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Accumulating statistics have shown that liver cancer causes the second highest mortality rate of cancer-related deaths worldwide, of
which 80% is hepatocellular carcinoma (HCC). Given the underlying molecular mechanism of HCC pathology is not fully un-
derstood yet, identification of reliable predictive biomarkers ismore applicable to improve patients’ outcomes..e results of principal
component analysis (PCA) showed that the grouped data from 1557 samples in Gene Expression Omnibus (GEO) came from
different populations, and the mean tumor purity of tumor tissues was 0.765 through the estimate package in R software. After
integrating the differentially expressed genes (DEGs), we finally got 266 genes. .en, the protein-protein interaction (PPI) network
was established based on these DEGs, which contained 240 nodes and 1747 edges. FOXM1 was the core gene in module 1 and highly
associated with FOXM1 transcription factor network pathway, while FTCD was the core gene in module 2 and was enriched in the
metabolism of amino acids and derivatives. .e expression levels of hub genes were in line with.e Cancer Genome Atlas (TCGA)
database. Meanwhile, there were certain correlations among the top ten genes in the up- and downregulated DEGs. Finally,
Kaplan–Meier curves and receiver operating characteristic (ROC) curves were plotted for the top five genes in PPI. Apart from
CDKN3, the others were closely concerned with overall survival. In this study, we detected the potential biomarkers and their
involved biological processes, which would provide a new train of thought for clinical diagnosis and treatment.

1. Introduction

Liver cancer is highly fatal, which causes the second highest
death rate of cancer-related mortality worldwide [1,2]. Glob-
ally, it is estimated that approximately 80% of liver cancers
were HCC [3]. Nobody disputes that this is a public health
challenge that needs widespread attention. HCC is a multigene
disease caused by the interaction of multiple cancer-promoting
and suppressing genes with the microenvironment, and its
molecularmechanism is still unclear..us, the identification of
new potential therapeutic targets is urgently needed.

In recent years, despite the advances in our knowledge of
the genetic factors, it is a pity that the death rates were in-
creasing rapidly [4, 5]. If the HCC patients can be diagnosed
early, the survival rate may be greatly improved by means of
liver resection [6, 7]. However, due to the late diagnosis of

most patients with HCC, the physical condition is not good
enough to withstand the risk of surgery [8, 9]. What is worse,
the survival rate of patients with advanced HCC is further
decreased due to the widespread resistance to chemotherapy.
Sorafenib, for example, a multikinase inhibitor, is widely used
for the treatment of patients with advanced HCC with a long
application time [10, 11], but patients invariably develop
sorafenib resistance and it only provides limited survival
benefit [12]. As a result, we are badly in need of finding new
diagnostic and prognostic markers for HCC, which might
facilitate early diagnosis and guide treatment decisions to
improve patients’ survival and quality of life.

In this study, we downloaded the expression matrix of six
datasets from the Gene Expression Omnibus (GEO) database,
including 630 adjacent normal and 927 tumor tissues. PCA,
tumor purity evaluation, and differential expression gene
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(DEG) analysis were performed by using R software. 266 DEGs
were finally obtained, consisting of 81 upregulated and 185
downregulated genes. FunRich undertook the entire enrich-
ment analyses in our experiment, while Cytoscape was
employed to build a network diagram. We had found that
upregulated genes were closely related to mitotic cell cycle.
Different from upregulated genes, downregulated genes were
enriched in lipid and lipoprotein derivative pathway. To further
explore the role of these DEGs, we divided the PPI network
into several independent modules. FOXM1 and FTCD were
core genes in two separate models with the highest score,
respectively. .e former is enriched in FOXM1 transcription
factor network pathway, while the latter is mainly enriched in
the metabolism of amino acid and derivative pathway. Finally,
.e Cancer Genome Atlas (TCGA) data were used to test our
results and predict overall survival related to five hub genes in
PPI. We found certain correlations among hub genes, which
might reveal potential signaling pathways in HCC. And 4 of 5
hub genes were connected with low overall survival of HCC
patients. Undoubtedly, recognition of biomarkers in HCC that
plays a key role in disease progression can provide new insights
into the development, prognosis, and treatment of HCC.

2. Materials and Methods

2.1.TumorPurityEstimationandDifferential ExpressionGene
Analysis. All the gene expression profile data originated from
the GEO database (https://www.ncbi.nlm.nih.gov/geo)..ere
were huge liver cancermRNAmicroarray datasets in the GEO
database, and the included datasets need tomeet the following
conditions: (1) the microarray data were available; (2) they
contained at least 100 samples; and (3) they employed tumor
and adjacent normal tissues. .erefore, we selected the fol-
lowing datasets: GSE25097, GSE36376, GSE45436, GSE54236,
GSE64041, and GSE112790. GEOquery package in R/Bio-
conductor software (version 3.6.1, https://www.r-project.org)
was used to get datasets, which was applied to download gene
expression and probe annotation information for the selected
datasets. .en, the estimate package was used to estimate
tumor purity, while the limma package for data normalization
and gene differential expression matrix acquisition. In the
differential expression gene analysis, FDR< 0.05 and |
log2FC|≥ 1 were considered to be significant DEGs, which
were visualized by ggplot2 package.

2.2. Enrichment Analysis. We divided the DEGs into two
categories and ranked them in descending order of absolute
values. Since the six datasets were not from the same platform,
we used RRA package to integrate the DEGs. FunRich
(version 3.1.3, http://www.funrich.org) is such powerful
stand-alone software that we primarily used to perform
functional enrichment analysis [13]. Biological process, bi-
ological pathway, cellular component, andmolecular function
can be achieved by FunRich in the present study.

2.3. PPI Network and Module Analysis. .e Search Tool for
the Retrieval of Interacting Genes database (STRING, https://
string-db.org) can provide information on protein interactions,

whose data mainly came from structural predictions and lit-
erature reports [14]. Combined score≥ 0.4 was considered as
the cutoff value, and the filtered node information was saved
locally for subsequent visualization. .en, we used Cytoscape
software (version 3.6.0, https://cytoscape.org) to build the
protein-protein interaction (PPI) network and one of the plug-
in in Cytoscape named Molecular Complex Detection
(MCODE) was applied to detect notable modules in this PPI
network [15]. As is known to all, network modules, as one of
the characteristics of protein networks, may have specific bi-
ological significance. .e default advanced option parameters
(degree cutoff� 2, node score cutoff� 0.2, and k-core� 2) in
MCODE already met our requirements, so we did not modify
it. Moreover, models with score≥ 5 were used for further path
enrichment analysis, which can help to explore the potential
biological functions of DEGs.

2.4. Analysis for Expression Level and Correlation of the Hub
Genes. .e Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer-pku.cn) is an online website
tool that can perform analysis including gene expression
analysis and correlation analysis [16]. Data from TCGA and
the Genotype-Tissue Expression (GTEx, http://
commonfund.nih.gov/GTEx/) were used to apply a stan-
dard processing pipeline before being used by GEPIA. Based
on the huge amount of data from GEPIA, we used it to
demonstrate the expression of hub genes in LIHC tissues
and normal ones and then made a boxplot to visualize the
results. .ere are three correlation coefficients (Pearson,
Spearman, and Kendall) for users to choose in GEPIA, and
any sets given by TCGA and/or GTEx expression data were
used to check the relative ratios between two genes.

2.5. Overall Survival Analysis and ROCCurveAnalysis of Hub
Genes. Kaplan–Meier plotter (KM plotter, http://kmplot.
com/analysis/) is a database that can be accessed openly,
which is the largest dataset including breast, ovarian, lung,
and gastric cancer [17]. .is database is rich in gene ex-
pression data and overall survival information from TCGA,
whichwe can use to draw survival curves with 95% confidence
interval hazard ratio and log-rank P value. Receiver operating
characteristic (ROC) curve analysis was employed to verify
the diagnostic performance of hub genes, and 3 years was set
as the predicted time. Multivariate Cox proportional hazards
regression analysis was performed based on hub genes. .e
risk score for predicting overall survival was calculated as
follows: risk score � n

i�1(coef i ∗Expri), where coef is the
regression coefficient and Expr is the expression level of the
gene. .en, according to the mean risk score, samples were
divided into low- and high-risk groups. Finally, survival
analysis and ROC curve analysis of the risk score were
performed by using the same method as described above.

3. Results

3.1. Tumor Purity Estimation of Tumor Tissue in Datasets and
Identification of DEGs. 630 normal and 927 tumor samples
were selected in this study (Table 1). .e results of PCA showed
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that the normal control group and the tumor group in the six
datasets could be discriminated very well (Figures 1(a)–1(f)).
.en, we calculated the tumor purity of 927 liver tumor tissues
through the estimate algorithm. As shown in Figures 1(g) and
1(h), the purity of tumors ranged from 0.179 to 0.979 and 55.8%
of the tumor samples had a greater value than the mean value of
0.765. After performing differential expression gene analysis on
each dataset, 81 upregulated and 185 downregulated genes were
finally detected by RRA (Supplementary Table S1). Compared
with the adjacent normal ones, the expression of these genes in
tumor tissues was all upregulated or downregulated≥ 2-folds
(Figures 2(a)–2(f)). We sorted the upregulated and down-
regulated genes in ascending order according to the FDR values
and created the heatmap with the top 20 genes (Figure 2(g)).

3.2. Enrichment Analysis of DEGs. DEGs from six in-
dependent datasets were integrated and introduced into
FunRich for enrichment analysis. .e biological processes for
upregulated genes were mainly associated with spindle as-
sembly and cell cycle (Figure 3(a) and Supplementary
Table S2), while the molecular functions were about protein
binding and kinase binding (Figure 3(b) and Supplementary
Table S2). In addition, the vital gene of upregulated genes was
called FOXM1, which was highly correlated with transcrip-
tion factor activity and FOXM1 transcription factor network
(Supplementary Table S2). .e functional enrichment of
downregulated genes was associated with metabolism, cata-
lytic activity, and energy pathways (Figures 3(c) and 3(d)).
And the pivotal gene FTCD in this group was enriched in
methyltransferase activity, energy pathways, and histidine
catabolism. .rough the biological pathway enrichment
analysis, we found that upregulated genes were closely related
to mitotic cell cycle, DNA replication, mitotic G1-G1/S
phases, and ATM pathway (Figure 4(a) and Supplementary
Table S2). Different from upregulated genes, downregulated
genes were enriched in lipid and lipoprotein derivative
pathway (Figure 4(b) and Supplementary Table S2).

3.3. PPI Network Establishment and Pathway Analysis of
Network Module. After introducing the gene list into
STRINGwebsite, we finally got the information of 240 nodes

and 1747 edges (combined score≥ 0.4). .en, the network
diagram was presented by Cytoscape based on the STRING
database (Figure 5(a) and Supplementary Table S3). In-
terestingly, most of the nodes with higher connectivity were
upregulated genes, which signified that they would be closer
to the center of the circle. Four modules with score≥ 5 were
detected via MCODE (Figures 5(b)–5(e)). It can be seen in
Figure 5(b) that the hub nodes were FOXM1, CCNA2,
AURKA, CDKN3, and CDC20 in module 2. Besides, as
shown in Figure 5(c), FTCD, HRG, AGXT, C8A, and TAT
were nodes with highest connectivity in module 2. Among
the four models, only model 3 contained both of the protein
nodes expressed by up- and downregulated genes, including
AFP, PLG, CRP, FABP1, and SPP1. And the results of the
pathway analysis for the two modules with the highest
combined score are shown in Figures 5(f) and 5(g) and
Supplementary Table S4. It is worth mentioning the most
significant pathways in module 1 and module 2 were mitotic
cell cycle and phase 1—functionalization of compounds,
respectively.

3.4. ExpressionLevel andCorrelation ofHubGenes. A total of
419 samples were selected for gene expression level analysis,
including 369 tumor tissues and 50 normal liver tissues. As
shown in Figures 6(a)–6(e), the expression of the five hub
genes in cancer tissues was significantly higher than that in
normal ones. Moreover, it turned out by the correlation
analysis that the increased expression of these genes was
strongly correlated with the decreased expression of FTCD
(Figures 6(f )–6(j)), and heatmap of correlation coefficients
between hub genes was shown in Figure 6(k).

3.5. Prognostic Factor Detection and Validation. .e analysis
of 364 HCC patients clearly showed that 4 out of 5 genes with
the highest degree in PPI had a significant impact on
prognosis (Figure 7). High expression of FOXM1 (HR� 1.68;
P � 0.0033), CCNA2 (HR� 1.69; P � 0.0029), AUPKA
(HR� 1.61; P � 0.0069), CDKN3 (HR� 1.29; P � 0.15), and
CDC20 (HR� 2.3; P � 3.4e − 06) indicated worse survival
rate in patients with HCC. In ROC curve analysis, FOXM1
(AUC� 0.654, sensitivity� 0.533, and specificity� 0.688),

Table 1: .e gene expression profile data characteristics.

Record Organism Tissue Normal
(n� 630)

Tumor
(n� 927) Region Platform

GSE25097 Homo
sapiens

Liver
tumor 243 (38.6%) 268 (28.9%) Boston GPL10687—Rosetta/Merck Human RSTA

Affymetrix 1.0 microarray, custom CDF

GSE36376 Homo
sapiens

Liver
tumor 193 (30.6%) 240 (25.9%) Seoul GPL10558—Illumina HumanHT-12 V4.0

expression beadchip

GSE45436 Homo
sapiens

Liver
tumor 39 (6.2%) 95 (10.2%) Taipei GPL570—[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

GSE54236 Homo
sapiens

Liver
tumor 80 (12.7%) 81 (8.7%) Modena

GPL6480—Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F (Probe Name

version)

GSE64041 Homo
sapiens

Liver
tumor 60 (9.5%) 60 (6.5%) Basel GPL6244—[HuGene-1_0-st] Affymetrix Human

Gene 1.0 ST Array [transcript (gene) version]

GSE112790 Homo
sapiens

Liver
tumor 15 (2.4%) 183 (19.7%) Tokyo GPL570—[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
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CCNA2 (AUC� 0.655, sensitivity� 0.81, and specific-
ity� 0.433), AUPKA (AUC� 0.621, sensitivity� 0.623, and
specificity� 0.584), CDKN3 (AUC� 0.613, sensitivity� 0.941,
and specificity� 0.292), and CDC20 (AUC� 0.686,
sensitivity� 0.697, and specificity� 0.632) had certain pre-
dictive value for the 3-year survival rate of HCC patients. All
of the top 20 genes in PPI exhibited a significant prognostic
value (Supplementary Table S5). .en, risk score model was
built based on CDC20 (coef� 0.349; P � 2.8e − 07) and an-
other gene among the top 20 genes, named NUSAP1
(coef� − 0.182; P � 0.046). Compared with overall survival
prediction with a single gene, the risk score model had a
higher predictive value (AUC� 0.71, sensitivity� 0.789, and
specificity� 0.547) (Figure 8).

4. Discussion

In the present study, we had detected totally 266 DEGs.
FOXM1 was the most connected gene in upregulated genes
in the PPI network, which had 44 edges. Increasing evidence
has suggested that FOXM1 is elevated in many tumors, such
as intrahepatic cholangiocarcinoma, oesophageal adeno-
carcinoma, gastric cancer, cervical cancer, andHCC [18–24].
Since FOXM1 can promote the proliferation and invasion of
cancer cells, it may give rise to the poor prognosis and low
survival rate of patients with high FOXM1 expression [22,
24–31]. Not only that, it was also found that FOXM1
contributes to tumor angiogenesis in the study of colorectal
and gastric cancer [23, 32]. In previous studies, there was a
large amount of evidence that FOXM1 directly or indirectly
affects the occurrence and development of HCC, which is in
line with our results [27–29, 33–39]. In addition, in an in
vivo study of HCC, the growth of tumors in mice with
FOXM1 deficiency was completely stagnated, suggesting
that FOXM1 has the potential to become an independent
biomarker of HCC [31]. It is worth mentioning that KIF4A
has been confirmed to be a downstream target of FOMX1

and the expression level of KIF4A is positively correlated
with FOXM1. Overexpression of both genes will lead to
excessive cell proliferation and promote tumor development
[22]. Meanwhile, we observed a significant increase in the
expression of KIF4A in our experimental results
(P � 3.18e − 07), which coincided with previous studies
[22]. MircoRNA plays an active role in HCC as well. For
instance, the expression of microRNA-135a transcribed by
FOXM1 can affect the prognosis and survival rate of patients
with HCC [40]. Unfortunately, we did not build a competing
endogenous RNAs (ceRNA) network in this project to find
potential downstream noncoding RNAs for FOXM1, which
should be investigated in future study.

FTCD was the core gene in model 2 and had a certain
correlation with FOXM1. Additionally, FTCD was found
useful to distinguish early HCC from benign tumors,
suggesting that it might be a potential marker for HCC
early diagnosis [41]. .e results of enrichment analysis for
FTCD were consistent with prior reports that the decrease
in FTCD expression impeded the degradation pathway of
histidine, which leads to the poor performance of meth-
otrexate [42]. .erefore, we infer that patients with HCC
who were not responding to methotrexate may be asso-
ciated with abnormal expression of FTCD. Besides, in the
available evidence, we found that autoimmune hepatitis has
a 0.6% to 0.7% probability of inducing HCC [43, 44].
Interestingly, by reducing the number of circulating
autoreactive T cells, the increased expression of FTCD can
prevent the progression of autoimmune hepatitis [45].
.us, low level of FTCDmight contribute to high incidence
of HCC and serves as a useful biomarker for primary HCC.
Further research will be needed to clarify the role of FTCD
in tumorigenesis.

In addition to FOXM1, CCNA2, AURKA, CDKN3,
and CDC20 can be seen in the forefront of PPI. It is
common knowledge that CCNA2, a core cell cycle reg-
ulator, plays a critical role with high expression from S
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phase to early mitosis [46, 47]. It was reported that high
expression of CCNA2 might induce hepatocyte nodular
proliferation [48]. And the exosome circRNAs, secreted
from liver adipocytes, promoted tumor growth by con-
trolling miR-34a level and activating the USP7/CCNA2
signaling pathway [49]. All of the above findings indicate
that CCNA2 directly or indirectly influences the devel-
opment of HCC, which is considered as a vital part in
HCC development. High expression of AURKA has
previously been detected in different cancer types as well
[50–52], which is implicated with the regulation of cell

cycle and division [53]. With no exception to HCC, it is
also described as an oncoprotein and therapeutic target.
Microarray analysis pointed out that AURKA phos-
phorylated and stabilized hepatoma upregulated protein
[54]. Moreover, a research revealed that AURKA can, in
turn, give rise to malignant phenotypes of HCC by reg-
ulating HIF-1α through activation of AKTand p38-MAPK
signaling pathways [55]. As a result, we conjecture that it
may function as a cancer-promoting gene. Excessive
replication of the centrosome is considered to be a
common feature of almost all human cancers [56], and
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Figure 3: Continued.
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Figure 3: Histograms of molecular function and biological process for up- and downregulated genes. (a) Biological process for upregulated
genes. (b) Molecular function for upregulated genes. (c) Biological process for downregulated genes. (d) Molecular function for
downregulated genes.
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Figure 6: Top five hub genes expression level in liver hepatocellular carcinoma (LIHC) and correlation analysis among hub genes. (a–e)
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CDKN3 happens to have the ability to prevent this ab-
normality [57]. Further research indicated CDKN3
seemed to play a role in tumor suppression by CDC2
signaling pathway [58]. However, bioinformatics analysis
for identification of molecular target genes in HCC
revealed that the relative expression levels of CDKN3 were
significantly upregulated in tumor tissues, which proved
that our results were not accidental [59]. .erefore, we
conjecture that the result may be due to the positive
feedback regulation in the tumor microenvironment,
which surely requires subsequent experiments to verify.
Regrettably, since the expression level of CDKN3 is not

associated with the prognosis of patients with HCC in our
study, CDKN3 cannot be counted as a candidate bio-
marker accordingly. CDC20 played a pivotal role in the
regulation of chromosome segregation and the timely end
of mitosis [60]. Abnormal CDC20 expression has been
detected in most human cancers [61–63], and CDC20
knockdown caused mitotic arrest to efficiently kill slip-
page-prone and apoptosis-resistant cancer cells [64],
supporting an oncogenic role of CDC20. In conclusion,
combined with literature reports and our findings,
FOXM1, FTCD, CCNA2, AURKA, and CDC20 are very
competitive biomarkers of HCC, while whether CDKN3
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Figure 7: Overall survival analysis and ROC curve analysis of the top five hub genes. (a–e) Kaplan–Meier curves for FOXM1, CCNA2,
AURKA, CDKN3, and CDC20. (f–j) ROC curves for predicting 3-year survival in HCC patients based on FOXM1, CCNA2, AURKA,
CDKN3, and CDC20.
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can be regarded as a biomarker for HCC remains further
studies.

Prior to our research, there have been some reports on
bioinformatics analysis of critical genes in HCC [65–68].
Nevertheless, our research still has several obvious ad-
vantages: firstly, the datasets we selected contain as many
as 1557 samples and cover multiple different regions;
secondly, we prioritized PCA of these datasets to ensure
that tumor and normal tissues come from two distinct
populations; thirdly, the method of tumor purity esti-
mation allowed us to show readers the quality of the
tumor samples in this study; fourthly, we have established
a multivariate Cox proportional hazards regression model
based on hub genes to improve the accuracy of single
prognostic factor prediction; finally, we performed a
correlation analysis between the upregulated and down-
regulated genes, which may reveal potential signal
transduction pathways in HCC. We have to admit that our

research still has the following shortcomings: first of all,
our results were only based on GEO and TCGA data
analysis and have not been verified; next in importance,
there may be distinctions in gene expression among
different types of tumors, which will be perfected in future
experiments.

5. Conclusion

In conclusion, the integrated bioinformatics analysis was
derived from 1557 tumor tissues and adjacent normal tissues
in the GEO database. Tumor and normal samples came from
different populations and half of the tumor samples have a
purity of more than 0.765. 266 genes were eventually
identified as candidate HCC biomarkers, which were
enriched in signaling pathways closely related to cell pro-
liferation and metabolic function. FOXM1, CCNA2,
AURKA, CDKN3, and CDC20 were at the core of these
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genes, which opened up new horizons for diagnosis,
prognosis, and treatment of HCC patients.
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