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Background: Observational studies have previously suggested a link between

iron status makers and back pain. We conducted a two-sample Mendelian

randomization (MR) study to determine the putative causal relationship

between systemic iron status and back pain.

Materials and methods: In this MR study, a genome-wide association study

(GWAS) involving 48,972 individuals was used to identify genetic instruments

highly associated with systemic iron status. The outcome data (back pain)

were derived from the Neale Lab consortium’s summary data from the

UK Biobank (85,221 cases and 336,650 controls). With the inverse variance

weighted (IVW) method as the main analysis, conservative analyses (selecting

SNPs with concordant change of iron status biomarkers) and liberal analyses

(selecting SNPs with genome-wide significant association with each iron

status biomarker) were carried out. For sensitivity analyses, the MR-Egger,

MR-Egger intercept, weighted median, weighted mode, and MR based on a

Bayesian model averaging approaches were used. The Cochran’s Q-test was

used to detect heterogeneity.

Results: Back pain was associated with genetically instrumented serum iron

(OR = 1.01; 95% CI = 1.00–1.02, p = 0.01), ferritin (OR = 1.02; 95% CI = 1.00–

1.04, p = 0.02), and transferrin saturation (OR = 1.01; 95% CI = 1.00–1.01,

p = 0.01). Furthermore, there was no evidence of a link between transferrin

and the risk of back pain (OR = 0.99, 95% CI = 0.98–1.00, p = 0.08). The

sensitivity analyses and Cochran’s Q-test indicated that no pleiotropy or

heterogeneity was detected (all p > 0.05).
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Conclusion: We provided potential genetic evidences for the causal

associations of iron status with increased incidence of back pain. However,

the evidences were weakened due to the low power. Further larger MR studies

or RCTs are needed to investigate small effects.

KEYWORDS

iron status, back pain, Mendelian, SNP, cause-effect

Introduction

Back pain (low back or neck pain with or without radicular
symptoms) and osteoarthritis are the leading causes of disability
across the world (1, 2). Clinical and epidemiological studies
across 195 countries reported that low back pain could seriously
affect the quality of life, which continues to be the leading cause
of years lived with disability globally (568.4 million) (3, 4). One
systematic review of 165 studies reported the point prevalence
of back pain was 11.9% (Standard error of mean as 2), and the
1-month prevalence was 23.2% (Standard error of mean as 2.9)
(5). Back pain could cost billions of dollars in economic costs
(6, 7) and intangible expenses such as difficulty with household
duties, caregiving, and participation in recreational activities,
relationship problems, despair, and anxiety (8). Due to the high
prevalence and heavy burden of back pain globally, it is critical
to discover modifiable risk factors (9).

Iron is essential for cell survival, differentiation, protein
synthesis, hormone production, and crucial components of
cellular energy metabolism throughout brain development and
growth (10, 11). However, low iron levels cause erythropoiesis
to be limited, resulting in anemia. High amounts of labile iron,
on the other hand, are very hazardous to cells because they
produce reactive oxygen species that can harm cells and organs
(12). The iron homeostasis dysregulation is often associated
with multiple pathologies, including aging in humans (13), and
neurodegenerative diseases such as Alzheimer’s disease (14), and
Parkinson’s disease (15). A case-control study reported all serum
levels of minerals including Fe were significantly different in
low back pain patients compared to healthy individuals (16).
A strong link between serum iron and the severity of low
back pain was reported (16). Intervertebral disc degeneration
has been linked to iron overload as a predominantly triggered
condition for low back pain (17).

In the last decade, low back pain genetic determinants have
gotten more attention (9). Gene polymorphism is widespread
in biological populations, resulting in differences and diversity
among biological populations. In recent years, it has been
found that gene polymorphism is the basis of affecting pain
sensitivity and the fundamental reason for the difference
in individual efficacy and adverse reactions at the standard

dose of analgesics (18, 19). However, the causal associations
between systemic iron status and back pain remain unclear.
A significant drawback of observational research is the difficulty
in distinguishing between true causal connections and spurious
associations owing to confounding and reverse causation (20).
In this instance, Mendelian randomization (MR) has been
applied to examine the specific causal relationship (21, 22).
Because genotypes occur before illness onset and are usually
unaffected by postnatal lifestyle or environmental influences, the
MR technique can minimize ambiguity and eliminate reverse
causation bias (23).

In this study, we performed a two-sample MR study
to explore the potential causality between iron status and
incidence of back pain.

Materials and methods

Study design

For the present study, we used a two-sample MR to estimate
the associations of systemic iron status with back pain risk.
A total of four iron status biomarkers were considered as
exposures. The selected SNPs are strongly associated with
exposures at the genome-wide significance (p < 5 × 10−8).
In addition, all SNPs were restricted in linkage equilibrium
(pairwise r2

≤ 0.01). The overview of our study design is shown
in Figure 1.

Systemic iron status instruments

The largest genome-wide association study (GWAS)
analysis was conducted previously by the Genetics of Iron
Status (GIS) consortium to derive association estimates between
Single Nucleotide Polymorphisms (SNP) and iron status (24).
The meta-analysis merged data from 11 discovery cohorts and
eight replication cohorts, with 48,972 European participants.
Specifically, serum iron, ferritin (log-transformed), transferrin
saturation, and transferrin were employed for iron status
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FIGURE 1

The design flow chart for the Mendelian randomization (MR) study. Assumption 1: Genetic instrumental variables are associated with systemic
iron status with the genome-wide significance; Assumption 2: Genetic instrumental variables are not associated with any measured and
unmeasured confounders; Assumption 3: Genetic instrumental variables do not influence the risk of back pain through other pathways. MR,
Mendelian randomization.

biomarkers. The details of included GWAS are shown in
Table 1.

Genetic associations with back pain

Genetic associations with back pain were derived from UK
Biobank summary data made by the Neale Lab consortium,
which includes 336,650 unrelated individuals of European
ancestry and adjusted for age, age2, sex, the first 20 principal
components, the interactions of age2 with age, and sex.1 Details
were collected through a specific pain-related questionnaire,
which included the question, “In the last month, have you
experienced any of the following that interfered with your usual
activities?” The options were: (1) headache; (2) facial pain; (3)
neck or shoulder pain; (4) back pain; (5) stomach or abdominal
pain; (6) hip pain; (7) knee pain; (8) pain all over the body; (9)
none of the above; (10) prefer not to say. The aggregated GWAS
results were involved 85,221 cases and 336,650 controls. The
details were shown in Supplementary Table 1.

Mendelian randomization analysis

The two-sample MR method was employed for the primary
MR analysis. Causal associations between systemic iron status
and risk of back pain were estimated based on the inverse
variance weighting (IVW) model. The random-effect model
was adopted in the IVW analysis. A threshold of p less
than 0.05 was utilized to determine statistical significance.
We used the formula, F = R2

× (N–k–1)/[(1–R2) × k], to

1 http://www.nealelab.is/uk-biobank/

TABLE 1 Details of GWAS studies.

Phenotypes Consortium Population Sample size

Back pain Neale lab European 336,650

Iron status Genetics of Iron Status (GIS) European 48,972

generate the F statistic, where R2 is the percentage of iron
status variability explained by each SNP, N is the sample
size of GWAS for iron status, and k is the number of
SNPs (25). The IVW model’s a priori power estimate was
also performed. Specifically, we used an online calculator
to evaluate the observable effects of iron status on the
probability of back discomfort at least 80% statistical power
threshold (26).

Sensitivity analysis

Sensitivity analyses were performed using the MR Egger
(27), Weighted median (WM) (28), and Weighted mode
techniques to account for the likelihood of pleiotropy
bias. Among these tactics are pleiotropic or defective
instruments, which are more resistant to possible breaches
of the standard instrumental variable assumption. The
WM estimate, as the WM of the SNP-specific estimations,
produces correct findings if SNPs contributing 50% of the
weight are trustworthy instruments (28). MR Egger regression
also estimates the underlying causative impact, even if all
genetic variations are invalid. Nevertheless, MR Egger can
be inaccurate, especially when the estimates are similar, or
the number of genetic instruments is small. These SNPs’
potential pleiotropic effects were assessed using MR-Egger
regression, in which the slope reflects causal estimates adjusted
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TABLE 2 Details of GWAS studies.

SNP CHR/BP
(Build 37)

Nearest Genes(s) EA/OA EAF Beta (SE)

Iron Ferritin (log) Transferrin Transferrin saturation

rs1800562 6/26,093,141 HFE A/G 0.067 0.328 (0.016) 0.204 (0.016) −0.479 (0.016) 0.577 (0.016)

rs1799945 6/26,091,179 HFE C/G 0.85 −0.189 (0.01) −0.065 (0.01) 0.114 (0.01) −0.231 (0.01)

rs855791 22/37,462,936 TMPRSS6 A/G 0.446 −0.181 (0.007) −0.055 (0.007) 0.044 (0.007) −0.19 (0.008)

rs744653 2/190,378,750 WDR75—SLC40A1 T/C 0.854 0.004 (0.01) −0.089 (0.01) 0.068 (0.01) −0.028 (0.011)

rs8177240 3/133,477,701 TF T/G 0.669 −0.066 (0.007) 0.021 (0.007) −0.380 (0.007) −0.380 (0.007)

rs9990333 3/195,827,205 TFRC T/C 0.46 0.017 (0.007) 0.001 (0.007) −0.051 (0.007) 0.039 (0.007)

rs7385804 7/100,235,970 TFR2 A/C 0.621 0.064 (0.007) 0.015 (0.007) −0.003 (0.007) 0.054 (0.008)

rs4921915 8/18,272,466 NAT2 A/G 0.782 0.004 (0.009) 0.001 (0.009) 0.079 (0.009) −0.026 (0.009)

rs651007 9/136,153,875 ABO T/C 0.202 −0.004 (0.009) −0.050 (0.009) −0.001 (0.009) −0.006 (0.009)

rs6486121 11/13,355,770 ARNTL T/C 0.631 −0.009 (0.007) 0.006 (0.007) −0.046 (0.007) 0.015 (0.008)

rs174577 11/61,604,814 FADS2 A/C 0.33 0.001 (0.007) −0.012 (0.007) 0.062 (0.007) −0.025 (0.008)

rs411988 17/56,709,034 TEX14 A/G 0.564 −0.002 (0.007) −0.044 (0.007) 0.014 (0.007) −0.012 (0.007)

for pleiotropy and the intercept represents the average
pleiotropic effects of all SNPs. SNP heterogeneity was assessed
using the Cochran Q statistic. The connection between
iron status and back pain was represented by odds ratios
(ORs) with 95% confidence intervals (CIs) per one standard
deviation log-transformed genetically predicted increase in
iron status. The leave-one-out analysis was conducted to
determine whether a single SNP was responsible for the
significant results.

Mendelian randomization based on a
Bayesian model averaging estimates

We performed a novel approach extending multivariable
MR, Mendelian randomization based on a Bayesian model
averaging (MR-BMA), based on the Bayesian model averaging
method, to circumvent the limits of logistic regression
approaches and prioritize the most causally related risk
factors for back pain (29). MR-BMA considers all possible
combinations of the four biomarkers of systemic iron status
and generates posterior probability (PP) for each specific model
(one risk factor or a combination of multiple risk factors)
(29). Then, MR-BMA computes a marginal inclusion probability
(MIP) for each iron risk factor, which means the sum of
the PP over all models where the iron status is presented.
Furthermore, MR-BMA will report the model-averaged causal
effects (MACE) for each iron status biomarker by ranking all
the iron status biomarkers according to the corresponding MIP.
Finally, MR-BMA will prioritize the best models via the PP
value. Invalid instruments were identified as outliers in terms
of linear model fit using the Q-statistic, used to determine
heterogeneity in the meta-analysis (30). The Cook’s distance
(Cd) was used to quantify influential observations (31). We

repeated the analysis while eliminating outliers (Q > 10) and
Cd exceeding the threshold that was consistently discovered in
all the best models (PP > 0.02).

The R program (version 4.1.2) and Two-Sample MR package
(version 0.5.6) was used to conduct all the studies.

Results

Genetic variables for systemic iron
status

Individual SNPs of iron status (39 to 3,340) had F statistics
of more than 10, indicating that bias from weak instrumentals
was unlikely (32). The changes of three SNPs, including
rs1800562 (25), rs1799945[HFE gene], and rs855791[TMPRSS6
gene], were concordant with four iron status biomarkers
(serum iron, ferritin, transferrin, and transferrin saturation).
According to independent and LD analyses, the three SNPs
are therefore employed for conservative analysis (Table 2).
Furthermore, larger SNP groups due to the genome-wide
significant association with iron status biomarkers were selected
for liberal analysis (Table 2).

Associations of systemic iron status
with back pain risk

The OR of back pain per SD unit increasing in each iron
status biomarker revealed an association between increased iron
status and the risk of back pain. For conservative analysis,
our results determined by IVW method showed that the
genetically predicted high levels of serum iron (OR = 1.01,

Frontiers in Nutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2022.923590
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-923590 August 4, 2022 Time: 15:54 # 5

Tang et al. 10.3389/fnut.2022.923590

FIGURE 2

Forest plots summarizing the SNP-specific and overall MR estimates for the causal effects on back pain using the SNPs associated with four iron
biomarkers in conservative analyses. Panels (A–D), respectively, indicate the causal estimates of serum iron, ferritin, transferrin, and transferrin
saturation on back pain. The horizontal lines represent the 95% CIs, while the solid black diamonds represent estimates of the causal effects of
the genetic instruments. The gray diamond’s center indicates the overall MR estimate, while the diamond’s width indicates the 95% CIs. MR,
Mendelian randomization; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted.

95% CI = 1.00–1.02; p = 0.01), log-transformed ferritin
(OR = 1.02, 95% CI = 1.00–1.04; p = 0.02), and transferrin
saturation (OR = 1.01, 95% CI = 1.00–1.01; p = 0.01) were
significantly associated with back pain risk (Figures 2A,B,D and
Supplementary Figure 1). But transferrin was no significant
effect (OR = 0.99, 95% CI = 0.98–1.00; p = 0.08) (Figure 2C and
Supplementary Figure 1). Investigating back pain risk using
the separately selected SNPs by their genome-wide significant
association with each iron status biomarker also produced
directionally consistent results, as shown in Figure 3, Table 3,
and Supplementary Figure 3. The minimum and maximum
real causal effects (ORs) achieving at least 80% statistical power
are presented in Supplementary Table 1.

Sensitivity analysis provided no
indication of unknown pleiotropy

Accordingly, the sensitivity analysis supported these effects
for serum iron, ferritin, and transferrin saturation with a
significant p-value obtained from the weighted median method
(p < 0.05), as shown in Table 4 and Supplementary Figure 2.
Besides, of four iron status biomarkers, all MR-Egger intercepts
did not differ significantly from zero (p > 0.05), indicating that
there was no directional pleiotropy for back pain (Table 4).
Lastly, both and IVW and MR egger in Cochran’s Q-test showed

p > 0.05 (Table 4), suggesting no significant heterogeneity of
four iron status genetic IVs in back pain GWAS. Similarly, MR
Egger intercepts utilizing the independently selected SNPs did
not differ markedly from null (p = 0.525, 0.475, 0.123, and 0.566
for serum iron, ferritin, transferrin saturation, and transferrin,
respectively), indicating that pleiotropy for back pain is not
statistically significant (Table 3 and Supplementary Figure 4).
Finally, the Cochran Q statistics (MR Egger and IVW method)
using the separately selected SNPs showed low heterogeneities
(p > 0.05) for serum iron, ferritin, and transferrin, transferrin
saturation (Table 3). The leave-one-out sensitivity analysis
revealed that eliminating one of the iron status SNPs had no
effect on the results (Supplementary Figures 5, 6).

Mendelian randomization based on a
Bayesian model averaging estimates

For the MR-BMA analyses, 12 SNPs (rs1800562, rs1799945,
rs855791, rs8177240, rs7385804, rs744653, rs651007, rs411988,
rs9990333, rs4921915, rs6486121, and rs174577) were
employed. Of selected 12 SNPs, all Cochran’s Q statistics
were less than 10 (low heterogeneity), and Cd did not exceed
the threshold (Figure 4, Table 5, and Supplementary Table 2).
All the risk factors were then prioritized and ranked by their
MIP, whereas, the best models were prioritized and ranked by
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FIGURE 3

Forest plots summarizing the selective SNPs and overall MR estimates for the causal effects on back pain using the SNPs associated with four
iron biomarkers in liberal analyses. Panels (A–D), respectively, indicate the causal estimates of serum iron, ferritin, transferrin, and transferrin
saturation on back pain. The horizontal lines represent the 95% CIs, while the solid black diamonds represent estimates of the causal effects of
the genetic instruments. The gray diamond’s center indicates the overall MR estimate, while the diamond’s width indicates the 95% CIs. MR,
Mendelian randomization; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted.

TABLE 3 Associations between genetically instrumented systemic iron status and back pain using the separately selected SNPs associated with all
four iron status biomarkers.

Exposure Method N SNP Beta SE P-value Egger
intercept

Egger
SE

Egger
P-value

Cochran’s Q Q DF Q P-value

Serum iron MR Egger 5 0.014 0.007 0.138 −0.001 0.001 0.475 0.295 1 0.587

Weighted median 5 0.009 0.004 0.026

Weighted mode 5 0.009 0.004 0.098

Inverse variance weighted 5 0.008 0.004 0.018 1.466 2 0.481

Ferritin MR Egger 6 0.011 0.013 0.465 0.001 0.001 0.525 0.128 1 0.721

Weighted median 6 0.015 0.008 0.073

Weighted mode 6 0.014 0.01 0.218

Inverse variance weighted 6 0.016 0.007 0.016 0.982 2 0.612

Transferrin MR Egger 9 0.0007 0.003 0.804 −0.0009 0.0006 0.123 4.892 7 0.673

Weighted median 9 −0.0006 0.002 0.81

Weighted mode 9 −0.001 0.002 0.551

Inverse variance weighted 9 −0.003 0.002 0.208 7.961 8 0.437

Transferrin
saturation

MR Egger 5 0.008 0.004 0.152 −0.0006 0.0009 0.566 1.614 3 0.656

Weighted median 5 0.006 0.003 0.054

Weighted mode 5 0.006 0.003 0.118

Inverse variance weighted 5 0.006 0.003 0.025 2.029 4 0.731
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TABLE 4 Associations between genetically instrumented systemic iron status and back pain using the three SNPs associated with all four iron
status biomarkers.

Exposure Method N SNP Beta SE P-value Egger
intercept

Egger
SE

Egger
P-value

Cochran’s Q Q DF Q P-value

Serum iron MR Egger 3 0.008 0.015 0.686 0.0003 0.003 0.936 0.122 1 0.727

Weighted median 3 0.01 0.004 0.020

Weighted mode 3 0.01 0.005 0.201

Inverse variance weighted 3 0.009 0.004 0.011 0.132 2 0.936

Ferritin MR Egger 3 0.008 0.015 0.688 0.001 0.001 0.525 0.128 1 0.721

Weighted median 3 0.017 0.009 0.064

Weighted mode 3 0.016 0.009 0.24

Inverse variance weighted 3 0.019 0.008 0.017 0.982 2 0.612

Transferrin MR Egger 3 −0.003 0.005 0.711 −0.002 0.001 0.362 0.174 1 0.676

Weighted median 3 −0.007 0.004 0.071

Weighted mode 3 −0.007 0.004 0.26

Inverse variance weighted 3 −0.008 0.004 0.079 2.618 2 0.27

Transferrin
saturation

MR Egger 3 0.003 0.006 0.697 0.001 0.002 0.61 0.146 1 0.702

Weighted median 3 0.006 0.003 0.051

Weighted mode 3 0.005 0.003 0.242

Inverse variance weighted 3 0.007 0.003 0.014 0.64 2 0.726

FIGURE 4

The Cooks D and Q estimate systemic iron status for back pain. Panels (A–C), respectively, showed the Cook’s distances of 12 SNPs for the
effect of iron, ferritin, and transferrin saturation on back pain. Panels (D–F), respectively, show the Q statistic of 12 SNPs for the impact of iron,
ferritin, and transferrin saturation on back pain.
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TABLE 5 Ranking of risk factors and models for back pain (MR-BMA analysis).

Risk factors/Model Ranking by MIP MIP Averaged effect Ranking by PP PP Causal estimate

Iron 2 0.293 0.002 2 0.291 0.009

Ferritin 1 0.518 0.008 1 0.515 0.016

Transferrin 3 0.182 0 4 0.01 −0.003

Transferrin saturation 4 0.011 0.001 3 0.18 0.006

MR-BMA, Mendelian randomization based on Bayesian model averaging; MIP, marginal inclusion probability; PP, posterior probability.

TABLE 6 Mendelian randomization estimates for the causal effect of back pain on iron status biomarkers.

Outcome Method N SNP Beta SE P-value Egger
intercept

Egger
SE

Egger
P-value

Cochran’s Q Q DF Q P-value

Serum iron MR Egger 5 −3.759 5.042 0.510 0.035 0.041 0.460 1.483 3 0.686

Weighted median 5 0.648 0.844 0.443

Weighted mode 5 0.624 1.126 0.609

Inverse variance weighted 5 0.464 0.654 0.479 2.196 4 0.700

Ferritin MR Egger 5 5.229 4.703 0.347 −0.039 0.039 0.390 2.879 3 0.411

Weighted median 5 0.908 0.798 0.255

Weighted mode 5 1.109 1.023 0.34

Inverse variance weighted 5 0.502 0.613 0.413 3.907 4 0.419

Transferrin MR Egger 5 −3.607 5.156 0.535 0.031 0.042 0.520 1.265 3 0.738

Weighted median 5 0.071 0.821 0.931

Weighted mode 5 0.109 0.672 0.871

Inverse variance weighted 5 0.412 1.103 0.728 1.793 4 0.774

Transferrin
saturation

MR Egger 5 −0.145 5.067 0.979 0.003 0.041 0.940 1.492 3 0.684

Weighted median 5 0.469 0.805 0.560

Weighted mode 5 0.721 1.101 0.549

Inverse variance weighted 5 0.268 0.657 0.683 1.498 4 0.827

their PP (Table 5). All the MR-BMA results were consistent
with the MR results.

Associations of back pain with
systemic iron status

The set of MR analyses sought to assess the potential
causative effect of back pain on systemic iron status. The
findings revealed no significant causal association between back
pain and systemic iron status (Table 6 and Supplementary
Figure 7), which was consistent with the findings of sensitivity
analyses (Table 6 and Supplementary Figure 8). Furthermore,
no pleiotropy was detected in any of the analyses (Table 6).

Discussion

Few studies have reported the relationship between systemic
iron status and back pain. To assess the causal association
between systemic iron status and back pain, we used a
two-sample MR analysis. According to our MR assumptions,

instrumental variables (SNPs) should only be associated to the
outcome (back pain) through exposure (systemic iron status).
Our results revealed that several genetically determined markers
of systemic iron status are potentially associated with the
risk of back pain.

Iron, a vital trace element, is required for a wide range
of biological functions in all living species. However, excess
iron causes oxidative stress and tissue damage in aerobic
circumstances (33). Iron metabolism is be involved in the
onset and pathological process of chronic diseases, including
metabolic disorders and arthropathy (34, 35). Higher serum
iron levels, transferrin saturation, ferritin, and lower amounts
of transferrin, are associated with higher systemic iron status
(36). The previous study has linked the disturbances of iron
homeostasis to various pain-related consequences (37). Iron
overload is typically detected by measuring serum transferrin
saturation (the amount of ferric iron bound to the carrier
protein transferrin in the circulation; >45 percent indicates
iron excess) in conjunction with serum ferritin concentration
(35). Iron overload has been shown to hasten bone loss in
healthy postmenopausal women and middle-aged men, increase
apoptosis, and impair chondrocyte functional competence (38,
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39). Furthermore, aberrant iron accumulation causes nerve
injury in rats by up-regulating CXCL10/CXCR3 signaling in
the spinal dorsal horn, resulting in mechanical allodynia and
thermal hyperalgesia (40). Higher ferritin levels have been
linked to increased pain intensity (41). A recent single-nucleus
characterization analysis revealed the effect of the Fth1 gene
(encoding ferritin) on mechanical pain (42).

The two-sample method, which has a large amount
of summary-level genetic data and may minimize potential
confounding effects and reverse causation in observational
research, is the study’s main contribution. In addition, to
some extent, the GWAS research used in this MR study
included European participants to eliminate the impact of
population race. Furthermore, in a large GWAS of 48,972
European individuals, genetically predicted systemic iron status
was identified, potentially reducing weak instrument bias.

There are several limitations to this study. First, all
participants in our study were restricted to European ancestry
to avoid any potential bias from ethnic differences. However,
it is unknown whether this effect is suitable for other people.
Second, our analyses were performed at the summary level,
making stratified analyses by age, gender, and other relevant
characteristics difficult. Third, we could not determine whether
there were any non-linear relationships between the levels of
systemic iron status biomarkers and the risk of back pain, such
as a U-shaped relationship or a threshold effect. Fourth, all of
these studies were small and underpowered to identify modest
genetic influences on back pain risk (low power).

In conclusion, we presented genetic evidence for the
potential correlations of iron status with increased risk of back
pain in the European population. As a result, it is critical for
European patients suffering from back pain to consider their
systemic iron status. However, leave one out analysis revealed
that when certain SNPs were excluded, the MR estimations were
drastically reduced. To evaluate modest impacts, bigger MR
studies or RCTs are required. Furthermore, researches including
people of different ethnic origins based on individual-level data
and research into the underlying process, were needed to reduce
the risk of back pain.
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