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Abstract

Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but
mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-
induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term
data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was
unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-
elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second
mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using
absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality
vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in
water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.
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Introduction

Recent regional increases in tree mortality rates and episodes of

forest die-back have been linked to rising temperatures [1,2],

indicating that a potentially substantial source of biotic feedbacks

to global climatic changes may already be underway [3]. Assessing

the effect of such changes will require a realistic understanding of

the relationships between climate and tree mortality as well as the

mechanisms that underlie those relationships.

For example, increases in tree mortality with temperature might

be attributed to two broad and non-mutually exclusive mecha-

nisms: (i) increasing drought stress on trees resulting from

temperature-induced increases in climatic water deficit (hereafter

‘‘deficit’’ : an index of evaporative demand that is not met by

available water, hence drought stress [4,5]) [2,6–9], or (ii)

temperature-induced increases in the reproduction, survivorship,

and effectiveness of insects and pathogens that kill trees [10–12].

The first hypothesis posits that changes in mortality rate are most

strongly tied to tree condition, with increasing drought stress

making a given tree more susceptible to an array of mortality risks

including physiological decline and attack by enemies. The second

hypothesis posits that changes in mortality rate are most closely

tied to the population dynamics and effectiveness of tree enemies,

regardless of the condition of their hosts.

We might reasonably hypothesize that the first of these

mechanisms dominates in water-limited forests: forests in which

growth and other biological processes respond most strongly to

changes in water availability, such as in arid regions or, in many

mountain ranges, at lower elevations. The second mechanism

might be expected to become more important in energy-limited

forests: forests in which growth and other biological processes

respond most strongly to temperature changes, such as in wet

regions or at higher elevations. Although some studies have

examined differences in the climatic controls of tree growth rates

between water- and energy-limited forests [13], we are unaware of

comparable studies of mortality rates.

Even for sites at which drought stress is clearly the best predictor

of changes in mortality, the best model for relating changes in

mortality to changes in deficit may not be obvious. Trees are

adapted to the typical deficit within their geographical range

limits, with trees in drier environments being more strongly

adapted to lower water availability [14,15]. In addition, some

evidence suggests that trees have some ability to acclimate to

changes in water stress, in the short term by altering stomatal

conductance and in the longer term by altering carbon allocation

priorities or morphological traits [14,16–18].

But how is that range of adaptation defined relative to the

average historical deficit at a given site? For example, are species

adapted to similar absolute ranges of deficit, regardless of

environment? Or are trees that are adapted to drier environments

more strongly resistant to changes in deficit than trees adapted to

more mesic environments? In short, does one expect mortality to

be more strongly correlated with absolute or relative changes in

deficit?

Arguments can be made for both possibilities. Trees in more

water stressed environments have developed adaptations for

survival in those environments (e.g., [8,14]), perhaps suggesting
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that they have increased resistance to absolute changes in water

stress. Such adaptations might result in mortality having a relative

relationship to changes in deficit (i.e., the more water stressed a site

is, the stronger the adaptions to absolute increases in water stress).

However, in some cases, severe drought results in larger increases

in mortality rates at drier sites when compared to more mesic sites

[19,20], perhaps indicating that absolute changes in deficit might

be more predictive. While a recent global analysis of the safety

margins trees maintain against drought-induced hydraulic failure

provides an important first step toward distinguishing among the

possibilities [15], alone it does not allow us to definitively choose

between them. That work, while showing patterns of embolism

resistance that might argue that tree responses to drought are best

related to absolute changes in deficit, does not directly relate those

safety margins to mortality and also does not address other factors

related to hydraulic safety margins such as stomatal regulation.

The precise nature of these relationships (water limitation versus

energy limitation, absolute versus relative changes in climatic

water deficit) could result in markedly different assessments of the

potential vulnerability of a given forest to climate change. For

example, many high elevation forests might be substantially more

vulnerable if mortality is most strongly related to relative changes

in deficit (since many high elevation forests have a relatively small

baseline deficit), and forests that experience relatively little change

in deficit, due to abundant water and deep soils, might still be

substantially vulnerable to climate change if changes in mortality

rate are primarily related to changes in climatic favorability to tree

enemies.

In this work, we seek to shed light on the possible mechanisms

by which increasing temperature can lead to increasing tree

mortality rates and to explore some implications of our findings for

forecasting changes in tree mortality rates. Specifically, we use

empirical data to test.

1) The hypothesis that changes in tree mortality rates in water-

limited forests should best correlate (positively) with climatic

water deficit, whereas mortality rates in energy-limited forests

should best correlate (positively) with temperature due to

temperature’s direct effects on insect and pathogen popula-

tions (e.g., [21,22,23]).

2) Whether absolute or relative changes in deficit best correlate

with changes in mortality rate.

With regard to #1, because deficit partly depends on

temperature, deficit and temperature are correlated. However,

deficit also depends on water availability, which can vary

independently of temperature; for example, a warm, wet summer

will have a low deficit while a warm, dry summer will have a high

deficit. We therefore might reasonably expect to be able to

distinguish between deficit- and temperature-related changes in

tree mortality rates.

Using results of these analyses, we then explore the implications

of our findings by forecasting responses of tree mortality rates to

different scenarios of future climatic changes. In particular, we use

our models and forecasts to provide additional insights into

climatic controls of tree mortality and to highlight critical

knowledge gaps. Importantly, we are not attempting to actually

predict future mortality rates but rather using our forecasts to

illustrate the effect that uncertainties could have on such

predictions.

To accomplish these tasks we used data from long-term forest

plots arrayed along a steep elevational gradient in California’s

Sierra Nevada mountain range. Earlier analyses of these data

revealed that tree mortality rates had increased significantly over

the last two decades and that, for all elevations combined, these

increases were correlated with temperature-driven increases in

climatic water deficit. These previous analyses also ruled out

competition, fire suppression, air pollution, self-thinning, and

aging as confounding factors [9,24]. This unique longitudinal data

set is ideal for our current purposes because (i) samples are large

and of fine temporal resolution, with the fates of .20,000

individual trees tracked annually for up to 24 years, and (ii) the

forests were sampled along a 1900 m elevational gradient, ranging

from water-limited forests near lower treeline to energy-limited

forests at upper treeline.

Materials and Methods

Study Sites and Tree Mortality Rates
Twenty-one permanent study plots ranging in size from 0.9 to

2.5 ha were established between 1982 and 1996 in old-growth

stands within the coniferous forests of Sequoia and Yosemite

national parks, Sierra Nevada, California (Table S1). These forests

have mixed age and size structure, with trees ranging from recent

recruitment to mature canopy trees (Fig. S1). The plots have not

experienced stand-replacing disturbances in at least two centuries,

and probably much longer (as estimated by counting rings on

increment cores or nearby stumps, or by historical records and the

sizes of the largest trees), and therefore the forests contain cohorts

of all ages and all sizes (Fig. S1). A few other plots in our network

were excluded due to recent disturbances (fire or avalanche). The

plots are arranged along a steep elevational gradient (,1900 m)

from near lower to upper treeline and encompass several different

forest types, including ponderosa pine-mixed conifer, white fir-

mixed conifer, Jeffrey pine, red fir, and subalpine forests [25]. The

sites have never been logged. Frequent, low severity fires

characterized many of the forest types prior to Euro-American

settlement, but the areas containing the study plots have not

burned since the late 1800s [26]. The climate is montane

mediterranean, with hot, dry summers and cool, wet winters in

which ,25–95% of annual precipitation (which averages 1100 to

1400 mm) falls as snow, depending on elevation [27]. Mean

annual temperature declines sharply with elevation (,5.2uC for

every 1 km increase in elevation), ranging from roughly 11uC at

the lowest plots to 1uC at the highest. Soils are relatively young

(mostly inceptisols), derived from granitic parent material.

Within each plot all trees $1.37 m in height were tagged,

mapped, measured for diameter, and identified to species. We

censused all plots annually for tree mortality, and at intervals of

,5 years we remeasured diameter at breast height (dbh, 1.37 m

above ground level) of living trees and recorded new recruitment.

Data selection and mortality rate calculations followed van

Mantgem and Stephenson [9] with the exception that mortality

rates were calculated through 2006, yielding a final data set of

21,024 trees for analysis. Mortality rates were calculated only for

the 86% of tree mortalities that were not the result of mechanical

factors (uprooting, breaking, or being crushed), since mechanical

mortalities are likely to be only indirectly associated with the

climatic factors considered here [9]. This gave a total of 3788

mortalities for the period of record. Summary data are provided in

Table S2.

Ethics Statement
Research was performed in Sequoia National Park and

Yosemite National Park. All necessary permits were obtained

from the National Park Service for this study, which complied with

all relevant regulations.
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Defining Water- vs. Energy-Limited Forests
Tague et al. [28] used a coupled ecohydrologic model to forecast

the effects of temperature changes on net primary productivity

(NPP) in the central Sierra Nevada, finding that increasing

temperature resulted in declining NPP below about 2200 m

elevation but increasing NPP above about 2600 m elevation,

suggesting that the transition from water limitation to energy

limitation occurs between about 2200 m and 2600 m elevation.

Similarly, the response of remotely-sensed forest greening in the

Sierra Nevada to interannual variation in snowpack water content

suggests that the transition from water to energy limitation occurs

between about 2100 m to 2600 m elevation [29]; these results

were independently corroborated by in situ flux tower measure-

ments at 2015 and 2700 m elevation [29]. Thus, although the

transition from predominantly water-limited (low elevation) to

predominantly energy-limited (high elevation) forests is likely to be

gradual, different lines of evidence are consistent in suggesting that

the midpoint of the transition falls near 2400 m elevation. We

chose to define the transition at 2450 m, as this elevation allowed

us to cleanly segregate the plots we used in model-building by

forest types: ponderosa pine-mixed conifer, white fir-mixed

conifer, and Jeffrey pine forests (#2450 m, predominantly

water-limited), and red fir and subalpine forests (.2450 m,

predominantly energy-limited).

Climatic Data
We obtained historical values of monthly-averaged precipitation

and air temperature in a gridded map format at a 4-km spatial

scale from the empirically-based Parameter-Elevation Regressions

on Independent Slopes Model (PRISM) [30]. Spatial downscaling

was performed on the coarse resolution grids (4 km) to produce

fine resolution grids (270 m) using a model developed by Nalder

and Wein [31] modified with a ‘‘nugget effect’’ specified as the

length of the coarse resolution grid [32].

Table 1. Top Ranked Models and Parameters.

Predictor Variable Model Form DAIC Evidence Ratio b0 b0 S.E. b1 b1 S.E. a a S.E.

All Elevations (21 plots)

Da (Absolute Change)

Current year plus two prior Exponential 0.0 1.0 20.0536 0.0321 0.0036 0.0005 0.1709 0.0246

Current year plus two prior Linear 0.6 1.3 0.9726 0.0305 0.0034 0.0005 0.1711 0.0246

Dr (Relative Change)

Current year plus two prior Exponential 2.9 4.3 21.2159 0.1774 1.1643 0.1675 0.1752 0.0249

Current year plus two prior Linear 3.8 6.7 20.1257 0.1500 1.0989 0.1537 0.1756 0.0250

Ta (Absolute Change)

Current year plus two prior Exponential 15.7 2565.7 20.0823 0.0350 0.5515 0.0939 0.1870 0.0259

Current year plus two prior Linear 14.3 1274.1 0.9388 0.0308 0.5325 0.0829 0.1856 0.0258

Low Elevation (Water-limited) (13 plots)

Da (Absolute Change)

Current year plus two prior Exponential 0.0 1.0 20.0507 0.0356 0.0036 0.0006 0.1697 0.0263

Current year plus two prior Linear 0.2 1.1 0.9748 0.0339 0.0034 0.0005 0.1697 0.0264

Dr (Relative Change)

Current year plus two prior Exponential 2.3 3.2 21.3272 0.2170 1.2783 0.2066 0.1728 0.02659

Current year plus two prior Linear 3.0 4.5 20.2212 0.1802 1.1965 0.1848 0.1735 0.02670

Ta (Absolute Change)

Current year plus three prior Exponential 9.3 104.6 20.0752 0.03843 0.6851 0.1261 0.1881 0.0279

Current year plus three prior Linear 7.0 33.1 0.9465 0.03431 0.6695 0.1033 0.1856 0.0276

High Elevation (Energy-limited) (8 plots)

Da (Absolute Change)

Current year plus two prior Exponential 0.5 1.3 20.0661 0.0751 0.0037 0.0011 0.1783 0.0686

Current year plus two prior Linear 0.8 1.5 0.9638 0.0703 0.0035 0.0011 0.1799 0.0689

Dr (Relative Change)

Current year plus two prior Exponential 0.0 1.0 21.0287 0.3133 0.9609 0.2863 0.1777 0.0684

Current year plus two prior Linear 0.4 1.2 0.0648 0.2644 0.8986 0.2711 0.1793 0.0687

Ta (Absolute Change)

Current year plus four prior Exponential 3.6 6.0 20.1481 0.0900 0.7864 0.2846 0.1829 0.06742

Current year plus four prior Linear 3.8 6.7 0.8764 0.0734 0.7534 0.2740 0.1822 0.06766

Note: DAIC is the difference in AIC value between the top ranked model and the given model. Smaller values indicate better models. Evidence Ratio can be interpreted
as how much stronger the evidence is for the top ranked model over the given model. Larger values indicate stronger evidence that the top ranked model is better than
the given model. b0 and b0 S.E. are estimated intercept parameter and standard error for the model (see Eqns. 5-7). b1 and b1 S.E. are estimated parameter and standard
error for the deficit variable for the model (see Eqns. 5-7). a is a parameter from the negative binomial distribution that quantifies over dispersion relative to a Poisson
distribution, where the over dispersion factor is defined as (1+1/a). Therefore, smaller values of a represent larger over dispersion.
doi:10.1371/journal.pone.0069917.t001
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This technique combines a spatial Gradient and Inverse

Distance Squared (GIDS) weighting to monthly point data using

multiple regressions calculated for every grid cell for every month.

Using the 4-km resolution digital elevation model in PRISM,

parameter weighting is based on the location and elevation of the

new fine resolution grid (270 m for this study) relative to existing

coarse resolution grid cells [32]. The monthly maps of precipita-

tion and minimum and maximum air temperature are used as

input to a monthly water balance model (the Basin Characteriza-

tion Model) to calculate potential and actual evapotranspiration

and climatic water deficit for the Sierra Nevada at a grid spacing

of 270 m.

Climatic Water Deficit from the Basin Characterization
Model
Climatic water deficit is defined as PET-AET, where PET is

potential evapotranspiration and AET is actual evapotranspiration.

Deficit explicitly considers the seasonal interactions of temperature

and precipitation, as well as the timing of snowmelt and the soil

water holding capacity. Deficit is therefore a more biologically

relevant measure of water stress than other commonly used indices

[4,5].

To calculate deficit we used the Basin Characterization Model

(BCM): a physically-based model that calculates water balance

fractions based on data inputs for topography, soil composition

and depth, underlying bedrock geology, and spatially-distributed

values (measured or estimated) of air temperature and precipita-

tion [33,34]. The BCM calculates monthly recharge and runoff

using a deterministic water-balance approach based on the

distribution of precipitation and the estimation of potential

evapotranspiration [33,34] using the Priestley-Taylor equation

[35]. The BCM relies on rigorous hourly energy balance

calculation (used for the Priestley-Taylor equation) using topo-

graphic shading and applies available spatial maps of elevation,

bedrock permeability estimated from geology, soil water storage

from STATSGO and SSURGO soil databases [36], vegetation

density, and PRISM maps of precipitation and minimum and

maximum air temperature.

The BCM was calibrated regionally to measured potential

evapotranspiration data and MODIS snow cover data [37].

Locally, the model was also calibrated to measured unimpaired

streamflow data [34]. The determination of whether excess water

becomes recharge or runoff is governed in part by the underlying

bedrock permeability. The higher the bedrock permeability, the

higher the recharge and the lower the runoff generated for a given

grid cell. In small gaged basins that generate unimpaired flows, the

bedrock permeability can be adjusted to calculate a total basin

discharge that matches the measured basin discharge.

Tree Mortality Rate Model Development
We developed statistical models relating changes in tree

mortality rate to changes in temperature and climatic water

deficit. Changes were calculated relative to reference period

Figure 1. Projected Changes in Mortality Rate for Sierra Nevada Conifer Forests (Hypothetical). Mapped projections of average relative
changes in mortality rate for the years 2090 to 2099 for coniferous forests of California’s Sierra Nevada, using exponential and the GFDL A2 emissions
model. Elevations generally increase from left to right. (A) Changes in mortality when absolute changes in deficit (Da) are used as a predictor. (B)
Changes in mortality when relative changes in deficit (Dr) are used as a predictor. Surfaces were interpolated from 33,594 grid points using Ordinary
Kriging. Other emissions scenarios gave qualitatively similar results (Figs S3 to S5).
doi:10.1371/journal.pone.0069917.g001
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averages. For mortality rate, the reference period for a given plot

was the period of record for that plot (plot establishment through

2006). For climate, the reference period was the water years

(October 1 to September 30) 1982 through 2006 – the full range of

years of record for all plots combined. (Note that mortality rates

could be calculated only for the period of record of a given plot,

whereas climatic values could be calculated for longer periods).

To account for systematic variation in tree mortality rates with

elevation in the Sierra Nevada [38] and to facilitate interpretation

of results, we modeled relative rather than absolute changes in

mortality rates, with change defined against the reference period

rate. Specifically, relative change in mortality rate for each plot

was calculated as

Mr~Mt=Mref ð1Þ

where Mr is the relative change in mortality rate, Mt is mortality

rate for the year t, and Mref is the reference mortality rate (i.e., the

average mortality rate for the period of record of the given plot).

As a check, we also modeled absolute changes in mortality rates

and found no qualitative changes to our results.

The effects of temperature on biological processes are generally

expressed in terms of absolute rather than relative changes in

temperature (e.g., [11,39]) so we used absolute change in

temperature as an independent variable:

Ta~Tt{Tref ð2Þ

where Ta is the absolute change in average annual temperature, Tt

is the annual average temperature in year t, and Tref is the

reference average annual temperature. As a check we also

modeled using relative changes in temperature [in K] and found

no qualitative changes to our results.

We could identify no a priori biological basis for choosing

between relative versus absolute changes in deficit for use as

independent variables (see the Introduction), so we used both to

test whether one or the other were better predictors of change in

mortality rate. These were calculated as

Dr~Dt=Dref ð3Þ

Dr~Dt{Dref ð4Þ

where Dr and Da are, respectively, the relative and absolute

changes in climatic water deficit, Dt is the deficit for year t, and Dref

is the average deficit in the given plot for the reference period.

To allow for lagged and cumulative effects, we also calculated

running averages of Dr, Da, and Ta that incorporated the current

year and the prior one to four years (i.e., average of current year

and prior one to four years). Running averages were also

calculated that excluded the current year.

The relationships between relative change in mortality and

climatic variables were modeled as either linear or exponential

functions:

Mr~b0zb1Cx ð5Þ

Mr~eb0zb1Cx ð6Þ

where Cx is the given climatic variable (Da, Dr, or Ta, including

running averages of those variables), and b0 and b1are estimated

parameters. Additionally, logistic functions were tried but

discarded because uncertainty in the upper asymptote resulted in

unstable parameter estimations (i.e., there was not enough

Figure 2. Projected Changes in Mortality Rate for predominantly Energy-Limited Sierra Nevada Conifer Forests (Hypothetical).
Mapped projections of average relative changes in mortality rate for the years 2090 to 2099 for energy-limited coniferous forests ($2450 m) of
California’s Sierra Nevada, using exponential models and the GFDL A2 emissions model. Elevations generally increase from left to right. (A) Changes in
mortality when absolute changes in deficit (Da) are used as a predictor. (B) Changes in mortality when relative changes in deficit (Dr) are used as a
predictor. (C) Changes in mortality when absolute changes in temperature (Ta) are used as a predictor. Other emissions scenarios gave qualitatively
similar results (Figs. S6 to S8).
doi:10.1371/journal.pone.0069917.g002

Climatic Correlates of Tree Mortality

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69917



Figure 3. Projected Changes in Mortality Rate by Elevation (Hypothetical). Projected relative changes in tree mortality rate by elevation in
the 2090s for the GFDL A2 climatic scenario using (A) Da and Dr exponential models for all forests and (B) the Da, Dr, and Ta exponential model for
energy-limited forests. Rates are averaged in 250 m classes using the 33,594 Sierra Nevada coniferous forest grid points. Error bars show standard

Climatic Correlates of Tree Mortality
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information in the data to reliably estimate a maximum increase in

mortality rate). Models were parameterized separately for all

forests combined, water-limited forests (#2450 m in elevation),

and energy-limited forests (.2450 m elevation).

To account for site effects, we initially used mixed-effect models

with site as a random effect. In the vast majority of cases, however,

the estimated site effect was negligible and gave parameter values

for the fixed effects that were statistically indistinguishable from

those estimated using a fixed effects model. This was likely due to

our standardization of climate and mortality values to a reference

period. The mixed effects models also gave higher Akaike’s

Information Criterion (AIC, see below) values, indicating less

support. Even in the very few cases where the mixed effects term

was non-trivial, parameter estimates for the fixed effects were

statistically indistinguishable from their fixed effects model

counterparts and AIC model rankings were the same. In addition,

maximum likelihood estimations for the mixed effects parameters

tended to be highly sensitive to starting values. Therefore, given

that mixed effects terms did not appear to offer any improvement

to or have any meaningful effect on the analysis, we proceeded

with standard fixed effects models.

Models were fit using a maximum likelihood approach. Relative

changes in mortality rates were treated as counts with the previous

year’s total count of live trees used as an offset. For example, for

linear models the count was given by:

Mt,j~nt{1,j
:Mref ,j

: b0zb1Cx,t,j

� �
ð7Þ

Where Mt,j is the count of mortalities at year t in plot j; nt-1,j is the

count of live trees at year t-1 in plot j; Mref,j is the reference

mortality rate in plot j; and Cx,t,j is the given climatic variable at

time t in plot j. Parameters for these equations were then fit by

maximizing a negative binomial log likelihood function using SAS

9.1 (SAS Institute. 2004. SAS OnlineDocH 9.1.3. Cary, NC: SAS

Institute Inc).

Models were compared with an information theoretic approach

using AIC [40] to determine which type of model (linear or

exponential) and which climatic parameter (Da, Dr, and Ta) best

predicted mortality rate for each elevational class. As a guide,

based upon Burnham and Anderson’s [40] rules of thumb, DAIC
values less than 2 or an evidence ratio less than 2.7 would be

considered very little evidence that one model is better than

another while a DAIC greater than 4 or an evidence ratio greater

than 7.4 would be considered relatively strong evidence for one

model being better than another. The highest ranked models for

each elevational class were then chosen and used for forecasting

change in future tree mortality rates under different climate

scenarios, described below.

Mortality Forecasting
Note that the forecasts we perform here are intended to

illustrate potential pitfalls in mortality forecasting given uncertain-

ty in model choice. They are not intended nor should be

interpreted as an attempt to reliably predict future mortality rates.

For this illustration, changes in tree mortality rates in the

coniferous forests of the Sierra Nevada were forecast through

year 2100. We chose to use Sierra Nevada conifer forests and

climate forecasts derived from General Circulation Models (GCM)

in order to provide a biologically-relevant and biologically-

plausible context for our illustration, but we might just have easily

chosen a hypothetical dataset with arbitrarily chosen values.

The extent of coniferous forests was determined from the

California Gap Analysis Project’s primary Wildlife Habitat

Relationship habitat types (WHR1) [41]. On a one km resolution

grid, this resulted in the selection of 33,594 grid points within the

Sierra Nevada ecoregion (as defined by Hickman [42]) encom-

passing an area of approximately 33,600 km2.

Grid points were classified by elevation as containing either

predominantly water- or predominantly energy-limited forest

(#2450 m or .2450 m elevation, respectively). Of course, the

elevational boundary between water- and energy-limited forests

almost certainly varies with latitude, topography, rain shadow

effects, and other factors. However, we opted for this simple

classification by elevation because our primary goal was to gain

broad, qualitative insights from model comparisons, not to predict

future conditions on a particular piece of ground. As an additional

check, we performed forecasts in which we classified grid points as

containing either water- or energy-limited forest based on forest

type rather than elevation, and these forecasts showed no

qualitative differences from those based on elevation that we

report here.

Downscaling Future Climate Scenarios
GCM climatic forecasts are generally available for the

continental US at 12 km spatial resolution. A set of these

projections have been downscaled for California and its environs

using the constructed analogs method of Hidalgo et al. [43],

providing a basis for our further downscaling [32]. Our goal was to

represent climate projections for California on the basis of global

climate models that have proven capable of simulating recent

historical climate, particularly the distribution of monthly temper-

atures and the strong seasonal cycle of precipitation that exists in

the region [44–46]. In addition, models were selected to represent

a range of model sensitivity to greenhouse gas forcing. On the basis

of these criteria, two GCMs were selected, the Parallel Climate

Model (PCM) developed by National Center for Atmospheric

Research (NCAR), Department of Energy (DOE) (see [47,48]) and

the National Oceanic and Atmospheric Administration (NOAA)

Geophysical Fluid Dynamics Laboratory CM2.1 model (GFDL)

[49,50]. The choice of greenhouse gas emissions scenarios

included A2 (medium-high–essentially ‘‘business as usual’’) and

B1 (low-essentially a ‘‘mitigated emissions’’ scenario), was guided

by considerations presented by Nakicenovic et al. [51]. Thus we

developed a range of climatic forecasts based on four specific

scenarios; two models each driven by two emissions scenarios:

‘‘GFDL A2’’, ‘‘GFDL B1’’, ‘‘PCM A2’’, ‘‘PCM B1’’.

These four scenarios were downscaled from the 12-km grid

scale to the historical PRISM data scale of 4 km for the purpose of

bias correction. To make the correction possible the GCM was

run for a historical forcing function to establish a baseline for

modeling to match current climate. The baseline period for this

study was defined as the PCM and GFDL model runs for 1950–

2000, representing current (pre-2000) atmospheric greenhouse gas

conditions. This baseline period was then adjusted using the

PRISM data from 1950–2000, for each month and for each grid

cell. Our approach to bias correction is a simple scaling of the

mean and standard deviation of the projections to match those of

the PRISM data following Bouwer et al. [52] and described in

error. Note that the scales on A and B are different. A small number of points with small baseline deficit values (,1% of all points for A and,2% for B)
were excluded because the Dr models predicted exceedingly large changes in mortality rate. Projections using the PCM model and other emission
scenarios as well as using linear mortality models gave qualitatively similar results.
doi:10.1371/journal.pone.0069917.g003
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detail in Flint and Flint [32]. Once the bias correction was

complete, the 4 km projections were further downscaled to 270 m

spatial resolution using the GIDS spatial interpolation approach

for model application.

Changes in tree mortality rate were forecast for each year for

each grid point under each combination of GCM and emissions

scenario by inputting forecasted climate into our best mortality

models. Climate and mortality forecasts were then summarized by

decade for each grid point.

Results

Model Selection and Comparison
For all elevations combined and for low elevation forest plots

(#2450 m), the strongest predictors of Mrwere running averages

ofDa,Dr, and Ta that included the current year change in deficit or

temperature plus either the prior two years or three years (the

latter only for low elevation temperature models) (Table 1). Deficit

models had substantially stronger support than temperature

models. In contrast, the evidence was at best equivocal in

distinguishing between absolute or relative deficit variables as

the better predictors ofMr. Thus, while both types of deficit

variables appear to be better predictors of changes in mortality

than temperature variables at all elevations combined and at low

elevations, there was no strong support for one type of deficit

variable over the other. In all cases, DAIC indicated roughly equal

support for both linear and exponential models.

For high elevation forest plots (.2450 m), the strongest

predictors of Mr were running averages that included the current

year plus the prior two or four years (Table 1). Deficit models were

still top ranked, but DAIC values and evidence ratios indicate that

they had only marginally more support than the best Ta models. In

all cases, DAIC indicated roughly equal support for both linear

and exponential models.

Although temperature and deficit variables are correlated, the

strength of that correlation (between Da and Ta including the

current plus two prior years) was indistinguishable between low

and high elevations (r = 0.68 for low elevations, r = 0.64 for high

elevations,). The increased relative predictive power of tempera-

ture at high elevation therefore cannot be explained by increased

correlation between temperature and deficit.

In comparing the models developed for each set of data (all

elevations, low elevations, and high elevations), the similarity in the

parameter estimates for the deficit models, particularly the Da

models, is notable, suggesting that the relationship between

changes in mortality rate and changes in deficit does not vary

substantially across a very marked elevational gradient.

Forecasted Changes in Mortality Rates
Temperature increased for all combinations of GCMs and

emissions scenarios, with average increases between the 2000s to

the 2090s ranging from 1.2 to 4.2uC (Fig. S2). The GFDL model

tended to forecast a general decrease in precipitation in the Sierra

Nevada, while the PCM model showed no straightforward pattern

(Fig. S2). Climatic water deficit increased in all cases, with the

GFDL A2 combination showing the sharpest increase (Fig. S2).

All mortality models forecast increasing tree mortality rates

throughout the coniferous forests of the Sierra Nevada, with

spatially-averaged projected increases by the 2090s varying

dramatically depending on the model used and position on the

landscape (see below). In general, the GFDL model resulted in

larger increases in mortality rates than the PCM model, and the

A2 scenario resulted in larger increases than the B1 scenario.

The spatial pattern of mortality rate increases differed markedly

among forecasts from the Da, Dr, and Ta models (Fig. 1, Fig. 2,

Fig. 3). In particular, the models make dramatically different

forecasts about how mortality rate will change along elevational

gradients. Da models forecast gradually increasing mortality rates

with elevation (Fig. 1A, Fig. 2A, Fig. 3), reflecting modestly

increasing changes in absolute deficit with elevation. In contrast,

Dr models forecast smaller increases in mortality rates at lower

elevations but very sharply increasing rates for forests above about

2200 m (Fig. 1B, Fig. 2B, Fig. 3):a consequence of the fact that

baseline deficits at higher elevations tend to be small and that

relatively modest changes in absolute deficit can result in very

large changes in relative deficit. Finally, in the elevational zone

above 2450 m, where temperature was a relatively good predictor

of changes in mortality rate, Ta models forecast large and relatively

uniform increases in mortality rate at all elevations within the

zone, except at the highest elevations where the magnitude of

increase drops somewhat (Fig. 2C, Fig. 3B). This pattern tracks the

forecasted changes in temperature at different elevations.

Discussion

Deficit versus Temperature
To our knowledge, we provide the first explicit correlative test of

the effects of climate on tree mortality in water- versus energy-

limited forests. As expected, changes in mortality rate in water-

limited forests (low elevations) were unambiguously best modeled

by deficit. In energy limited forests (high elevation) temperature

also became a relevant predictor, with deficit models providing

only marginally better fits.

Two factors might account for the fact that temperature

variables, while stronger predictors at higher elevations, were not

unambiguously the best predictors at those elevations: (i) energy

and water limitation are probably more properly described as a

continuum rather than as a dichotomy, and (ii) the proposed

mechanisms driving increasing tree mortality rates (increased

drought stress and favorability to enemies) are not mutually

exclusive. Therefore, it is not surprising that deficit might still be

an important driver of mortality rates at higher elevations, even if

it becomes less clearly the best predictor.

On the first point, we have assumed a simple dichotomy

between water- and energy-limited forests. In reality, water and

energy limitation likely represent the extremes of graded variations

in both space and time, with many forests being both water and

energy limited (e.g., [53,54,55]). Additionally, with climatic

change, as temperatures increase and winter snowpacks decrease

through time, we expect that some forests will switch from being

primarily energy-limited to primarily water-limited.

We also cannot eliminate the possibility that the observed

difference in climatic correlates of tree mortality between our

water- and energy-limited forests is a simple consequence of

differences in the forests’ species composition. However, we

believe this is unlikely. Importantly, both sets of forests are heavily

dominated by the same two tree genera, Abies and Pinus, and are

attacked by a similar (and sometimes identical) suite of pathogens

and herbivores, suggesting that environmental effects rather than

species effects provide the most parsimonious explanation of our

results (e.g., [7,8,11,12,56]).

Regardless, our finding that temperature becomes a relatively

stronger predictor of mortality rate in energy-limited forests agrees

with recent studies examining climatic controls on tree growth,

which have found that climatic controls of both individual tree

growth [13] and overall forest productivity [57] vary depending on

the water or energy limitation of a given forest. Littell et al. [13] for
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example found evidence that deficit drove tree growth patterns for

most of the Douglas-fir forests in their study (i.e., growth was

usually water-limited) but that at higher elevation sites growth

appeared to be temperature- (energy-) limited.

Our findings have implications for our understanding of how

forest structure, dynamics, and carbon storage will change with a

changing climate. Forests play a substantial role in the global

carbon cycle [58], and changes in tree mortality can have

dramatic effects on forest carbon dynamics (e.g., [1]). To date,

however, most forest simulation models have relied on general

mortality algorithms that do not incorporate explicit mechanisms

and would therefore not be expected to adequately reflect changes

in mortality processes across a gradient of water and energy

limitation [59–61].

One encouraging result was the strong similarity in parameter

estimations for deficit models in both low and high elevation

forests. While it is likely that additional mechanisms will need to be

considered across such gradients, relationships between drought

and mortality may not vary substantially across fairly broad scales.

Absolute versus Relative Deficit
Our inability to clearly distinguish among models using relative

versus absolute changes in deficit as predictors of mortality also has

critical implications for forecasting future changes in mortality

rates. The two types of models lead to substantially different

predictions of changes in mortality rates across the landscape

(Figs. 1,2). If future studies yield similar results across latitudinal as

well as elevational gradients, we could be confronted with

drastically different conclusions about which forests are most at

risk from a warming climate at subcontinental scales.

We currently have no strong a priori reasons for selecting one

deficit model over another. Although critical groundwork has been

laid for mechanistic models of drought-induced tree mortality

[62], current models cannot yet tell us whether mortality is likely to

be best predicted by absolute or relative changes in deficit.

Empirical evidence is also equivocal. While some studies in areas

of chronic water stress have found increased mortality during

droughts (potentially providing opportunities to study the effects of

increasing deficit [19,63–65]), we do not yet have the data needed

to assess whether trees in those regions were responding in a

manner more consistent with absolute or relative changes in

deficit. Additionally, it is not clear whether episodes of severe,

short-term drought are directly comparable to the more gradual

long-term increases in water stress that we are examining here.

Distinguishing between the two models will likely require more

definitive physiological models, larger empirical datasets that

incorporate a wider range of deficits along gradients of water

stress, and manipulative experiments that directly test the effect of

changes in deficit.

Additional Uncertainties
Given the uncertainties noted above, we emphasize that our

forecasts of future tree mortality rates in the Sierra Nevada should

not be taken as quantitative predictions but rather as an

illustration of the dangers of attempting to predict tree mortality

rates without a solid understanding of underlying mechanisms. As

noted above, we chose to use the Sierra Nevada landscape and

downscaled GCM projections in order to provide a biologically-

plausible and biologically-relevant context for our illustration, but

we might just as easily have used a completely hypothetical climate

projection and a hypothetical forest.

Additional uncertainties should be acknowledged with regard to

our forecasts. Of necessity, our models were developed from a

range of deficit and temperature changes that is far smaller than

the range projected for the future. It is therefore unlikely that we

have captured the true shape of the relationship between deficit or

temperature and mortality, as is indicated by our inability to

distinguish between exponential and linear models. In addition, as

noted above, mechanisms may change at a given location as

temperatures increase. Perhaps most importantly, our models were

parameterized on background (non-catastrophic) tree mortality

rates and do not capture potential insect or pathogen outbreaks,

such as those seen in recent years in many parts of western North

America [12]. Our assumption of a simple monotonic relationship

between climate and tree mortality is undoubtedly overly simplistic

(see [10,11]), and does not account for sudden threshold

transitions that can result in extensive forest die-back. However,

our forecasts serve their intended role of qualitatively illustrating

how model choices can profoundly affect our ability to understand

and predict future changes.

Conclusions
Understanding the spatial relationships between climate and

tree mortality is becoming increasingly important as climate

continues to change. For example, van Mantgem et al. [24] found

a widespread increase in mortality rates in old growth forests

across the western USA and showed that regional warming is

likely an important contributor to that increase. We have shown

here that the mechanisms relating climate to tree mortality appear

to vary along an elevational gradient, suggesting that a similar

pattern may hold across a broader geographic scale, with the

underlying mechanisms that drive changes in mortality perhaps

varying between drier (water-limited) regions and wetter (energy-

limited) regions. We have also demonstrated that identifying the

precise nature of the relationship between climate variables and

tree mortality can be critically important for making accurate

predictions of forest change. At present, our ability to correctly

identify such relationships is tenuous. A more thorough grasp of

mortality mechanisms will be critical as we struggle to forecast and

manage forest change in the decades to come.

Supporting Information

Figure S1 Tree Size Distribution for Each Plot. Shows the size

distribution of trees in each of the A) water-limited and B) energy-

limited plots. The y-axis is given in a log base 10 scale.

(TIF)

Figure S2 Forecasted change in Sierra Nevada climate through

time from different model scenarios. Climate data is averaged by

decade for all 33,594 gridpoints. Gap between standard error bars

for each point was too small to distinguish so they have not been

included. A) temperature forecasts; B) precipitation forecasts; C)

climatic water deficit forecasts.

(TIF)

Figure S3 Projected Changes in Mortality Rate for Sierra

Nevada Conifer Forests (GFDL B1, Hypothetical). Mapped

projections of average relative changes in mortality rate for the

years 2090 to 2099 for coniferous forests of California’s Sierra

Nevada, using exponential and the GFDL B1 emissions model.

Elevations generally increase from left to right. (A) Changes in

mortality when absolute changes in deficit (Da) are used as a

predictor. (B) Changes in mortality when relative changes in deficit

(Dr) are used as a predictor. Surfaces were interpolated from

33,594 grid points using Ordinary Kriging.

(TIF)

Figure S4 Projected Changes in Mortality Rate for Sierra

Nevada Conifer Forests (PCM A2, Hypothetical). Mapped
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projections of average relative changes in mortality rate for the

years 2090 to 2099 for coniferous forests of California’s Sierra

Nevada, using exponential and the PCM A2 emissions model.

Elevations generally increase from left to right. (A) Changes in

mortality when absolute changes in deficit (Da) are used as a

predictor. (B) Changes in mortality when relative changes in deficit

(Dr) are used as a predictor. Surfaces were interpolated from

33,594 grid points using Ordinary Kriging.

(TIF)

Figure S5 Projected Changes in Mortality Rate for Sierra

Nevada Conifer Forests (PCM B1, Hypothetical). Mapped

projections of average relative changes in mortality rate for the

years 2090 to 2099 for coniferous forests of California’s Sierra

Nevada, using exponential and the PCM B1 emissions model.

Elevations generally increase from left to right. (A) Changes in

mortality when absolute changes in deficit (Da) are used as a

predictor. (B) Changes in mortality when relative changes in deficit

(Dr) are used as a predictor. Surfaces were interpolated from

33,594 grid points using Ordinary Kriging.

(TIF)

Figure S6 Projected Changes in Mortality Rate for predomi-

nantly Energy-Limited Sierra Nevada Conifer Forests (GFDL B1,

Hypothetical). Mapped projections of average relative changes in

mortality rate for the years 2090 to 2099 for energy-limited

coniferous forests ($2450 m) of California’s Sierra Nevada, using

exponential models and the GFDL B1 emissions model. Elevations

generally increase from left to right. (A) Changes in mortality when

absolute changes in deficit (Da) are used as a predictor. (B) Changes

in mortality when relative changes in deficit (Dr) are used as a

predictor. (C) Changes in mortality when absolute changes in

temperature (Ta) are used as a predictor.

(TIF)

Figure S7 Projected Changes in Mortality Rate for predomi-

nantly Energy-Limited Sierra Nevada Conifer Forests (PCM A2,

Hypothetical). Mapped projections of average relative changes in

mortality rate for the years 2090 to 2099 for energy-limited

coniferous forests ($2450 m) of California’s Sierra Nevada, using

exponential models and the PCM A2 emissions model. Elevations

generally increase from left to right. (A) Changes in mortality when

absolute changes in deficit (Da) are used as a predictor. (B) Changes

in mortality when relative changes in deficit (Dr) are used as a

predictor. (C) Changes in mortality when absolute changes in

temperature (Ta) are used as a predictor.

(TIF)

Figure S8 Projected Changes in Mortality Rate for predomi-

nantly Energy-Limited Sierra Nevada Conifer Forests (PCM B1,

Hypothetical). Mapped projections of average relative changes in

mortality rate for the years 2090 to 2099 for energy-limited

coniferous forests ($2450 m) of California’s Sierra Nevada, using

exponential models and the PCM B1 emissions model. Elevations

generally increase from left to right. (A) Changes in mortality when

absolute changes in deficit (Da) are used as a predictor. (B) Changes

in mortality when relative changes in deficit (Dr) are used as a

predictor. (C) Changes in mortality when absolute changes in

temperature (Ta) are used as a predictor.

(TIF)

Table S1 Plot Details. Characteristics of the 21 forest plots used

for model development.

(DOC)

Table S2 Plot Mortality Data. Counts of mortalities and live

trees for each plot for each census year.

(DOC)
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