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The interplay between inflammation and metabolism in
rheumatoid arthritis

MS Chimenti*,1, P Triggianese1, P Conigliaro1, E Candi2, G Melino2,3 and R Perricone1

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular
cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune
cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An
intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting
systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in
particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis,
including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the
types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic
fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the
treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying
potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases.
Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in
the treatment response.
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Facts

� The elucidation of metabolic pathways in chronic inflam-
matory conditions, as rheumatoid arthritis (RA), give new
insights on pathogenesis, clinical features and complica-
tions, and treatment outcome.

� The systemic effects mediated by pro-inflammatory
cytokines in RA impact on metabolism. Moreover, RA
pathobiology seems to share some common pathways with
atherosclerosis including endothelial dysfunction that is
related to the underlying chronic inflammation.

� In the presence of pathogens or products of inflamed
tissues that provoke inflammation, macrophages and
lymphocytes rapidly switch from a resting to a highly active
state and exhibit a pronounced increase in production of
host defence factors resulting in enhanced phagocytosis
and antigen presentation.

� Highly active immune cells undergometabolic changeswith
the involvement of the phosphatidylinositol- 3-OH kinase

(PI(3)K)–Akt and the mechanistic target of rapamycin
(mTOR) pathways.

� Differences in urine and serummetabolic profiles in patients
affected by RA may be useful for the assessment of both
disease activity and treatment response.

Open Questions

� Although the autoimmune process in RA depends on the
involvement of immune cells, which utilize intracellular
kinases to respond to external stimuli, further research
efforts are necessary in order to define more specific
biomarkers to be detected in the management of that
disease.

� As the metabolic profile for individual patients is highly
dynamic compared with, for example, genes and protein
levels, it would be worth studying how these metabolites
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correlate with disease activity. In the near future, the
metabolite profile of individual patients can be used as an
important tool for predicting the disease course and
improving the treatment.

� All the oxidative damage markers correlated positively with
disease activity in RA. These inflammatory pathways affect
not only synovial tissues but also the endothelial structure in
blood vessels leading to a vascular dysfunction. However,
debated data are reported concerning the possibility of an
early diagnosis of the cardiovascular (CV) involvement in
RA patients. Thus, more specific biomarkers may facilitate
the early detection of CV complications occurring in RA
patients.

� Drugs that act on lipid/glucose metabolisms appear to
confer an improvement on inflammatory features in RA
patients. However, the significance of statin treatment and
the effect of drugs modulating the insulin sensitivity (such
as the peroxisome proliferator-activated receptor (PPAR)-γ
agonists) in RA patients still remain unclear.

Rheumatoid arthritis (RA) is a chronic inflammatory and
systemic disease characterized by extensive synovitis
resulting in erosions of articular cartilage and marginal bone
that lead to joint destruction.1 RA is considered an
autoimmune disease since the production of the rheumatoid
factor (RF), an autoantibody directed against determinants on
the Fc fragment of immunoglobulin (Ig) G molecules, was first
observed. The most relevant autoantibodies appear to be the
anti-citrullinated protein antibodies (ACPA). Citrullination is the
critical step for the recognition of several proteins (fibrin,
vimentin, fibronectin, collagen type II), highly expressed in the
synovial membrane during inflammation, by ACPA. The
pathogenesis of RA (Figure 1) is a multistep process that
starts with the development of autoimmunity, continues with
local inflammation and finally induces bone destruction.1,2

This stage, identified as pre-articular or lymphoid phase, can
precede the clinical manifestation of the disease by as much
as 10 years. Both the adaptive and the innate immune
pathways are activated and contribute to the inflammatory
process. An intricate cytokine network participates in the
inflammation3 and in the perpetuation of disease by positive
feedback loops promoting systemic disorders.4 The genetic
basis of RA is extremely complex. The prevalence among
siblings increases from o1%, in the general population, to
2–4%. Twin studies show a concordance rate for RA of
12–15% for monozygotic twins compared with 3.5% for
dizygotic twins. Evidence of familial clustering demonstrated
a prevalence from 2 to 12% in first-degree relatives of RA
patients. The most important genetic risk factor for RA is found
in the human leukocyte antigen (HLA) loci. In particular, the
DRβ1 chain, called 'shared epitope' (SE), is associated with
the production of ACPA and with the disease.5 Signal
transducer and activator of transcription 4 (STAT4) is a
member of the STAT family of transcription factors.6 This
molecule has a key role for the interleukin (IL)-12 signaling in
T cells and natural killer (NK) cells, leading to the production of
interferon (IFN)-γ and the differentiation of T helper (Th)1 and
Th17 cells.7 Other candidate genes associated with RA are
cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), the

α and β chain of the IL-2 receptor (IL-2RA and IL-2RB), IFN
regulatory factor 5 (IRF5), the locus located between tumor
necrosis factor (TNF) receptor-associated factor 1 and C5
genes (TRAF1/C5), the gene near TNF-α -induced protein
(TNFAIP3), and the co-stimulatory molecules CD40 and
CD28.7,8 Several environmental factors have been studied in
RA and the interaction between genetic and environmental
factors has been demonstrated in RA. Smoking, infections,
sex hormones, birth weight, alcohol intake and socioeconomic
status can modify the risk for RA.9,10 The synovial membrane
is a connective tissue formed by two main layers, the synovial
lining and the synovial sublining. The synovial lining is
composed by two types of synoviocytes, called
macrophage-like and fibroblast-like synoviocytes, because
of their surface marker expression and morphology. The
synovial sublining is a soft, loose connective tissue that
facilitates smoothmovement of the joints. It contains blood and
lymph vessels, nerve fibres and few cells including macro-
phages, fibroblasts and adipocytes.11,12 In RA patients, the
synovial membrane is characterized by cellular hyperplasia,
increased vascularity and an infiltrate of inflammatory cells
that invasively grow and destroy the adjacent cartilage and
bone. The synovial hyperplasia, called 'pannus' is an
increased thickening of the lining layer caused by the
combination of cellular proliferation in situ, influx of cells from
the circulation and reduced apoptosis with increased oxygen
demand and consequent local hypoxia. Inadequate oxygena-
tion drives the inflammatory response and the mechanisms of
angiogenesis.13,14 This process promotes further infiltration of
inflammatory cells, production of inflammatory mediators and
matrix degradation.15–17 The infiltrate in RA synovitis is
composed by CD4+ T cells, B cells, plasma cells, NK cells,
dendritic cells (DCs) and mast cells. Lymphoid aggregates of
variable size and organization level are present in 50–60% of
RA patients even if they are not specific of the disease. The
development of the inflammatory process in RA involvesmany
different cell types and a complex cytokine network. CD4+

T cells, upon activation and expansion, develop into different T
helper cell subsets with different cytokine profile and distinct
effector functions. Activated T cells that secrete IFN-γ, IL-2,
IL-12, IL-18, TNF-α and granulocyte-macrophage colony-
stimulating factor (GM-CSF), typically considered Th1
cytokines, are produced in the synovial fluid and expressed
in the synovial membrane.18 Moreover, IL-17, which is
produced by Th17 and mast cells, has been detected in RA
synovial fluid.19 These cytokines activate macrophages to
secrete other pro-inflammatory cytokines such as IL-1β,20

IL-6, TNF-α and IL-12, induce the nuclear factor (NF)-κB ligand
(RANKL) expression on T cells, promote the differentiation of
B cells and stimulate the release of matrix metalloproteases
(MMPs) provoking the degradation of the cartilage and the
activation of osteoclasts leading to the bone resorption.21

Macrophages are the most important source of those
cytokines, however, many studies demonstrate that also cell
contact interactions,22,23 between synovial T lymphocytes and
adjacent macrophages or fibroblasts, represent an alternative
route to generate cytokines.24 Clinically, RA manifests with a
symmetric polyarthritis characterized by synovitis that involves
the small and large joints.25 Despite articular and periarticular
manifestations being predominant, RA may affect many
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organs and tissues.26 Large epidemiological studies from the
last several decades have confirmed that RA patients are
30–60% more likely to suffer from cardiovascular diseases
(CVD) than subjects from the general population.27,28 The
impact of traditional risk factors on the development of CVD in
RA is an area of active research. Disability, as measured by
the Health Assessment Questionnaire (HAQ), is a predictor of
both overall and CV mortality; thus, HAQ remission should be
included among the major outcomes for defining remission in
all RA cohorts.29 Collectively, evidence suggests that risk
scores developed for the general population based on
traditional CV risk factors, such as hypertension, type
2 diabetes mellitus (T2DM) or hyperlipidemia levels are
unlikely to accurately estimate CV risk in RA, highlighting the
need for RA-specific risk prediction tools.30 In this context,
RA disease activity scores, inflammatory markers and
extra-articular manifestations have repeatedly shown signifi-
cant associations with metabolic disorders and increased CV
risk.28,30

Metabolic Changes During Inflammation

Metabolism is viewed simply as a mean to generate a store of
energy by catabolism, and to generate macromolecules for
cell maintenance and growth through anabolic pathways. The
elucidation of metabolic pathways in the 20th century gives
insight into disorders in which there are obvious dysfunctions
in metabolism, such as diabetes and atherosclerosis. Further-
more, alterations in metabolic regulation are now seen to be

just as important in other diseases, such as cancer and
inflammatory conditions.31–33 Studies on the metabolism of
activated macrophages began in the 1960s. Monocytes from
peritoneal exudates were shown to depend mainly on
glycolysis as a source of metabolic energy, whereas in vitro
culture of monocytes caused a significant increase in
glycolysis.34 In 1982, a study showed that in an in vivo model
(graft versus host) of immune activation, lymphocytes exhib-
ited increased glycolysis, which was shown to be important for
proliferation, together with a marked increase in glutamine
use.35 Activated macrophages have been shown to have a
high hexokinase activity, the first enzyme involved in glycolysis
and in the pentose phosphate pathway. Glycolysis and
glutamine metabolism are also markedly increased during
phagocytosis.36 More recent studies have confirmed and
extended these early findings. A shift towards aerobic
glycolysis occurs in macrophages and DCs activated by the
bacterial product lipopolysaccharide, acting through Toll-like
receptor 4 (TLR4), in inflammatory macrophages and in Th17
lymphocytes.37,38 On the other hand, cells that limit inflamma-
tion, such as regulatory T cells (Treg),39 anti-inflammatory
macrophages and quiescent memory T cells that carry the
CD8 antigen, exhibit oxidative metabolism with more limited
rates of glycolysis.40 Metabolomics is the scientific study of
chemical processes comprising metabolites that involves the
rapid, high throughput characterization of the small molecule
metabolites found in an organism. Instead of monitoring a
handful of biochemicals, comprehensive biochemical profiling
analyzes the change in hundreds of biochemicals including
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Figure 1 Immune pathways in rheumatoid arthritis. Innate and adaptive immune pathways integrate to promote inflammation and tissue damage. The interactions among
dendritic cells, T cells and B cells occur primarily in the lymph node and generate both the autoimmune response and the activation of T cells. Upon stimulation by T cells,
activated B cells differentiate into memory B cells and plasma cells producing autoantibodies such as RF and ACPA. B cells secrete pro-inflammatory cytokines and lymphotoxin
(LT)-α that enhance inflammation and synovial lymphoneogenesis. In the synovial membrane, cell-contact interactions among T cells, natural killer cells, synovial fibroblasts,
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phase of the disease inducing tissue remodelling and damage. BCR, B cell receptor; TCR, T cell receptor; MHC, major histocompatibility complex
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metabolites in the cells and components in the media. The
metabolome is defined as those molecules with an atomic
mass less than 1.5 kDa. Because no single analytical method
can accommodate the chemical diversity of the entire
metabolome, various methods such as nuclear magnetic
resonance spectroscopy and mass spectrometry have been
used, with the latter coupled to an array of separation
techniques including gas and liquid chromatography.41 This
metabolomic approach allows the analysis across different
reactors over time that can help to identify and address
rate-limiting media nutrients and biochemicals related to cell
toxicity.42,43 The feasibility of metabolomics for biomarker
discovery is supported by the assumption that metabolites are
important players in biological systems and that inflammation
and diseases cause the disruption of biochemical pathways.
Inflammation is triggered in response to tissue injury or
infection, and mounting an inflammatory response is an
energy-intensive process. In the presence of pathogens or
the products of inflamed tissues that provoke inflammation,44

macrophages and lymphocytes rapidly switch from a resting
state to a highly active state, exhibiting a pronounced increase
in production of host defence factors, enhancing phagocytosis
and antigen presentation.45 It is perhaps not surprising that
such highly active cells undergo metabolic changes similar to
those seen in tumor cells. The similarity between the
metabolism that occurs in tumor cells and activated T cells
has already been pointed out, with particular roles for the
phosphatidylinositol- 3-OH kinase (PI(3)K)–Akt and the
mechanistic target of rapamycin (mTOR) pathways, as well
as the transcription factor c-myc.46 One difference between
metabolic pathways in tumor cells and inflammatory cells is
that the changes in tumor cells are driven largely bymutations,
whereas those in inflammatory cells are driven by extracellular
signals. In the last few years, several lines of evidence
suggested that several metabolic changes in cells that
participate in inflammation are needed to obtain polarization
and activation of cells as lymphocytes.47 The products of
inflamed tissues that provoke inflammation can activate
T cells.35 Indeed, T cells are prime examples of how cell
metabolism can be dramatically altered to support the specific
needs and functions of each cell state. A shift towards high
glycolysis is a hallmark of inflammatory cells, whereas
oxidative phosphorylation is a hallmark of anti-inflammatory
cells. Increased glycolysis in lymphocytes grown in culture
was shown as early as 1966.34 This has also been shown in
cells that carry the CD4 antigen, in which CD28 signalling
increases glycolysis through the activation of PI(3)K andAkt.48

Glucose uptake and glycolysis are increased in Th17 cell
β-oxidation (as well as Th2 and Th1 cells) compared with Treg
cells, which in turn have increased membrane potential and
oxidize lipids at a higher rate than other subsets of cells that
carry the CD4 antigen.49,50 There is, however, likely to be a
gradation towards either glycolysis or oxidative metabolism
because Th17 cells still exhibit some lipid oxidation. A central
feature that allows this flexibility in metabolism is direct
regulation of metabolic pathways by cell-extrinsic signals that
drive T-cell survival, growth and proliferation.51 In each case, if
metabolism fails to match the demands of the cell, cell function
is impaired, or cell can undergo apoptosis.52 Conversely,
excess metabolism may prevent apoptosis, exacerbate cell

function, and thus promote T-cell hyper-reactivity, leading to
autoimmunity and inflammatory diseases.53,54 Thus, it is
critical to appreciate how T-cell metabolism is regulated, and
how alterations in cell metabolism impact T-cell function and
fate.55 Metabolomic changes in T lymphocytes are summar-
ized in Figure 2.

Inflammation and Metabolism in RA

The widespread systemic effects mediated by pro-
inflammatory cytokines in RA impact on metabolism. Many
of metabolites that are particularly correlated with inflamma-
tion may contribute to the increased prevalence of metabolic
syndrome (MetS) and atherosclerosis associated with RA.56

Thus, the extent of the metabolic changes and the types of
metabolites seen may represent good markers of cytokine-
mediated inflammatory process in RA. Evidences support
the role of metabolomic analysis in RA patients as a novel
and non-targeted approach for identifying potential
biomarkers.56,57 Using the metabolomic approach, the identi-
fication of several metabolites may provide insights into RA
disease mechanisms and highlight their potential as markers
of disease activity, metabolic and CV complications, and
response to therapy.56–59

Metabolic syndrome and adipokines. Metabolic syndrome
(MetS) is a cluster of cardiometabolic disorders that result
from the increasing prevalence of obesity.60 The major
components of MetS include insulin resistance (IR), central
obesity, dyslipidemia and hypertension.61 It is widely
accepted that MetS identifies central obesity as the main
risk factor for CVD and T2DM. Various diagnostic criteria for
MetS have been proposed by different organizations.
Standard criteria are based on having three or more of the
following five risk factors: high waist circumference (≥94 cm
in men, ≥80 cm in women), high triglycerides (≥150mg/dl),
low HDL-cholesterol (o40mg/dl in men, o50mg/dl in
women), high blood pressure (systolic ≥130mmHg or
diastolic ≥ 85mmHg or medication use), and high blood
glucose (≥100mg/dl or presences of diabetes or medication
use).62 Evidence concerning the prevalence of MetS in RA
showed that MetS is significantly more prevalent in RA
patients than in controls, and evidence documented an
association between RA disease activity and MetS.63,64

Thus, MetS might determine inflammatory milieu leading to
the occurrence of more severe RA. Recently, it has been
described that abdominal obesity is associated with high
disease activity, high disability, physical inactivity and poor
mental health in a cohort of 200 RA patients.65 Evidence
clarified that adipose tissue is a dynamic endocrine organ
that releases several bioactive substances including some
pro-inflammatory cytokines like TNF-α and IL-6, and specific
cytokines, termed adipokines, that may have a key role in RA
pathogenesis.28 Adipokines were recently proposed as novel
biomarkers and regulators of MetS: they are pleiotropic
molecules that contribute to the so-called low-grade inflam-
matory state creating a cluster of metabolic aberrations. RA is
associated with increased production of adipokines that are
produced mainly in adipose tissue but also in synovial cells.
Among the different adipokines, leptin and adiponectin were
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identified as relevant factors involved in interactions between
metabolism and rheumatic disorders.66 Leptin is mainly
produced by adipocytes, and its circulating levels positively
correlate with white adipose tissue (WAT) mass and body
mass index. Leptin has been associated with RA owing to its
ability to modulate bone and cartilage metabolism although it
is still unclear whether leptin can damage or protect joint
structures in RA. In fact, leptin is generally considered to be
pro-inflammatory; on the other hand, it has also been
reported to be associated with reduced radiographic joint
damage, and this effect could be related to its anabolic
effects. Kontunen et al.67 registered higher leptin levels in
subjects with arthritis and MetS than in patients with arthritis
without MetS. This suggests that leptin is associated with
MetS but not directly with arthritis, although a marked
increase in plasma levels of leptin in patients with RA was
noted. Moreover, in RA, leptin is able to modulate the activity
of multiple immune cells.68 Besides leptin, adiponectin is
another adipokine that seems to be involved in RA
pathobiology. It shows anti-inflammatory, insulin-sensitizing
and anti-atherogenic properties.69 Adiponectin levels have
been found to be higher in RA patients than in healthy
controls; moreover, synovial fluid levels of adiponectin were
significantly higher in RA than in osteoarthritis patients.70

Evidence reported that in RA, adiponectin promotes inflam-
mation through cytokine synthesis, attraction of inflammatory
cells to the synovium and recruitment of prodestructive cells
via chemokines, thus promoting matrix destruction at sites of
cartilage invasion.71 Frommer et al.71 described that the
different isoforms of adiponectin can induce gene expression
and protein synthesis in human RA synovial fibroblasts,

lymphocytes, endothelial cells and chondrocytes, supporting
the concept of adiponectin being involved in the pathophy-
siologic modulation of RA effector cells. Recent findings
suggest that visfatin, also called pre-B cell colony enhancing
factor, may act as a regulator of the inflammation and joint
destruction in animal models and resulted increased in serum
and sinovial fluid.72–74 Serum and synovial fluid visfatin
concentrations were reported to be higher in RA patients
compared with healthy controls as well as its expression by
rheumatoid synoviocytes at sites of attachment and invasion
into both cartilage and bone.75 Evidences suggest that B-cell
activating factor (BAFF), which has been shown to participate
in B-cell survival and B- and T-cell maturation, is synthesized
also by mature adipocytes and that the expression of its
receptors is upregulated under pro-inflammatory conditions.
Those findings suggest that BAFF may be considered as a
new adipokine representing a link between obesity and
inflammation.76 WAT also produces TNF-α and IL-6 that
correlate with IR and MetS.77 Changes in lipid profiles in the
blood of RA patients have been widely described, and have
been suggested to be a major contributing factor to the
accelerated atherosclerosis associated with RA.78 Serum
levels of lipids and lactate are important discriminators of
inflammatory burden in early arthritis and also reflect
inflammatory disease activity in patients with synovitis.56

Madsen et al.79 compared the serum metabolic profile of
patients with RA with that of healthy controls and patients with
psoriatic arthritis (PsA) and found that RA or PsA patients
could be distinguished with good specificity and sensitivity
according to their metabolic profile. Recent evidences
demonstrate that serum metabolic fingerprint of patients with

Figure 2 Metabolomic changes in T lymphocytes. Several metabolic changes in T cells that participate in the inflammatory process are needed to obtain polarization and
activation. In T cells, metabolism is dramatically altered to support the specific needs and functions of each cell state. One of the major characteristics is the flexibility in
metabolism modifications with a direct regulation of metabolic pathways by cell-extrinsic signals that drive T-cell survival, growth and proliferation. During inflammation, the
function of Treg and effector T cells is subvert, resulting in the production of proinflammatory cytokines. These mechanisms have important implications for the development of
cellular therapies: Treg cells can be therapeutically manipulated to enhance their function and cellular metabolism can be modified by drugs. In this context, if metabolism fails to
match the demands of the cell, cell function is impaired, or cells can undergo apoptosis. Conversely, excess metabolism may prevent apoptosis, exacerbate cell function, and thus
promote T-cell hyper-reactivity, and lead to autoimmunity and inflammatory diseases.26,29 TGFβ: transforming growth factor-β; STAT3: Signal transducer and activator of
transcription 3; HIF-1α: hypoxia-inducible factor 1α; RORγt: retinoic-acid-related orphan receptor-γt; TRAF6: TNF receptor-associated factor 6
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active established RA differs from that of healthy controls.56

Authors report that 3-hydroxybutyrate results elevated in RA
patients suggesting an increased level of lipolysis compared
with controls.56 Also urinary metabolites can be analyzed as
markers of cytokine-mediated inflammatory processes in RA.
Urinary histamine have been suggested as a discriminator in
urinary metabolites: the sources of the discriminanting
histamine could be the mast cells at the synovial infiltrates
and the histidine degradation related to the direct effects of
TNF in accelerating muscle breakdown.80,81 Differences in
the metabolic profiles of baseline urine metabolites, such as
histamine, glutamine, phenylacetic acid, xanthine, xanthure-
nic acid and creatinine, were demonstrated in patients with
RA who had a good response to anti-TNF therapy compared
with those who had not.58 Those findings suggest the
relevance of the development of novel approaches for the
optimization of the RA therapy.

Atherosclerosis and endothelial dysfunction. RA patho-
biology seems to share some common pathways with
atherosclerosis, including endothelial dysfunction (ED) that
is related to underlying chronic inflammation and presents in
the early phases of the disease.82 Atherosclerosis is an
inflammatory condition and starts as a response to injury
favoring ED. The ED is defined as impaired endothelium-
dependent blood-vessel dilation in response to a stimulus
and is associated with increased expression of adhesion
molecules, pro-inflammatory cytokines, pro-thrombotic fac-
tors, oxidative stress upregulation and abnormal vascular
tone modulation. Over the last decade, a role for ED in the CV
complications of inflammatory diseases has been hypo-
thesized and several studies were performed in order to
evaluate ED as a marker for risk of CV events in patients with
chronic inflammatory diseases like RA.83 The inflammatory
cascades consist in the release of pro-inflammatory
cytokines, and reactive oxygen species (ROS) appear
responsible for the association between RA and athero-
sclerosis. Inflammatory cells are able to generate oxidants,
including superoxide, which are critical in non-specific host
defense against pathogens such as bacteria, viruses and
cancer cells. ROS and their byproducts are also implicated in
arterial dysfunction via the inactivation of nitric oxide (NO), a
potent vasodilator and antiaggregating molecule produced by
the endothelium resulting in induction of vascular damage.84

All of the ROS cause an imbalance of redox state within the
inflamed tissue, resulting in the activation of NF-κB and the
transcription of several pro-inflammatory cytokines including
TNFα, IL-1 and IL-6, which have key roles in the progression
of RA and therefore are therapeutic drug targets.85 In RA,
ROS have been attributed to directly contribute towards the
destructive, proliferative synovitis.86 Synovial fluid and
peripheral blood of RA patients display high levels of ROS
and ROS-generated molecules that oxidize and degrade the
major components of cartilage and bone, including collagen
and hyaluronic acid.87 All the oxidative damage markers
correlated positively with the disease activity score calculated
on 28 joints.86 These inflammatory pathways affect the
endothelial structure in blood vessels as well as synovial
tissues in RA causing vascular dysfunction. Low circulating
endothelial progenitor cells (EPCs) have been described in

many conditions associated with increased CV risk, including
RA. Recent evidence reports that circulating EPC counts in
RA patients are reduced compared with non-RA controls and
closely associated not only with bone erosion but also with
ED assessed by brachial flow-mediated dilation (FMD).88

Authors reported that levels of asymmetric dimethylarginine
(ADMA), an endogenous inhibitor of NO synthase (NOS), are
elevated in the serum of RA patients and are related with the
Homeostasis Model Assessment (HOMA) index.89 In this
context, ADMA, by blocking NO generation, initiates and
promotes processes involved in atherogenesis and may
reflect an important pathway linking abnormal insulin
metabolism with ED in RA.89 Evidence indirectly supports
that remission in RA allows diminished CV morbidity. Patients
with active RA, but not those in remission, had significantly
increased levels of CV risk markers (circulating concentra-
tions of N-terminal (NT)-probrain natriuretic peptide (BNP),
hypertension, total cholesterol, reactive hyperaemia index,
measures of arterial stiffness and intima media thickness
-IMT) than the control group.90 As the IR is increased in RA
patients, independent of obesity, recent studies have exam-
ined the association between IR and NT-proBNP in RA. The
prevalence of IR was confirmed to be higher among RA
patients than controls and IR results associated with higher,
rather than the expected lower, concentrations of NT-proBNP.
Moreover, authors hypothesized that this may be related to
increased serum levels of IL-6 suggesting that IL-6 may be
mechanistically involved in the relationship between IR and
NT-proBNP in RA.91

The Role of the Therapy: Metabolic Effects and New
Potential Interventions in RA Treatment

The therapy management of RA rests primarily based on the
use of disease-modifying antirheumatic drugs (DMARDs).
These agents are commonly characterized by their capacity to
reduce or reverse signs and symptoms, disability, impairment
of quality of life, inability to work and progression of joint
damage, and thus to interfere with the entire disease
process.92 Methotrexate (MTX) is a potent antimetabolite
drug that interferes with the metabolism of folic acid by the
inhibition of dihydrofolate reductase and represents the first-
line treatment in inflammatory arthritis.93 MTX, as compared
with nonsteroidal anti-inflammatory drugs that merely alleviate
temporarily the symptoms of joint inflammation, changes the
course of the disease, retarding or even preventing the
development of bone erosions. As TNF-α has a central role
in the pathogenesis of RA, anti-TNF-α drugs are frequently
used in forms of RA that are resistant to traditional therapeutic
approaches and have acquired a prominent place in the
management of rheumatologic conditions.94–100 Current
immunosuppressive therapies act on both the adaptive and
the innate immunity leading to an improvement on disease
outcome.101 In this context, corticosteroids, MTX, sulfasala-
zine, leflunomide and cyclosporine A, which are used in the
management of RA, exert a modulation of T-cell functions
because of their effects on pro-inflammatory Th1-driven
cytokines and on Th1/Th2 immune-mediated response.
RA medications such as corticosteroids as well as nonster-
oidal anti-inflammatory drugs and DMARDs may interfere with
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metabolic homeostasis conferring some CV risk.102 Data
about the effect of synthetic DMARDs and/or biological
DMARDs in this context remain controversial. An increasing
number of studies are performed to explore the effect of
antagonizing TNF-α and IL-6 on the CV outcomes in RA
patients.103–105 Clinical trials concerning the metabolic effects
of RA treatments are reported in Table 1. In addition, evidences
reported that EPC counts were restored by anti-TNF-α therapy
in RA patients, and interestingly, the restoration of EPC counts
seems to be attenuated in patients with a higher bone erosion
score compared with those with a lower bone erosion score,
despite a similar improvement in disease activity.106 Evidences
report that there were differences in the metabolic profiles of
urine samples of patients with RA who responded to anti-TNF
therapy compared with those who did not.58 Moreover, different
anti-TNF-α agents seem to alter metabolites differently because
of their specific mechanisms of actions. Those findings suggest
that metabolomic techniques can predict outcome to anti-TNF
therapy in patients with RA, providing a sensitivity and
specificity for response that has potential clinical utility.58 Drugs
that act on lipid/glucose metabolisms appear to confer an
improvement on inflammatory features in RA patients (Table 2).
In this context, recently, published evidence shows that in RA
patients, statin treatment appears to reduce CV risk in primary
prevention and that statin discontinuation is associated with an
increased risk for CV events.107 However, the significance of
statin treatment in RA patients still remains unclear as only very
little evidence has been published. Clinical studies concerning
the effect of drugsmodulating the insulin sensitivity (such as the
peroxisome proliferator-activated receptor (PPAR)-γ agonists)
are ongoing in order to provide new potential treatment to
improve both the inflammatory status and the CV outcome in
RA patients (Table 2).

Conclusions

The widespread systemic effects mediated by pro-
inflammatory cytokines in RA impact on metabolism. Altered
metabolic fingerprints may be useful in predicting the
development of RA in patients with early arthritis as well as
the response to the therapy.58 Both synthetic and biological
DMARDs are reported to be effective in the treatment of
inflammatory arthritis; however, although there is a very good
response of some patients to certain therapy, there is also a
complete lack of response in a large number of other
patients.108 As the biological effects of those treatments and
the mechanisms underlining the cell response are still not well
understood, a more detailed understanding of the biochemical
changes in the immune cells is required to elucidate toxicity
pathways, the oxidative stress effects and the response
mechanisms triggered by treatments. Therefore, the analysis
of the potential effects of the drugs on the metabolome by
analyzing the global metabolic changes associated with
certain therapy can be a reliable goal. As the metabolic profile
for individual patients is highly dynamic compared with, for
example, genes and protein levels, it is relevant to study how
these metabolites correlate with disease activity. It is possible
that the metabolite profile of individual patients can be used as
a tool for predicting the RA disease course and thereby Ta
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facilitates the early diagnosis of the CV complications in order
to improve the effectiveness of the treatment to be introduced.
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