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Abstract
Functions of intrinsically disordered proteins do not require structure. Such
structure-independent functionality has melted away the classic rigid “lock
and key” representation of structure–function relationships in proteins,
opening a new page in protein science, where molten keys operate on
melted locks and where conformational flexibility and intrinsic disorder,
structural plasticity and extreme malleability, multifunctionality and binding
promiscuity represent a new-fangled reality. Analysis and understanding of
this new reality require novel tools, and some of the techniques elaborated
for the examination of intrinsically disordered protein functions are outlined
in this review.
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Introduction to the disorder-based functionality: 
melted locks and molten keys
For more than a hundred years, the dominant model describ-
ing the molecular mechanism of protein functionality was the  
classic structure–function paradigm. This paradigm consid-
ered protein function in light of the “lock and key” hypothesis, 
where a unique biological function of a protein was considered 
to be the consequence of the presence of a unique and highly 
organized structure in its active site and where, in order to  
exert a chemical effect on each other, both a substrate 
and an enzyme have specific geometric shapes that fit 
exactly into each other, like a key specifically and uniquely  
fits to a lock1,2. In line with this hypothesis were numerous pieces 
of evidence generated by the crystal structures of proteins solved 
by x-ray diffraction, careful analysis of protein denaturation 
and unfolding, and many other observations, all indicating that  
specific functionality of a given protein is defined by a unique  
spatial positioning of its amino acid side chains and prosthetic 
groups, suggesting that such a specific spatial arrangement of 
functional groups in biologically active proteins is defined by their 
unique 3D structures predetermined by the unique amino acid 
sequences encoded in unique genes. These correlations were in 
line with the famous “one gene–one enzyme” hypothesis, where 
a gene encodes a single enzyme that affects a single step in a 
metabolic pathway3. It is recognized now that the aforementioned 
“one gene–one enzyme” hypothesis is an oversimplification, and  
numerous observations fail to fit into or be explained by this  
model4. Accumulated data challenged both the functional 
requirement of a unique structure in a biologically active pro-
tein and the absolute validity of the “one gene–one enzyme” 
conjecture, suggesting that the related paradigms should be  
changed5–8. In line with these considerations, it is recognized now 
that the complexity of biological systems is determined by pro-
tein diversification and not by the existence of a large number 
of distinct genes each encoding a unique protein9. In fact, mul-
tiple means cause the dramatic and efficient increase in the size 
of a functional proteome in comparison with the size of a corre-
sponding genome. These proteome-diversifying factors include 
the allelic variations (that is, single- or multiple-point mutations,  
insertions and deletions [indels], and single-nucleotide poly-
morphisms), different pre-translational mechanisms affecting 
genes (for example, production of numerous mRNA variants 
by the alternative splicing and mRNA editing), and changes 
induced in proteins by numerous post-translational modifications  
(PTMs)10–14. The result of this multilevel diversification that 
combines allelic variations, pre-translational alterations, and 
PTMs is the generation of multiple proteoforms, which are  
distinct protein molecules with different structures and diverse 
functions, from a single gene15.

Furthermore, it is also recognized now that many protein  
functions do not require unique structure. These structure-less 
biologically active proteins carrying structure-independent func-
tions are currently known as intrinsically disordered proteins 
(IDPs) or hybrid proteins containing ordered domains and IDP  
regions (IDPRs)5–8,16–22. These proteins, which were originally  
considered unique exceptions to the “lock and key” rule, are 
extremely common in nature; all proteomes of living organisms 

and viruses analysed so far possess noticeable levels of intrin-
sic disorder5,19,20,22–41; and the penetrance of disorder increases 
with the increase in the organism complexity19,23–25,42. As an 
example, the fraction of proteins predicted to have long IDPRs 
(that is, disordered regions exceeding 30 consecutive residues) 
increases from Bacteria and Archaea to Eukaryota23,24,26,28,43.  
The increased amount of disorder in eukaryotes is attributed to 
the increased roles of their cellular signalling that often relies 
on IDPs/IDPRs5,6,8,18,44–47. Also, just a small fraction of pro-
teins with known crystal structures in the Protein Data Bank 
are entirely devoid of disorder48,49. An important feature of 
IDPs/IDPRs is their exceptional spatiotemporal heterogeneity,  
where different regions of a given protein can be ordered (or  
disordered) to a different degree50,51. Therefore, the overall struc-
ture of functional proteins represents a continuous spectrum of 
conformations with a different degree and depth of disorder50, 
thereby generating a complex protein structural space that defines 
a structure-disorder continuum with no clear boundary between 
ordered and disordered proteins/regions50. The presence of the 
aforementioned different levels and depths of intrinsic disor-
der delineates the mosaic structure of proteins, which typically  
contain foldons (that is, independently foldable regions), induc-
ible foldons (disordered regions that can fold at interaction with 
a binding partner), morphing inducible foldons (disordered 
regions that can fold differently at interaction with a differ-
ent binding partner), semi-foldons (IDPRs that are always in the  
semi-folded state), non-foldons (IDPRs with entropic chain 
activities), and unfoldons (or conditionally disordered pro-
tein regions, which, in order to become functional or to make a 
protein active, have to undergo order-to-disorder transition)50.  
Obviously, the presence of intrinsic disorder and conforma-
tional flexibility in proteins contributes to their structural and 
functional heterogeneity, representing additional means for  
generating proteoforms52. In fact, since any protein exists as a 
dynamic conformational ensemble, members of which have dif-
ferent structures (their structural differences could be rather 
subtle, as in the case of ordered proteins, or rather substan-
tial, as in the case of IDPs/IDPRs) and potentially different  
functions, it can be considered a basic (or intrinsic or conforma-
tional) proteoform. Such a conformational proteoform is differ-
ent from the inducible proteoform that originates from the various 
alterations (PTMs, mutations, or consequences of alternative  
splicing) of the canonical protein sequence and that represents 
a mixture of these various forms. Obviously, since it also repre-
sents a structural ensemble, any member of the inducible or modi-
fied proteoform (that is, any mutated, modified, or alternatively 
spliced form) is itself a conformational proteoform52. Finally, 
since protein function, interaction with specific partners, or 
placement inside the natural cellular environment can also affect  
the structural ensemble of both basic and induced proteo-
forms, functionality per se can be considered a factor generating 
new functioning proteoforms. As a result, instead of being 
depicted as an oversimplified “one gene–one protein” view, the 
actual gene–protein relationship is much more complex, being 
described by the “one gene–many proteins–many functions”  
model52,53. Therefore, a correlation between protein structure 
and function represents a “protein structure–function contin-
uum”, where at any given moment, any given protein exists as a 
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dynamic conformational ensemble containing multiple proteo-
forms (conformational/basic, inducible/modified, and functioning) 
characterized by diverse structural features and various functions52.

Concluding this section, we need to emphasize that the  
presence of intrinsic disorder and conformational flexibility 
in proteins changed the rigid “lock and key” model proposed 
for the description of the general molecular mechanisms of  
protein function. Although “lock and key” (or its modifica-
tion in a form of induced fit) can be used for the description of  
catalytic activities of some enzymes, many other protein func-
tions (for example, recognition, regulation, signalling, and 
promiscuous binding) do not fit into this rigid view since,  
owing to the presence of disorder and flexibility, the locks are 
melted and the keys are molten. This also suggests that some 
novel approaches are needed to analyse intrinsic disorder-
based functionality. The goal of this article is to shed some light 
on this problem by presenting the most recent advances in the  
analysis of protein disorder-based functionality.

Looking at the disorder-based functionality of 
proteins
Laboratory techniques for the analysis of protein–protein 
interactions
Traditional analysis of protein functionality was mostly centred 
on the development of means for accurate characterization of 
enzymatic activity or ligand binding (or both) of a protein in vitro 
and in vivo and development of related molecular mecha-
nisms. Although enzymatic catalysis is not among the disorder- 
based protein functions, some of the techniques elaborated 
for the analysis of the interactivity of ordered proteins can be  
successfully used for the functional characterization of 
IDPs. Biophysical techniques that are typically used to study  
protein–partner interactions are designed either to investigate 
thermodynamics or kinetics (or both) of the binding or to char-
acterize the structural changes associated with the interactions. 
Many of these techniques are suitable for the analysis of both 
order-based and disorder-based protein interactions although 
the IDP-centred interactions involve a variety of binding modes, 
ranging from the folding upon binding mechanism to the  
formation of dynamic fuzzy complexes. Thermodynamic-focused 
techniques for the analysis of protein–partner interactions include 
isothermal titration calorimetry54,55 and surface plasmon reso-
nance (SPR)56, whereas dissociation constants can be measured 
by dynamic light scattering57 and analytical ultracentrifugation58. 
All of these techniques can determine dissociation con-
stants. In addition, SPR can determine k

on
 and k

off
 of binding  

events56. Although, traditionally, the major technique for the 
analysis of binding-induced structural changes in proteins was 
x-ray crystallography, this tool provides a static 3D picture of a 
protein complex and therefore has rather limited application to  
IDPs/IDPRs (with the obvious exception of the cases when 
disordered protein or region folds at interaction with the  
specific partner). Among other experimental techniques for the 
analysis of binding-induced structural changes are small-angle  
x-ray scattering (SAXS)59,60, single-molecule Förster resonance 
energy transfer (smFRET) (that analyses protein confor-
mations without ensemble averaging and kinetics without  

interference from asynchronous processes)61–65, electron para-
magnetic resonance (EPR)64,66,67, and hydrogen/deuterium 
exchange (HDX) mass spectrometry68–71. Although IDPs/IDPRs 
are commonly involved in transient protein–protein interac-
tions (that is, interactions characterized by the K

D
 values in the  

micromolar to millimolar range), which are crucial for cell  
signalling, characterization of such interactions at the atomic-
resolution level is rather challenging by the majority of  
conventional techniques. However, such interactions can be  
analysed by using solution nuclear magnetic resonance (NMR) 
spectroscopy72–76, including diamagnetic and paramagnetic (for 
example, paramagnetic relaxation enhancement) techniques77.  
Peculiarities of the application of NMR for the analysis of IDPs/
IDPRs and disorder-based protein complexes are detailed in sev-
eral recent reviews72,75. Importantly, smFRET78,79 and NMR80–82 
can be successfully used for the in-cell analysis of IDPs and 
their interactions. It was also pointed out that the most appro-
priate and eloquent description of the structure and dynamics  
of IDPs and IDP-based complexes could be achieved via the 
combined use of several aforementioned techniques, such as 
NMR, smFRET, and SAXS enhanced by the molecular dynamic 
simulations, since complementary experimental data from these 
techniques ensure important and meaningful constraints for 
computational simulations83,84. In line with these developments,  
several groups are developing new approaches for the com-
putational descriptions of disordered ensembles85–99. Further-
more, an openly accessible database of structural ensembles of  
intrinsically disordered and unfolded proteins, pE-DB (http://
pedb.vib.be), was created to promote the elaboration of novel 
modelling approaches and to allow a better understanding of  
disorder-based functionality100,101.

Illustrating the remarkable power of NMR spectroscopy when 
applied to the functional and structural analysis of disorder-based 
interactions, a recent study provided a structural characteriza-
tion of an intriguing complex formed between two IDPs: human 
histone H1 and its nuclear chaperone prothymosin-alpha102. 
Although these proteins formed a highly specific complex with 
picomolar affinity, they completely retained their highly disor-
dered nature, long-range flexibility, and overall highly dynamic  
character102. This complex is an extreme case of an IDP-driven 
polyelectrostatic binding mechanism proposed as a result of 
the NMR-based analysis of a complex between the polyva-
lent intrinsically disordered cyclin-dependent kinase inhibi-
tor Sic1 and its ordered partner, SCF ubiquitin ligase subunit  
Cdc4103. This Sic1–Cdc4 complex is held together by  
cumulative electrostatic interactions between the numerous phos-
phorylated sites of Sic1 and a single binding site of Cdc4; the  
binding strength is dependent on the phosphorylation degree 
of Sic1, and Sic1 remains largely disordered in its Cdc4-bound  
state103.

Multivalent interactions between IDPs that are not accompa-
nied by noticeable structural changes are directly linked to 
the biogenesis of the proteinaceous membrane-less organelles  
(PMLOs), which are abundant in cytoplasm, nucleus, and 
mitochondria of various cells and which play a number of 
important roles in the organization of various intracellular  
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processes104,105. PMLOs are related to various biological proc-
esses compartmentalized in diverse regions of the cell106, are 
able to facilitate and respond to various biological functions and 
stimuli107, and therefore are considered important players in cel-
lular life. PMLOs are highly dynamic but stable, protein-only or  
protein–nucleic acid assemblages characterized by cell size– 
dependent dimensions108, whose structural integrity and biogen-
esis are exclusively determined by protein–protein, protein–RNA, 
or protein–DNA interactions or a combination of these109,110. 
These liquid droplets are formed via the intracellular liquid– 
liquid phase transitions (LLPTs) or the intracellular liquid–liquid  
demixing phase separation108,111 initiated by the colocalization 
of molecules at high concentrations within a small cellular  
micro-domain112,113. Biogenesis of PMLOs is a highly con-
trollable and reversible process, and formation of PMLOs is  
triggered by changes in the concentrations of proteins under-
going LLPT, changes in the concentrations of specific small 
molecules or salts, changes in osmolarity, and changes in the 
pH or temperature (or both) of the solution or by various PTMs  
and alternative splicing of the phase-forming proteins, by  
the binding of these proteins to some definite partners, or by 
changes in other environmental conditions that affect the protein– 
protein or protein–nucleic acid interactions108,111,114–116. PMLOs 
are very large (detectable by light microscope), liquid-like  
assemblages which are not covered by the membranes and 
whose components are involved in direct contact and exchange 
with the PMLO environment112,113. As a result, PMLOs are char-
acterized by liquid-like behaviour, being capable of wetting,  
dripping, and forming spherical structures upon fusion108,117–119. 
Since proteins driving LLPTs are intrinsically disordered or 
contain IDPRs120, PMLOs represent an intricate form of the  
disorder-based protein complexes104,105,121, which are commonly 
formed without noticeable structural changes in the proteins 
undergoing LLPTs122. This conclusion is supported by the NMR 
analysis of several PMLOs or liquid droplets such as in the case 
of the Alzheimer-related protein tau123,124, elastin-like polypep-
tides (ELPs)125, the low-complexity domain of the RNA-binding 
protein fused in sarcoma (FUS)126, heterogeneous nuclear  
ribonucleoprotein A2 (hnRNPA2)127, and the intrinsically dis-
ordered N-terminal 236 residues of the germ-granule protein  
Ddx4128. Techniques that can be used for the analysis of the  
dynamics, structure, morphology, and rheology of phase- 
separated droplets and PMLOs and their components in vitro 
and in live cells were systematically analysed in a recent  
review129. Special emphasis was put on the suitability of sin-
gle-molecule fluorescence methods for the characterization of 
functional dynamics of PMLOs130, on the use of fluorescence  
recovery after photobleaching (FRAP) as a technique of first 
choice for assessing fluidity of PMLOs and phase-separated 
droplets and to estimate protein diffusion coefficients131, and  
dual-colour fluorescence cross-correlation spectroscopy (FCCS)  
for the analysis of concentrations, diffusion characteristics and 
interactions of two fluorescent species in solution132.

The liquid-like nature of PMLOs and phase-separated droplets 
can affect and modulate functions of their constituents, which 
are accumulated within droplets at high concentrations but  
remain dynamic. In line with this hypothesis, the low-density 

structure of PMLOs in the Xenopus oocyte nucleus was shown 
to determine the access to the macromolecules within these 
PMLOs from the nucleoplasm133. PMLOs can also act as  
liquid-phase micro-reactors, where the cytoplasmic reactions  
are accelerated because of the increased concentrations of 
related RNA and protein components108,134,135. PMLOs can also 
serve as a means for recruitment and concentration of specific 
proteins, as seen in Negri bodies (NBs), which are cytoplas-
mic liquid organelles in which viral RNAs (mRNAs as well as 
genomic and antigenomic RNAs) are synthesized136. Neuronal  
ribonucleoprotein (RNP) particles, or granules that concen-
trate specific sets of mRNAs and regulatory proteins, serve as 
dynamic sensors of localized signals and play a dual role in the 
translation of associated mRNAs, preventing mRNA translation  
at rest and ensuring local protein synthesis upon activation137.

LLPTs and PMLOs are illustrative examples of the disor-
der-based emergent behaviour of proteins50,138–140. Another 
example of the emergent behaviour is given by the spatiotem-
poral oscillations of the Min protein system (MinD, MinC 
and MinE) that moves from pole to pole of the rod-shaped  
Escherichia coli cells with the intrinsic wavelength compa-
rable to the size of the E. coli cell141. Oscillating movements 
of this system are required for the spatial regulation of the 
positioning of the cytokinetic Z ring that determines the divi-
sion plane142–144. Such oscillations can be visualized if the  
components of this system are fluorescently labelled145–147. Fur-
thermore, on the supported lipid bilayers in vitro, these Min 
proteins self-organize to form traveling protein surface waves 
emerging from the repetitive binding-detaching cycles of  
proteins to the membrane143,144,148,149. Also, depending on the 
peculiarities of their environment, MinD and MinE were  
shown to self-organize into a wide variety of patterns150.

Bioimaging is a commonly used technique for the quantifica-
tion of intracellular protein–protein interactions (PPIs). Here, 
the presence of molecular interactions is judged by the analysis 
of spatial colocalization between the different populations of 
differently labelled molecules in the field of view (FOV) of 
dual- or multiple-channel fluorescence microscope151. Colo-
calization is evaluated by pixel-based methods or object-based  
methods151. In the first case, the image generated by the fluo-
rescence microscope is analysed to measure global correlation  
coefficients between pixel intensities in different colour chan-
nels that allow finding and quantification of overlapping pixel 
intensities in different channels152. In the second case, the 
objects (molecules) are first segmented and then represented as  
points through coordinates of their mass centre in the delim-
ited FOV and then their spatial distributions are analysed153,154. 
A systematic study published in 2015 compared pixel-based  
and object-based methods for finding colocalization in syn-
thetic and biological images and revealed that data generated  
by the object-based methods are more statistically robust than  
the results of pixel-based approaches151.

PPIs in vitro and in vivo are traditionally analysed by 
using the affinity purification-based pull-down assays155 or  
co-immunoprecipitation (coIP) experiments156 allowing the 
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direct detection of physical interactions. Here, either purified 
and tagged protein is used as a “bait” to bind any interacting 
proteins (pull-down assays) or antibody against a target pro-
tein is used to immunoprecipitate the complexes containing the 
target protein (coIP). Although CoIP and pull-down assays are  
typically used as “yes-no” tools for showing the presence 
or absence of PPIs, it was recently shown that the dissocia-
tion constant (K

D
) of complexes formed by two purified pro-

teins can be measured by using the quantitative pull-down 
assay157. However, these two techniques are typically limited  
to the high-affinity binding and therefore are not easily 
transferable to the analysis of disorder-based interactions,  
which are often weak. This caveat can be overcome by using 
chemical158 or photo-affinity159 cross-linking of samples before 
conducting pull-down and CoIP assays. Chemical and photo-
affinity cross-linking combined with mass spectrometry  
(XL-MS) is another technique for the analysis of weak and tran-
sient PPIs159–164. The use of genetically encoded photo-crosslinkers 
using natural amino acid analogues that contain a photo-affinity 
group as the warhead and that can be site-specifically 
incorporated into a protein of interest to covalently trap  
non-covalent PPIs under living conditions represents a promising 
development in this area165.

One of the commonly used approaches for investigating PPIs 
in living systems is a genetic approach: yeast-two-hybrid 
(YTH) screening166–168. Here, interaction between two pro-
teins, called bait and prey, activates reporter genes that enable 
yeast growth on specific media or a colour reaction168. In 2015,  
high-affinity binders to transiently structured IDP, the prokaryo-
tic ubiquitin-like protein Pup, and its unstructured segments 
were identified and characterized at atomic resolution by using 
the YTH-selected peptide aptamers and in-cell NMR169. Simi-
larly, a combination of YTH screenings with NMR spectros-
copy, cross-linking experiments, and competition-binding 
assays was recently used to characterize the interactivity of a 
long IDPR linking the KIX domain (kinase-inducible domain 
[KID] interacting domain) and bromodomain of CBP (cAMP  
response element-binding [CREB]-binding protein) termed  
ID3 and to show that ID3 binds to the intrinsically disordered  
RNA-binding Zinc-finger protein 106 (ZFP106), and both interac-
tors maintained disorder in their bound states170. Recently, YTH 
assay was used to compare mutational robustness of the intrinsi-
cally disordered viral protein VPg and of its interactor eIF4E 
using libraries of mutant forms of both VPg and eIF4E171. This 
study revealed that VPg was significantly more robust against  
mutations than eIF4E171.

Another tool for the analysis of weak PPIs is the bimolecu-
lar fluorescence complementation (BiFC) assay, which uses the 
ability of two non-fluorescent fragments of a fluorescent protein 
to associate and form a fluorescent complex, and association is 
facilitated when they are fused to two interacting proteins172,173.  
BiFC was successfully used for the in planta analysis of  
homo- and hetero-dimerization of the intrinsically disordered 
dehydrins from Arabidopsis thaliana, AtCOR47, AtERD10 and  
AtRAB18174, and for the analysis of interactivity of another 
Arabidopsis protein, histone deacetylase complex 1 (HDC1)  
protein175.

Finally, among other experimental tools used for the analysis 
of PPIs are various proximity-dependent labelling (PDL) 
approaches, where the target protein has to be fused with an 
enzyme capable of catalytic attachment of a reactive molecule 
to the interacting partners in a distance-dependent manner (typi-
cally a few tens to hundreds of nanometers)176–178. One of these 
PDL systems is a proximity-dependent biotin identification  
(BioID) approach that uses biotin ligase BirA as an enzyme 
catalysing the biotinylation of target protein in the pres-
ence of biotin and that uses subsequent streptavidin-mediated 
pull-down and mass spectrometry analysis for the identification 
of interacting proteins179,180. Recently, it was shown that  
biotinylation-based proximity labelling is biased by struc-
tural features of target proteins, causing enrichment of cellular 
biotinylation events within the IDPRs of protein targets181. In  
addition to biotin ligase, proximity labelling can be conducted  
by some peroxidase enzymes, which, in the presence hydrogen 
peroxide, can generate short-lived free radicals (for example, 
from phenolic compounds) that represent the enzyme-generated  
reagents that can covalently label neighbouring proteins178,182.

Computational approaches for the analysis of disorder-
based functionality
Among the important features of IDPs/IDPRs associated with 
their functionality are the ability to undergo at least partial fold-
ing at interaction with specific partners5,8,18,44–47,183–189 and the 
capability to bind to multiple partners and gain very different 
structures in the bound state190–196, which increases complex-
ity of the disorder-based interactomes197. Often, such foldable 
IDPRs are engaged in recognition function of IDPs and therefore  
are known as molecular recognition features188,198–201. Since 
such molecular recognition features (MoRFs) (for example,  
sub-regions of IDPs/IDPRs capable of binding-induced folding) 
are characterized by specific features (they cannot fold by them-
selves but have the potential to do so when a specific partner is 
present), they can be rather accurately predicted from the pro-
tein amino acid sequence202. There are numerous computational  
tools for finding disorder-based interactions sites in proteins, 
which are grouped into three major classes: tools looking for 
MoRFs (alpha-MoRFpred188,200, MoRFpred203, MFSPSSMpred204, 
MoRFChiBi205,206, fMoRFpred207, retro-MoRF208, and DISO-
PRED3209); algorithms such as PepBindPred210, ANCHOR211,212 
and disoRDPbind213 to find generic disordered protein-bind-
ing regions; and a method for finding short linear sequence 
motifs (SLiMs), SLiMpred214. Although all of these tools ana-
lyse the capability of a target protein to be engaged in PPIs, dis-
oRDPbind also predicts the protein region capable of binding to  
DNA and RNA213. There is also a tool for finding disor-
dered flexible linker regions that serve as linkers/spacers in 
multi-domain proteins or between structured constituents 
in protein domains: the DFLpred method215. Peculiarities,  
advantages and disadvantages of all of these techniques, 
together with the 32 tools for the prediction of intrinsic disor-
der predisposition of a query protein, were carefully analysed 
and compared in a recent comprehensive review202. Recently,  
Zarin et al. did a comprehensive evolutionary computational  
analysis to search for molecular features that are pre-
served in the amino acid sequences of orthologous IDPRs216.  
This analysis revealed that orthologous IDPRs frequently  
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contain multiple “evolutionary signatures” (that is, molecular 
features, which are preserved within these IDPRs and are  
associated with multiple functional annotations and pheno-
types). Based on these observations, it was suggested that such 
evolutionary signatures could be used for the prediction of  
functionality of IDPRs from their amino acid sequences216.

Another important feature of disorder-based functions is their 
regulation by numerous PTMs5,6,44,45,217,218. Therefore, pre-
diction of localization of PTM sites within the amino acid 
sequences of IDPs and IDPRs represents an important direction 
in computational analysis of disorder-based functionality. In fact,  
systematic bioinformatic analyses of the peculiarities of the  
IDP/IDPR-located display sites targeted for PTMs and their 
adjacent regions demonstrated that their sequence attributes  
(such as amino acid compositions and sequence complexity,  
hydrophobicity, and charge) are rather similar to those of IDPRs. 
These observations define the potential predictability of such 
disorder-centred PTM sites and were used for the development 
of disorder-focused predictors of protein phosphorylation217,  
methylation219, ubiquitination220, and S-palmitoylation221, a unified 
sequence-based predictor of 23 types of PTM sites, which can be 
used for finding protein regions that undergo multiple homolo-
gous or heterologous PTM events and for finding shared PTM  
sites (that is, sites modified by more than one type of PTM)218.

Disorder status and potential disorder-related information 
for a query protein can be retrieved from the D2P2 database 
(http://d2p2.pro/)222, which is a resource of pre-computed dis-
order predictions for a large library of proteins from completely  
sequenced genomes222. In a visually attractive form, D2P2 gener-
ates a functional disorder profile of a query protein that includes 
outputs of nine per-residue disorder predictors, represents posi-
tions of functional domains, shows a gradient bar reflecting 
the consensus of nine disorder predictors, where the increase  
in strength of correlation is shown by colour change from 
white to dark green, and also indicates location of the predicted  
disorder-based binding sites (MoRFs) and positions of various  
PTMs222.

Finally, localization of various functional short linear motifs, 
SLiMs, in a query protein can be assessed by the eukaryotic lin-
ear motif (ELM) resource (http://elm.eu.org/), which is a col-
lection of manually annotated SLiM instances curated from 
experimental literature223,224. SLiMs are composed of short 
stretches of adjacent amino acids and can be found in IDPRs 
of many proteins. They are short, compact, degenerate peptide  
segments that act as protein interaction sites and are essential for 
almost all cellular processes223. An ELM resource can also be 
used for finding potential SLiMs in a query protein. It filters out 
globular domains and retains predicted SLiMs associated with 
various functions223,224. There are six types of annotations for 
the SLiMs that are described by the ELM server223,224: motifs for  
targeting to subcellular compartments (ELM_TRG), degron 
motifs that play a role in polyubiquitylation and targeting of 
proteins to proteasomal degradation (ELM_DEG), motifs that 
act as proteolytic cleavage sites (ELM_CLV), ligand binding 

motifs (ELM_LIG), docking motifs (ELM_DOC), and sites for  
PTMs (ELM_MOD)223,224.

One more important recent direction in the elaboration of com-
putational tools for functional analysis of IDPs and IDPRs is 
related to the development of methods for prediction of liquid– 
liquid phase separation (LLPS) and finding phase-separating 
proteins (PSPs). In fact, although the analysis of LLPTs and  
PMLOs is a rapidly developing field that clearly attracts  
significant attention of multiple researchers, general knowledge 
of the prevalence and distribution of PSPs is still rather rudi-
mentary. Therefore, tools for LLPS and PSP predictions are in  
high demand. Recently, information on the first-generation 
PSP predictors and their basic principles was summarized by  
Vernon et al.225. Among these first-generation PSP predictors  
are the following: 

-   �Prion-like amino acid composition (PLAAC) tool for 
finding PSPs226 on the basis of identifying prion-like  
domains227;

-   �A tool for finding PSPs on the basis of the similarity of 
sequence composition and residue spacing (statistical 
map of FG and RG) to fingerprints of PMLO-forming  
features of a disordered nuage protein Ddx4122;

-   �PScore that evaluates the expected number of long-range 
π–π interactions involving non-aromatic groups in a query 
protein228;

-   �LARKS tool for finding, in query proteins, low-complexity 
aromatic-rich kinked segments that are potentially 
related to the formation of subcellular membrane-less  
assemblies229;

-   �R+Y model for the evaluation of the content in a query 
protein of arginine and tyrosine residues that can be 
engaged in cation–π interactions serving as drivers of  
phase separation230;

-   �the catGRANULE algorithm that predicts PCPs by 
evaluating intrinsic disorder and nucleic acid binding  
propensities; sequence length; and arginine, glycine and 
phenylalanine content (R, G, F), which are known to  
be enriched in some PCPs231;

-   �PSPer uses the hidden Markov model for prediction of 
PSPs and considers the presence in a query protein of 
prion-like domains, IDPRs, arginine-rich domains, RNA  
recognition motifs, and other features232;

-   �PSPredictor, which is a machine learning tool for  
sequence-based prediction of PSPs233.

Another illustration of the interest of researchers in LLPS and 
PMLOs is the recent development of an LLPSDB database 
(http://bio-comp.org.cn/llpsdb) that provides comprehensive  
information on proteins undergoing LLPS in vitro and con-
tains 1182 entries describing 273 independent proteins and 2394  
specific conditions234.
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Concluding remarks
Although IDPs/IDPRs were largely ignored for most of the 
existence of protein science, it is now clear that IDPs and  
disorder-based functions represent a new reality. Originally, 
the field of un-structural biology stood up as an attempt to 
explain many cases of rare exceptions (that is, proteins that 
fall outside of the classic structure–function paradigm with its  
“rigid” view of protein functionality as “lock and key” or “induced 
fit” models). However, in light of the broad acceptance of the 
new un-structural biology paradigm, one should keep in mind 
that it would be a clear mistake to continue contradistinguishing 
and opposing ordered proteins and IDPs, as they work together 
in a living cell, indicating that understanding and explanation of 
the protein dynamics and functionality require a tandem action 
of the disciplines of structural and un-structural biology235.  
In fact, since different disorder-centred functions complement 
(mostly catalytic) activities of ordered proteins, structure and 
disorder represent a unity of opposites or coincidentia opposi-
torum. On the other hand, an actual line between order and dis-
order is elusive and structural and un-structural biology should 
not be opposed but united since they clearly complement one 
other235. Therefore, a complete understanding of the biological 
functionality at the proteome level requires careful considera-
tion of both order- and disorder-based protein functions and only 
such a united approach can ensure the previously unattainable  

comprehension of biological complexity. On the other hand, 
structural and functional characterization of ordered and  
disordered proteins requires very different methodological 
approaches, and an analysis of hybrid proteins remains a chal-
lenging task. In fact, as was pointed out, the current literature is  
focused mostly on fully ordered or fully disordered proteins, 
generating an immense “grey” area, where order and disor-
der are mixed and resulting in an incomplete understanding 
of the diverse mechanisms and functions used by hybrid  
proteins235.
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