID 368149, 11 pages
http://dx.doi.org/10.1155/2014/368149

Research Article

A GPU-Based Gibbs Sampler for a Unidimensional IRT Model

Yanyan Sheng,' William S. Welling,” and Michelle M. Zhu*

! Educational Measurement and Statistics, Department of Educational Psychology & Special Education,

Southern Illinois University, Carbondale, IL 62901, USA

2 Department of Computer Science, Southern Illinois University, Carbondale, IL 62901, USA

Correspondence should be addressed to Yanyan Sheng; ysheng@siu.edu

Received 24 April 2014; Revised 11 July 2014; Accepted 21 July 2014; Published 30 October 2014

Academic Editor: Jussi Tohka

Copyright © 2014 Yanyan Sheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item response theory (IRT) is a popular approach used for addressing large-scale statistical problems in psychometrics as well as in
other fields. The fully Bayesian approach for estimating IRT models is usually memory and computationally expensive due to the
large number of iterations. This limits the use of the procedure in many applications. In an effort to overcome such restraint, previous
studies focused on utilizing the message passing interface (MPI) in a distributed memory-based Linux cluster to achieve certain
speedups. However, given the high data dependencies in a single Markov chain for IRT models, the communication overhead
rapidly grows as the number of cluster nodes increases. This makes it difficult to further improve the performance under such
a parallel framework. This study aims to tackle the problem using massive core-based graphic processing units (GPU), which is
practical, cost-effective, and convenient in actual applications. The performance comparisons among serial CPU, MPI, and compute
unified device architecture (CUDA) programs demonstrate that the CUDA GPU approach has many advantages over the CPU-

based approach and therefore is preferred.

1. Introduction

Item response theory (IRT) is a popular approach used
for describing probabilistic relationships between correct
responses on a set of test items and continuous latent traits
(see [1-4]). In addition to educational and psychological
measurement, IRT models have been used in other areas
of applied mathematics and statistical research, such as US
Supreme Court decision-making processes [5], alcohol dis-
order analysis [6-9], nicotine dependency [10-12], multiple-
recapture population estimation [13], and psychiatric epi-
demiology [14-16], to name a few.

In IRT, the influence of items and persons on the
responses is modeled by distinct sets of parameters so that
the probability of a correct response to an item is a function
of the person’s latent trait, 6, and the item’s characteristics, &;
that is,

P (y = correct) = f (6,8). 1

In its original form, 6 is used to denote person’s unob-
served “ability” Certainly, for psychological scales and other
applications, it might be better labeled as “mood,” “attitude,”
“depression,” and so forth, depending on what the instrument
is intended to measure. The model assumes one 0 parameter
for each person and is commonly referred to as the unidimen-
sional model, signifying that each test item measures some
facet of the unified latent trait. In this sense, IRT models are
usually related to factor analysis models despite their many
differences [17].

The mathematical form of the model has made IRT
a more powerful psychometric theory than the traditional
classical test theory (which uses sum scores to estimate
latent person traits), and its advantages have been well
documented in [18-20]. Specifically, IRT models offer the
ability to “(a) rigorously study how items function differently
across examinee populations, (b) place individuals who have
responded to different items onto a common scale, (c) derive
individual scores that have good psychometric properties, (d)
more thoroughly understand the psychometric properties of

http://dx.doi.org/10.1155/2014/368149

items and scales through inspection of item parameters and
information functions, (e) create order in various research
fields by having a common item pool and latent scale for
key constructs, and (f) develop computerized adaptive testing
(CAT) systems or static short-forms for precise and efficient
assessment of individual differences” [21, page 212].

Although recent advances in computer technology and
development of estimation algorithms have made the applica-
tion of IRT accessible to a wider range of users, problems exist
in the efficiency of current estimation tasks with IRT models.
We describe them in the following section.

1.1 Gibbs Sampling for IRT Models. Given that IRT is modeled
by distinct sets of parameters, a primary concern associ-
ated with IRT research has been on parameter estimation,
which offers the basis for the theoretical advantages of IRT.
Specifically, of concern are the statistical complexities that
can often arise when item and person parameters are simul-
taneously estimated (see [1, 22-24]). More recent attention
has focused on the fully Bayesian estimation where Markov
chain Monte Carlo (MCMG, [25, 26]) simulation techniques
are used. Albert [27] applied Gibbs sampling [28], one of
the most efficient MCMC algorithms, to a unidimensional
IRT model, namely, the two-parameter normal ogive (2PNO;
[29]) model.

The fully Bayesian approach for estimating IRT models is
both memory and computationally expensive, which further
limits its actual applications. Typically, item response data are
based on 7 subjects’ responses to k items at one occasion, and
a Markov chain requires 5,000 to 10,000 iterations to reach
convergence for such IRT models. Each implementation of
the algorithm would take five or more minutes to complete
the computation by a single desktop when » and k are not
sufficiently large (e.g., n = 1000, k = 10) [30]. This fact makes
it impractical for users to utilize the algorithm for various
applications of IRT. For example, in standardized testing
situations, each instrument can consist of 100 or more items,
and the number of participants during each administration
can go beyond 10,000. The implementation of Gibbs sampling
would take considerably long time. This is not practical
with testing companies, as their primary consideration is to
promptly report accurate trait estimates to the participants
considering the frequency of handling the estimation of
multiple tests/datasets. Another example is with the test
development or scale construction where item analysis is a
necessary step before individual items are included in an
instrument. The common practice is to collect data, estimate
item parameters, analyze item performances, and modify
the instrument accordingly. This procedure repeats until all
items have desirable psychometric properties. The efficiency
of the algorithm is hence important in delivering prompt
item estimates, without which item analysis is not possible.
Other examples include using IRT (1) to diagnose patients for
certain mental disabilities in psychiatry where the urgency
of starting treatment of a concerning disability is essential,
(2) to calibrate item parameters for a CAT system where
a large item pool with sufficient numbers of good quality
items is required, and (3) in the massive open online courses

International Scholarly Research Notices

(MOOCs) where sample sizes and test frequencies are much
larger.

In addition to these applications, the computation
expense limits researchers in conducting Monte Carlo studies
where a large number of replications are desirable. In the IRT
literature, simulation studies commonly utilize 25 replica-
tions only [31], which makes it difficult to empirically evaluate
the property of the population distribution of the model
parameter. Even with such a small number of replications,
the entire execution takes weeks or even months to finish.
The delayed research findings would in turn prevent the
advance of IRT research in developing more complicated IRT
models. In general, the serial implementation of the Gibbs
sampler is limited in both practical applications and theo-
retical developments. Consequently, achieving a considerable
speedup and making less requirement on the memory size
with well-designed parallel algorithms on an inexpensive and
convenient execution platform would make it more practical
for researchers or practitioners to implement such an IRT
model using MCMC.

1.2. High Performance Computing. High performance com-
puting (HPC) employs supercomputers, computer clusters,
and graphics processors to tackle problems with computing
and memory intensive computations. HPC utilizes the con-
cept of parallel processing to run programs in parallel and
achieve a much smaller execution time with high efficiency
and low overhead.

(1) MPI Standard. Many large-scale applications run on
HPC machines through the message passing interface (MPI)
standard to achieve a better performance. Previous studies
have applied MPI to implement Gibbs sampling for the 2PNO
IRT model [32, 33]. However, parallel computing is known
to excel at tasks that rely on the processing of discrete units
of data that are not heavily interdependent. Given the high
data dependencies in a single Markov chain for IRT models,
such as the dependency of one state of the chain to the
previous state and the dependencies among the data within
the same state, the implementation of MPI for this problem
requires domain decomposition [34] of data matrices while
minimizing the communication overhead among processors.
Pastias et al. [32, 33] have demonstrated the advantage of
parallel computing over the serial implementation, but with
MPI, a speedup of only up to 5x or 6x could be achieved
in their experimented conditions with efficiency gradually
dropping as more processors are added due to the rapid
growth in the communication overhead.

(2) Massive Core GPU Computing. CUDA-enabled graphic
processing units (GPU) is gaining a growing research interest
for data decomposition-based parallel applications. As of
2012, the peak floating-point throughput of many-thread
GPU is 10 times that of a multicore CPU. Such a big gap
between CPU and GPU is due to two factors. First, the
design of CPU is optimized for sequential algorithms with
a complicated control logic and a large cache. Latency can be
reduced by such designs but the throughput will be sacrificed.
Second, the memory bandwidth of delivering data from the

International Scholarly Research Notices

memory to the processor is about six times faster for GPU
than that of CPU, for which the bandwidth usually serves
as the bottleneck in many applications [35]. Hence, even a
single GPU card is capable of delivering much improved
performances.

The data size and the data-parallelism nature of the
MCMC procedure with a high throughput requirement
make GPU an ideal platform for a fast and eflicient execu-
tion. A typical GPU program utilizes thousands of threads
simultaneously and can achieve an extremely high system
throughput. On the contrary, a high-end multicore micro-
processor CPU typically has only four to eight cores and
multiple megabytes of on-chip cache for strong sequential
code performance.

In view of the above, the CUDA-enabled GPU can
potentially accelerate the speed for implementing MCMC
with an IRT model, and, as the data size increases, the benefit
of using GPU would increase. To the best of our knowledge,
generic software for implementing MCMC techniques such
as BUGS [36] or JAGS [37] does not currently provide CUDA
support. Although R [38] has many parallel computing
packages, the only package that implements CUDA with
Bayesian modeling, cudaBayesreg [39], is specifically limited
to fMRI data analysis. Hence, the purpose of this study is
to develop a GPU-based high performance Gibbs sampling
algorithm for the 2PNO IRT model and further compare it
with the CPU-based program.

The remainder of the paper is organized as follows.
Section 2 illustrates the approach we propose in the present
study to implement the MCMC algorithm using CUDA.
In Section 3, the performance of the proposed parallel
algorithm is investigated by comparing it with the serial CPU
algorithm and further with the parallel algorithm using MPI
developed in [33]. A real data example is provided in Section 4
to illustrate the program developed for implementing the
proposed parallel algorithm. Finally, a few remarks are made
in Section 5.

2. Methodology

This study was performed using a Tesla K20c GPU on an Intel
Core 2 Quad CPU with 8 GB of RAM. For the purpose of
comparisons, the CPU-based MPI algorithm developed by
Sheng and Rahimi [33] was carried out using the Maxwell
Linux cluster, a cluster with 106 processing nodes. Maxwell
uses the message-passing model via the MPICH framework
implementation. Each node on the cluster has an Intel Xeon
dual CPU quad-core processor clocked at 2.3 GHz, 8 GB of
RAM, 90 TB storage, and a Linux 64 bit operating system.

2.1. Serial Algorithm. The 2PNO IRT model provides a funda-
mental framework in modeling the person-item interaction
by assuming one latent dimension. Let y = [y;;] denote a
matrix of n responses to k items where y; = 1 (y; = 0)
if the ith person answers the jth item correctly (incorrectly)
fori =1,...,nand j = 1,..., k. The probability of person i

obtaining a correct response to item j is then defined for the
2PNO model as

“joi—ﬁj 1

P()’ij = 1) =0 (“jei - ﬁj) = J_ Ee_tz/zdt, (2)

where «; and f3; denote item slope and intercept parameters
and 0; denotes the continuous person trait parameter.

The Gibbs sampler involves updating three sets of param-
eters in each iteration, namely, an augmented continuous
variable Z;; (which is positive if y;; = 1 and negative if
yij = 0), the person parameter ¢;, and the item parameters
& » where & i=(a;p j)' from their respective full conditional
distributions; namely,

Zy |~ 1N(o,oo) (o6, = Bp1), if 3y =1
1 .
4 N(—OO,O) ((Xjei - ﬁ],].) N lf y’] = 0,

Qile(Zj(Zij’Lﬁj)“j 1) @)

2 > 2
i% 2%

3)

gj |-~N ((x'x)ilxlzj, (x’x)A) 1 (ocj > 0) , (5)

where x = [0, -1], assuming 6, ~ N(0, 1), a; > 0and p(ﬁj)
oc 1 (see, e.g., [27, 30]).

Hence, with starting values 8 and £, observations
(Z(e),ﬂ(e),f(e)) can be simulated from the Gibbs sampler
by iteratively drawing from their respective full conditional
distributions as specified in (3), (4), and (5). To go from
(Z(e_l),ﬂ(e_l),ﬁ(efl)) to (Z(e),B(e),E(e)), it takes three transi-
tion steps as follows.

(1) Draw Z© ~ p(z | 8“1, V),
(2) Draw 689 ~ p(6 | @, £V,
(3) Draw £ ~ p(& | Z©,09).

This iterative procedure produces a sequence of 09, &9),
¢ = 0,...,L. To reduce the effect of the starting values,
early iterations in the Markov chain are set as burn-ins to
be discarded. Samples from the remaining iterations are then
used to summarize the posterior density of item parameters
& and ability parameters 0.

2.2. GPU Implementation and Optimization. The GPU-based
parallel algorithm begins with copying the data matrix y to
the device, which then assumes the tasks of updating model
parameters 0;, «;, and $8; and calculating results. Using the
triple chevron notation, we defined a kernel per update to
specify the number of blocks and the number of threads
per block for decompositions of the data matrix and model
parameters. Hence, each kernel has a random state indexed
in a grid or a list. Specifically, the data matrix y, which is of
size n x k, was decomposed over a two-dimensional grid of
r % ¢ blocks with a defined number of threads (see Figure 1).
This way, each block on the device receives a submatrix Vs, of

size g, X g., where g, = n/r and g, = k/c. In addition, each

= Boo = Bor — Boz - Bos = Bos i
I
e E D E T
[
L 1 1 1 — n
Y= By 1~ Bay 1~ By T” Bas T By ¢
—T - —] |
— Bsp [~ B3y I B3 Bss Z— B3y] 9r
- . 1 i 1 T
— By == By = Ba By = By —9r
[L
e 9e e Ie e
I k I

FIGURE 1: Decomposition of the data matrix y over a grid of (r =
5) X (¢ = 5) blocks.

=N

By, | B B, | B, B, . ;‘r

e iiinnnnnm lf]

| 91— gc—zgc——gc——yc—l 0= B

By | B, | B, | By | B B, 4,

g L LTI —

i = 9= ge—F 9e—+9—+9c B, [T
f k I —i |

)

(a) (b

FIGURE 2: Decomposition of item parameters (a) and person
parameters (b) over a list of r = 5 or ¢ = 5 blocks.

item (person) parameter was decomposed over a list of 7 (c)
blocks as depicted in Figure 2.

The algorithm was implemented in ANSI C with uti-
lization of the cuRAND library [40] for random number
generations and normal cumulative densities. Specifically, we
employed the curand_normal2_double device API method,
which uses the Box-Muller transform to generate two pseu-
dorandom numbers at once. This is more efficient than gen-
erating a single value with each call. In addition, using vector
types improves the efficiency of memory access because fewer
accesses would be needed for the same amount of data
handled.

For more detailed implementation, see Figure 11 where
a basic control diagram is provided between CPU host and
GPU device for updating various variables in the algorithm.
Specifically, after the initial matrices (e.g., dev_Z), vectors
(e.g., dev_AVZ, dev_GVZ), and input values (dev_Y) are
stored in the device memory with random states allocated
(rngStatesA, rngStatesB, and rngStatesC), the Gibbs sampler
begins. The first update is in the kernel of updating Z (calcZ),
which decomposes the data matrix y on a two-dimensional
grid and calculates the augmented data Z (see Figure 1).
This kernel requires passing the pointer to the random state

International Scholarly Research Notices

matrix on the device (rngStatesA). Calculating the mean for
0 (calcMN) is a separate kernel that is decomposed on a one-
dimensional list of blocks with the size of » (see Figure 2).
Updating 0 (calcTH) is decomposed similarly but requires
passing a pointer to a vector of random states on the device
(rngStatesB). Updating « and 8 (calcAG) is decomposed on a
one-dimensional list of blocks with the size of ¢ (see Figure 2).
This update also requires a random state for each block of the
decomposed items (rngStatesC). Calculating the posterior
estimates for item or person parameters (calclS, calcPS),
performed at the end of all the iterations, is also parallelized
using a one-dimensional list of ¢ or r. The program stops
when the device sends all the results back to the host.

It is noted that the update of 0 has been optimized
using the Thrust library [41], which provides templates for
various parallel linear algebra algorithms with improved
efficiency. With the use of two custom defined C structure
operators (one for vector addition and the other for inverse
vector multiplication), a transform-reduce method from the
Thrust library was successfully implemented to improve the
performance when operating x'x, a 2 x n by n x 2 matrix
multiplication, in (5).

In this study where data sizes have been determined in
all the experimented conditions as described in Section 3,
statically allocating at compile time was adopted due to
its simplicity and efficiency in memory addressing of two-
dimensional arrays and optimal memory alignment [42]. The
compiler catches the exception when available memory is
exceeded. When decomposing an MCMC algorithm using
CUDA, each running kernel requires its own random state
to grab the next random number in its sequence within a
single block of each update. Therefore, after initial values are
sent from the host to the device, a kernel must be executed to
allocate random states in a vector or matrix for each similar
kernel update. Adequate error checking is also performed on
each call of the CUDA kernel.

2.3. Performance Analyses. In order to investigate the benefits
of the proposed GPU-based parallel solution against its serial
and MPI counterparts, experiments were carried out in which
tests with n persons (n = 500, 1000, 2000, 5000, 10000) and
k items (k = 20,50,100,200) were considered. In each
experiment, Gibbs sampling was implemented to run a single
Markov chain with a total of 10, 000 iterations using (1) serial
algorithm, (2) MPI with 10 processing nodes, (3) MPI with
20 processing nodes, and (4) CUDA with a single GPU card.
They were evaluated using the execution time as well as the
relative speedup, which is defined as

g Ts

=T (6)

where Ty is the execution time for the fastest sequential
algorithm and T/, is that for the parallel algorithm.

3. Results

Results for the fully crossed 5 x 4 = 20 experiments are
summarized in Figures 3 to 6. Note that the CPU-based

International Scholarly Research Notices

1000 -

100 +

i

Execution time

Execution time

—+— CUDA
#— MPI 10 nodes

MPI 20 nodes
Serial

(®)

FIGURE 3: Execution time and speedup for implementing MPI and
CUDA parallel programs of Gibbs sampling for tests with k = 20
items.

values represent the average of ten replications. As expected,
parallel programs had a shorter execution time than the serial
program in all the experimented conditions. Under these
conditions, the GPU-based program could achieve a speedup
of up to 50x while the MPI program achieved a speedup of up
to 20x. For example, for the data size of k = 200 and n = 5000,
the serial implementation took more than half an hour, the
MPI with 20 nodes took about 81 seconds, and the CUDA
implementation took only 40 seconds to complete a Markov
chain (see Figure 6).

Comparing the two HPC platforms, MPI versus CUDA,
we observe a clear pattern that with a test length of k = 20,
both MPI and CUDA resulted in similar execution times
with a slight advantage to MPI (with 20 nodes) especially
for data with a larger n (see Figure 3). On the other hand,
when test length k increased, CUDA showed a much shorter
computing time and thus a higher speedup (see Figures
4 through 6). The reason is due to the fact that the MPI
algorithm developed by Sheng and Rahimi [33] uses a row-
wise decomposition and consequently the communication
size depends on the test length k. It follows that when k is large
(e.g., k > 20), the communication overhead overshadows
the computation speedup. This can be further demonstrated

10000 ~
1000 ~

100 ~

o //

x10°

—+— CUDA MPI 20 nodes
MPI 10 nodes Serial

(b)

FIGURE 4: Execution time and speedup for implementing MPI and
CUDA parallel programs of Gibbs sampling for tests with k = 50
items.

by assessing the relative efficiency of the MPI program in
managing the computational resources, which is defined as

Ts
= o ?)
where P is the number of available processing nodes, and T
and T are as defined in (5). The efficiency values using MPI
with 10 and 20 processing nodes are plotted in Figure 7 for all
the n x k experimented conditions. Given the reasons stated
previously, we observe the general pattern that, for the same
data size, increasing the number of processing nodes from
10 to 20 generally decreases the relative efficiency. Hence,
the fact that the overhead of the MPI algorithm such as
data communication cost grows faster than the computation
speedup leads to the result that increasing the number of
the MPI nodes reduces efficiency. The amount of decrease
reduces when the data size gets large, especially for tests
with k > 20. In addition, with a fixed number of nodes,
the efficiency improves with the increase of n or k because
the computational gain overweighs the overhead loss. Given
the nature of data decomposition in the MPI algorithm,
an increased n tends to have a larger effect on the relative
efficiency than an increased k. It is also observed that the

6
10000
1000
L
£
=]
S 100
E
]
<
=
1 ; ; ; : .

0 2 4 6 8 10
x10°

0 T T T T)
0 2 4 6 8 10
" x10°
—+— CUDA MPI 20 nodes
MPI 10 nodes Serial

(®)

FIGURE 5: Execution time and speedup for implementing MPI and
CUDA parallel programs of Gibbs sampling for tests with k = 100
items.

efficiency exceeds 1 for larger data sizes, which is due to the
fact that, when there is insufficient memory for the problem
to execute on a sequential program, the memory on multiple
processing nodes can be utilized to overcome this limit. This
further illustrates that parallel algorithms can utilize a faster
memory for a better performance.

Consequently, MPI is not a scalable approach when n
and/or k increases. On the contrary, the developed CUDA
program demonstrates a much improved scalability and
efficiency when the data size goes up and further allows us
to investigate even larger data sizes with high accuracy.

With respect to the CUDA implementations, for k = 20
or k = 50, the relative speedup kept increasing for increased
sample sizes n (see Figures 3 and 4). This suggests that the
developed CUDA program can scale up in both k and #,
which makes it possible to fit the 2PNO IRT model to large-
scale testing data that can differ in both test lengths and
sample sizes. On the other hand, for k = 100 or k = 200, the
relative speedup was the highest at n = 2000 and had a slight
drop when # increased to 5000 and/or 10000 (see Figures 5
and 6). This may be due to the reason that when k gets large
(k > 50), having an increase of 3000 or 5000 in n would

International Scholarly Research Notices
10000 -
1000 -

100

Execution time

10 +

x10°

0 T T T T)
0 2 4 6 8 10
" x10°
—+— CUDA MPI 20 nodes
MPI 10 nodes Serial

(b)

FIGURE 6: Execution time and speedup for implementing MPI and
CUDA parallel programs of Gibbs sampling for tests with k = 200
items.

result in a significant amount of computation, and therefore
CUDA uses proportionally more time to complete the Gibbs
sampler.

To further compare the four implementation methods
for all the experimented conditions, the execution times
are ordered by the data size and plotted in Figure 8. It
is apparent that both GPU- and CPU-based approaches
achieve a speedup over the serial implementation, with a clear
advantage to the GPU approach. Furthermore, for data of
the same size, n seems to be the key factor that determines
the execution time for each individual implementation.
Specifically, a larger n tends to result in a longer time in
carrying out the Gibbs sampler regardless of the serial or
parallel algorithm.

Finally, a comparison of the two parallel implementations
in MPI (namely, MPI with 10 nodes and MPI with 20 nodes)
suggests that when the data size and especially the sample size
n are small, the use of fewer number of processing nodes (e.g.,
10) is preferred, but when 7 increases, more processing nodes
are necessary to achieve an improved speedup. This agrees
with the findings of [33].

International Scholarly Research Notices

10000 x 50
10000 x 20

/

5000 x 50

—

2000 x 20

5000 x 20
2000 x 50

Efficiency

)

500 x 50
1000 x 20

1000 x 50
500 x 20

0.1

10 nodes 20 nodes

10000 x 100
5000 x 200
5000 x 100

2000 x 200

—

i

2000 x 100

1000 x 200
1000 x 100

Efficiency

10000 x 200

500 x 200
500 x 100

20 nodes

0.2

10 nodes
(b)

F1GURE 7: Efficiency for implementing MPI algorithms with 10 and

20 nodes for data sizes of n x k.

10000 -
1000 4

100 4

Execution time

10 -

|
£
\

O O O OO O OO OO OO OO oo oo oo
AN NN ANO N OO INmMANO o AN O o n o oo
XXXX—ixNﬁXXNv—iXXN'—iXNv—‘N
cooo Xo X Xgoggo X Xggo X Xgo XXX
SSSSodoodSdSooddSoodooo
FOIROSSSSSESSSS58S538385858538S
= AR~ RS ARSSESENRESSSSSS
= == AB =B SS
==
Data size
—+— CUDA MPI 20 nodes
MPI 10 nodes Serial

FIGURE 8: Execution time for implementing MPI and CUDA parallel
algorithms of Gibbs sampling for data sizes of n x k.

4. Real Data Example

A set of the College Basic Academic Subjects Examination
[43, CBASE] data was used to further illustrate the proposed
GPU parallel algorithm. The CBASE is a criterion-referenced
achievement examination adopted by over 140 colleges and
universities across the USA to evaluate knowledge and skills
in four subject areas of sophomore-level students (usually

after they complete the core curriculum). The data used in
this study were from college students who took the LP form
of the CBASE in years 2001 and 2002. After removing missing
responses, there were 3,356 examinees left. The overall CBASE
exam contains 180 multiple-choice items, with 41 for English,
56 for mathematics, 41 for science, and 42 for social studies.
We can assume that all items are measuring the same unified
latent trait-academic knowledge and fit the 2PNO IRT model
using the proposed algorithm.

The program for implementing this algorithm was devel-
oped on a Linux operating system with a NVIDIA K20
GPU. The latter is required to handle desired sample sizes.
The program runs from the command line and is available
upon request to the first author. For the CBASE data, it took
the program 40 seconds (less than a minute) to implement
the Gibbs sampler with 10,000 iterations. After the burn-in
stage of 5,000 iterations, the posterior estimates and Monte
Carlo standard errors for the item parameters were obtained
and Table 1 displays those for the first 10 items. It is clear
from the table that all the Monte Carlo standard errors
are small, suggesting accurate posterior estimates. These
estimates were also compared with those obtained from the
serial implementations in C and via the MATLAB function
developed by Sheng [44] and found to be close. It is noted that
the latter two implementations took a much longer time, with
17 minutes for the serial C implementation and 33 minutes for
the MATLAB function. Again, with a speedup of up to 49x,
the GPU approach is practically more attractive and therefore
much preferred.

Using the estimated item parameters from Table 1 and (2),
we can plot the item response curves as shown in Figure 9.
A close examination indicates that among the first ten items,
item 6 has the largest @ value (or the steepest curve) and
thus is the most discriminating between high and low ability

students, whereas item 10 has the largest /& value (or its
curve is on the rightmost) and hence is the most difficult. In
addition, the posterior estimates of person parameters for all
3,356 students were obtained and plotted in Figure 10. The
density plot has a positive skew, suggesting that in the CBASE

data, there are more high achieving students (6 > 2) than low
achieving students (6 < —2). Also, for those with a medium
ability level (-1 < 6 < 1), more students are below the mean
(é = 0) than above it.

5. Discussion

This study developed a CUDA GPU-based high performance
Gibbs sampling algorithm for the 2PNO IRT model with
the purpose of achieving high speedup and efficiency. The
algorithm was implemented using the ANSI C programming
language and the CUDA interface. The performances were
compared with that of the parallel MPI program developed
previously. Results indicated that the GPU-based parallel
algorithm performed better than the CPU-based algorithm
for tests with more than 20 items and that this advantage
was more apparent for larger sample size conditions (e.g.,
n > 1000). This further suggests the computational advantage
of CUDA-enabled GPU in fitting such IRT models to, for

8 International Scholarly Research Notices
TABLE 1: Posterior estimates and Monte Carlo standard errors (MCSEs) for the first 10 items in the CBASE data.
Item & MCSE B MCSE Bla
1 0.4280 0.0013 -0.5273 0.0009 -1.2320
2 0.2993 0.0005 —-0.5884 0.0004 -1.9659
3 0.3316 0.0002 -1.0379 0.0003 -3.1300
4 0.3061 0.0015 —1.2878 0.0008 -4.2071
5 0.3952 0.0009 -1.1658 0.0014 -2.9499
6 0.7231 0.0018 —0.8883 0.0013 —1.2285
7 0.3302 0.0006 —0.4362 0.0006 -1.3210
8 0.4612 0.0009 -1.1996 0.0008 -2.6010
9 0.4669 0.0007 -0.1065 0.0005 —0.2281
10 0.4943 0.0008 —-0.0358 0.0008 -0.0724
0.4
0.35
2
g 03
2
L
= 0.25
8 &
5 G
g 0.15
G-
S 0.1
[=9}
0.05
0 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 4

—— Item 1 Item 6
—— Item 2 —— Item 7
—— Item 3 —— Item 8
—— Item 4 —— Item9
—— Item 5 — Item 10

FIGURE 9: Item response curves for the first 10 items in the CBASE
data.

example, large-scale standardized test situations. Moreover, it
has to be noted that in the study, the CUDA implementation
was realized using one GPU card with 2400 cores, whereas the
MPI implementation was realized via the use of a computer
cluster. The relatively lower cost of the GPU card makes the
proposed approach more cost-effective and convenient for
many small research laboratories.

Although this paper only focuses on a specific measure-
ment model, its methodology and results shed light on (1)
using GPU to improve efficiency with MCMC algorithms for
other models (such as factor analysis models or structural
equation models) in general and (2) developing GPU-based
Gibbs sampler for more complicated IRT models more
specifically. In the IRT literature, the model can be more
complex by assuming multiple latent traits, and such tests
typically involve more than 20 items. Given this, the GPU-
based parallel computing is theoretically more appealing than
the CPU-based approach.

Estimated 6

FIGURE 10: Probability density of the posterior estimates of n = 3356
person traits with the CBASE data.

In this study, the performance of the GPU program
was improved via optimizing global memory accesses and
enabling massive thread-level parallelism. Its performance
can be further improved by incorporating dynamic paral-
lelism, a nested thread-level parallelism that is available in the
CUDA 5 package. CUDA 5 allows the parent kernel to invoke
child kernels so that a kernel can dynamically decide the
dimension of the to-be-called kernel to achieve an adaptive
thread utilization and a better performance [45]. In addition,
a kernel can be divided to have multiple streaming data
transfer from host to device and to perform computation
and data transfer from device to host. This enables (1) the
bidirectional data transfer between host and device and
(2) kernel computations to be executed concurrently. These
strategies together with other optimization techniques such
as shared memory, parallel reduction [46], and Open Multi-
Processing (OpenMP) interoperability with CUDA [47] can
be employed to potentially reduce the total run time.

Finally, this study achieved parallelization of the Gibbs
sampler for the 2PNO IRT model through a massive-core
GPU computing and compared its performance with the MPI
approach developed by [33]. It will also be interesting to

International Scholarly Research Notices

Host Device
RS
| PERSONS dev_AVZ dev_MN é.g
ITEMS s [I1T1T
TTERATIONS, Copy initial dev_.GVZ 23]
BURNIN Y values to device dev_Y 0o
BATCHES | -— m
PRIOR EECI;:E dev_ITEM dev_THV
THREADX OTTTTTT
THREAD.Y | CFTLLT dov? dev_XT_PERSON
LISTIT | 00T [ITIIIIT
LIST_PT PERSON dev_XXS
GRID_Y E H
I?IIS{"IFDI_)I(J ITEMED dev_AV dev_GV
LIST__P__L [EEEEN CIITITITT
rngStatesB rngStatesC
rngStatesA E
S |___

gu|

rxc

RandomGenerators|

rngSetupStates

C
| UpdateZ calcZ_device D
— oo
{; rXc
N
UpdateMN calcMN_device DDD i D
- r
UpdateTH calcTH_device DDD i D

calcAMAT _device DDD ‘ D
r

UpdateAandG
| calcAG_device DI:I D
y, [
L
CalculateCorrelation e DDD |:|
~— [

calcPS_device

Return results

FIGURE 11: The control diagram between host and device for the developed CUDA program.

10

consider a different decomposition scheme with MPI such as
the 2D decomposition suggested by Georganas [48] or use a
hybrid CUDA, MPI, and/or OpenMP parallel programming
as recommended by Karunadasa et al. [49-51].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. D. Bock and M. Aitkin, “Marginal maximum likelihood
estimation of item parameters: application of an EM algorithm,”
Psychometrika, vol. 46, no. 4, pp. 443-459, 1981.

[2] R.J. Mislevy, “Estimation of latent group effects,” Journal of the
American Statistical Association, vol. 80, no. 392, pp. 993-997,
1985.

[3] R. J. Patz and B. W. Junker, “A straightforward approach to
Markov chain Monte Carlo methods for item response model,”
Journal of Educational and Behavioral Statistics, vol. 24, no. 2,
pp. 146-178, 1999.

[4] R. K. Tsutakawa and H. Y. Lin, “Bayesian estimation of item
response curves,” Psychometrika, vol. 51, no. 2, pp. 251-267,1986.

[5] J. Bafumi, A. Gelman, D. K. Park, and N. Kaplan, “Practical
issues in implementing and understanding Bayesian ideal point
estimation,” Political Analysis, vol. 13, no. 2, pp. 171-187, 2005.

[6] C.S.Martin, T. Chung, L. Kirisci, and J. W. Langenbucher, “Item
response theory analysis of diagnostic criteria for alcohol and
cannabis use disorders in adolescents: implications for DSM-
V" Journal of Abnormal Psychology, vol. 115, no. 4, pp. 807-814,
2006.

[7] U. Feske, L. Kirisci, R. E. Tarter, and P. A. Pilkonis, “An
application of item response theory to the DSM-III-R criteria
for borderline personality disorder,” Journal of Personality
Disorders, vol. 21, no. 4, pp. 418-433, 2007.

[8] C.L.Beseler, L. A. Taylor, and R. F. Leeman, “An item-response
theory analysis of DSM-IV Alcohol-Use disorder criteria and
“binge” drinking in undergraduates,” Journal of Studies on
Alcohol and Drugs, vol. 71, no. 3, pp. 418-423, 2010.

[9] D. A. Gilder, L. R. Gizer, and C. L. Ehlers, “Item response
theory analysis of binge drinking and its relationship to lifetime
alcohol use disorder symptom severity in an American Indian
community sample,” Alcoholism: Clinical and Experimental
Research, vol. 35, no. 5, pp. 984-995, 2011.

[10] A.T. Panter and B. B. Reeve, “Assessing tobacco beliefs among
youth using item response theory models,” Drug and Alcohol
Dependence, vol. 68, no. 1, pp. 21-39, 2002.

[11] D. Courvoisier and J. E Etter, “Using item response theory
to study the convergent and discriminant validity of three
questionnaires measuring cigarette dependence,” Psychology of
Addictive Behaviors, vol. 22, no. 3, pp. 391-401, 2008.

[12] J. S. Rose and L. C. Dierker, “An item response theory analysis

of nicotine dependence symptoms in recent onset adolescent

smokers,” Drug and Alcohol Dependence, vol. 110, no. 1-2, pp. 70—

79, 2010.

S. E. Fienberg, M. S. Johnson, and B. W. Junker, “Classical mul-

tilevel and Bayesian approaches to population size estimation

using multiple lists,” Journal of the Royal Statistical Society A:

Statistics in Society, vol. 162, no. 3, pp. 383-405, 1999.

(13

International Scholarly Research Notices

[14] M. Reiser, “An application of the item-response model to
psychiatric epidemiology;” Sociological Methods and Research,
vol. 18, no. 1, pp. 66-103, 1989.

[15] M. Orlando, C. D. Sherbourne, and D. Thissen, “Summed-score
linking using item response theory: application to depression
measurement,” Psychological Assessment, vol. 12, no. 3, pp. 354—
359, 2000.

[16] A. Tsutsumi, N. Iwata, N. Watanabe et al., “Application of
item response theory to achieve cross-cultural comparability
of occupational stress measurement,” International Journal of
Methods in Psychiatric Research, vol. 18, no. 1, pp. 58-67, 2009.

[17] M. D. Reckase, “The past and future of multidimensional item
response theory,” Applied Psychological Measurement, vol. 21,
no. 1, pp. 25-36, 1997.

[18] S. E. Embretson and S. P. Reise, Item Response Theory for
Psychologists, Erlbaum, Mahwah, NJ, USA, 2000.

[19] R. D. Hays, L. S. Morales, and S. P. Reise, “Item response theory
and health outcomes measurement in the 21st century,” Medical
Care, vol. 38, no. 9, pp. 1128-1142, 2000.

[20] R. K. Hambleton and H. Swaminathan, Item Response Theory:
Principles and Applications, Kluwer Academic Publishers, Nor-
well, Mass, USA, 1985.

[21] S. P. Reise, “The emergence of item response theory models
and the patient reported outcomes measurement information
systems,” Austrian Journal of Statistics, vol. 38, no. 4, pp. 211-
220, 20009.

[22] A. Birnbaum, “Statistical theory for logistic mental test models
with a prior distribution of ability,” Journal of Mathematical
Psychology, vol. 6, no. 2, pp. 258-276, 1969.

[23] E B. Baker and S. H. Kim, Item Response Theory: Parameter
Estimation Techniques, 1em Plus 0.5 em Minus 0.4 em, Marcel
Dekker, New York, NY, USA, 2nd edition, 2004.

[24] I. W. Molenaar, “Estimation of item parameters,” in Rasch
Models: Foundations, Recent Developments, and Applications, G.
H. Fischer and I. W. Molenaar, Eds., pp. 39-51, Springer, New
York, NY, USA, 1995.

[25] A.E M. Smithand G. O. Roberts, “Bayesian computation via the
Gibbs sampler and related Markov chain MONte Carlo meth-
ods,” Journal of the Royal Statistical Society B: Methodological,
vol. 55, no. 1, pp. 3-23,1993.

[26] L. Tierney, “Markov chains for exploring posterior distribu-
tions,” The Annals of Statistics, vol. 22, no. 4, pp. 1701-1762, 1994.

[27] J.H. Albert, “Bayesian estimation of normal ogive item response
curves using Gibbs sampling,” Journal of Educational Statistics,
vol. 17, no. 3, pp. 251-269, 1992.

[28] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6,
pp. 721-741, 1984.

[29] E M. Lord and M. R. Novick, Statistical Theories of Mental Test

Scores, Addison-Wesley, Boston, Mass, USA, 1968.

Y. Sheng and T. C. Headrick, “An algorithm for implementing

Gibbs sampling for 2PNO IRT models,” Journal of Modern

Applied Statistical Methods, vol. 6, no. 1, pp. 341-349, 2007.

[31] M. Harwell, C. A. Stone, T.-C. Hsu, and L. Kirisci, “Monte

Carlo studies in item response theory,” Applied Psychological

Measurement, vol. 20, no. 2, pp- 101-125, 1996.

K. Pastias, M. Rahimi, Y. Sheng, and S. Rahimi, “Parallel

computing with a Bayesian item response model,” American

Journal of Computational Mathematics, vol. 2, no. 2, pp. 65-71,

2012.

(30

(32

International Scholarly Research Notices

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Sheng and M. Rahimi, “High performance Gibbs sampling
for IRT models using row-wise decomposition,” ISRN Com-
putational Mathematics, vol. 2012, Article ID 264040, 9 pages,
2012.

L. Foster, Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering, Addison-Wesley,
1995.

D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Elsevier, Burlington, Mass,
USA, 2nd edition, 2013.

D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks,
BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.5,
1996.

M. Plummer, “JAGS: a program for analysis of Bayesian graph-
ical models using Gibbs Sampling,” in Proceedings of the 3rd
International Workshop on Distributed Statistical Computing, K.
Hornik, E Leisch, and A. Zeileis, Eds., Technische Universit at
Wien, 2003.

R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013.

A. R Ferreira da Silva, “cudaBayesreg: parallel implementation
of a Bayesian multilevel model for fMRI data analysis,” Journal
of Statistical Software, vol. 44, no. 4, pp. 1-24, 2011.

NVIDIA, “Cuda Curand Library; NVIDIA Corporation, Santa
Clara, Calif, USA, 2010.

J. Hoberock and N. Bell, Thrust: A parallel template library,
2010, http://thrust.github.io/.

R. Hyde, Write Great Code, vol. 2 of Thinking Low-Level, Writing
High-Level, No Starch Press, San Francisco, Calif, USA, 2006.

S. Osterlind, A National Review of Scholastic Achievement in
General Education: How are We Doing and Why Should We
Care?vol. 25 of ASHE-ERIC Higher Education Report, George
Washington University Graduate School of Education and
Human Development, Washington, DC, USA, 1997.

Y. Sheng, “Markov chain Monte Carlo estimation of normal
ogive IRT models in MATLAB,” Journal of Statistical Software,
vol. 25, no. 8, pp. 1-15, 2008.

J. DiMarco and M. Taufer, “Performance impact of dynamic
parallelism on different clustering algorithms,” in Modeling and
Simulation for Defense Systems and Applications VIII, vol. 8752
of Proceedings of the SPIE, Baltimore, Md, USA, April 2013.

M. Harris, Optimizing parallel reduction in CUDA, ” presen-
tation packaged with CUDA Toolkit, NVIDIA Corporation, ”
presentation packaged with CUDA Toolkit, 2007.

A. Hart, R. Ansaloni, and A. Gray, “Porting and scaling
OpenACC applications on massively-parallel, GPU-accelerated
supercomputers,” The European Physical Journal: Special Topics,
vol. 210, no. 1, pp. 5-16, 2012.

E. Georganas, High Performance Parallel Gibbs Sampling for IRT
Models, ParLab Winter Retreat, 2013.

N. P. Karunadasa and D. N. Ranasinghe, “Accelerating high
performance applications with CUDA and MPI,” in Proceedings
of the International Conference on Industrial and Information
Systems (ICIIS '09), pp. 331-336, Peradeniya, Sri Lanka, Decem-
ber 2009.

(50]

1

C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid CUDA,
OpenMP, and MPI parallel programming on multicore GPU
clusters,” Computer Physics Communications, vol. 182, no. 1, pp.
266-269, 2011.

B. Oancea and T. Andrei, “Developing a high performance
software library with MPI and CUDA for matrix computations,”

Computational Methods in Social Sciences, vol. 1, no. 2, pp. 1-10,
2013.

