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Abstract

Purpose Discover the associations of force of

applanation on the eye with the plunging depth of

the cornea and quantify them. The results will be

utilized as the feedback parameter in the new proto-

type development of eye care instruments as addi-

tional force may damage the internal structure of the

eye or may result in erroneous output.

Method A finite element-based eye model is

designed utilizing the actual dimensions of the human

eye. A standardized tonometer is designed and the

simulation is carried out at predetermined deformation

of the cornea to find the force of applanation on the

cornea during tonometry. Adding on, the influence of

IOP during tonometry is analyzed for a range of

plunging depths of the cornea.

Results The graphical results inferred the linear

relation between the force of applanation with the

deformation of the cornea and the results are quanti-

fied. The resulting deformation and stress plot of FEM

based simulation approach is analyzed and observa-

tions regarding deformations and stress are made.

Conclusion The human eye is successfully devel-

oped and also computed force on the cornea during

tonometry is validated. The inference drawn from the

deformation plot and stress plot is that the junction of

cornea–sclera along with cornea-tonometer periphery

undergo maximum deformation and experiences the

highest stress compared to other areas of the eye while

during tonometry.

Keywords Biomechanical simulation � Finite
element analysis � Tonometry � Glaucoma � IOP

Introduction

Glaucoma refers to a group of diseases that damages

the optic nerve. It is a pathological condition that

causes optic nerve neuropathy and structural damage

to the eye. This finally culminates in permanent vision

loss [1]. There is no cure for the disease at later stages,

diagnosis of the disease at an early stage is very
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important to slow down its progress [2]. It is also the

second leading cause of blindness after cataracts.

Elevated intraocular pressure (IOP) is one of the main

risk factors in glaucoma. IOP is important in main-

taining the structure and function of the eye [3]. The

rise in IOP is due to reduced aqueous humor outflow at

the trabecular meshwork which in turn changes the

outflow resistance [4]. The study done in [5] sum-

marises the relationship between the aqueous humor

outflow resistance and intraocular pressure.

The present study is focused on the biomechanical

FEM (finite element model) simulation of an asym-

metrical 3-D model of the human eye constructed

consisting of cornea and sclera under tonometry. The

study is also evolved with the design of a standard

tonometer which consists of a probe to applanate the

cornea. Currently, Pneumotonometer, tonopen,

Mackay Marg tonometer, and Icare tonometer are the

existing tonometers that utilize the plunger or probe to

measure the IOP of the eye. A plunger with a 5 mm

diameter inside the Pneumotonometer placedon the eye

for 5–10 s will measure the pressure inside the eye for

the given displacement [6]. Tonopen incorporates a

similar principle to that ofMackay andMarg tonometer

[6]. It has several additional features such as small,

handheld, battery-powered, and incorporates an inter-

nal chip to store the data. Theworks of literature [7–10]

describe the probe and the characteristics of a standard

Icare tonometer. Icare tonometerworks on the principle

of rebound tonometry. A plastic ball on a stainless-steel

wire is a probe of 1.8 mm diameter which momentarily

touches the cornea to measure the IOP [6].

The explicit dynamic analysis was conducted for

the blunt impact of foreign bodies on the eye [11]. The

eye model is resting in the orbital muscle and fat in

frictionless contact. The model of the eye was

considered as hollow. A similar model was created

but the fluid part of the model, Aqueous humor was

modeled as liquid with shock EOS linear

C1 = 1530 m/s, s1 = 2.1057 and vitreous humor as

viscoelastic G0 = 10 Pa, G? = 0.3 Pa, b = 14.26 1/s,

k = 2.0 GPa, sclera and cornea were modeled as the

nonlinear stress–strain as material properties [12]. The

viscoelastic model of the eye was created for the blunt

impact of the eye [13]. The eye model was considered

viscoelastic based on soft fiber-reinforced composites

[14]. The material properties of the eye tissue were

calculated by conducting materials testing [15].

However, the properties of the material were

calculated in vitro conditions. The eye model was

considered as rigid with vitreous as a solid mass with

hydrostatic pressure as 20 mmHg (2.66645 kPa), i.e.,

intraocular pressure, atmospheric pressure was set at

the anterior. Similarly, biomechanical properties of

the cornea will influence the reading of tonometry and

have been concluded that the rigid corneas will result

in higher IOP value in tonometry [16].

In the present research, FEM-based evaluation is used

to calculate the amount of force exerted by the tonometer

on the cornea during tonometry with a standard

tonometer. The FEM study incorporates a tonometer

cylindrical probe of 1.7 mmdiameter [6]. Predetermined

force on the eye using a probe or an indenting element is

also an important factor for determining the IOP of the

eye. Similarly, excess force on the eye may also damage

the internal structure of the eye. Hence, quantification of

force on the cornea becomes very much essential during

tonometry with a standard tonometer. Meanwhile,

variation in the IOP of the eye may affect the reading

of force on the cornea during the clinical procedure

tonometry. Thus, the analysis is also focused on finding

the influenceof IOPon the amount of force applied to the

cornea during tonometry. The response of the eye may

change due to external factors such as disease, surgery,

and injury and will influence the visual performance of

the eye [17]. Hence, deformation and the stress analysis

of cornea during the tonometry test are investigated in

the simulation study.

The tabulated results from this study such as force,

stress, and deformation can be implemented in the new

technology development of eye care instruments such

as a tonometer, goniolens, pachymeter and hence can

be utilized in the eye care industry.

The designed model of the human eye is close to the

actual dimensions of the eye and hence the model is

close to the actual human eye. The investigation of the

force on the cornea during eye care testing procedure

is not addressed in clinical and industrial side and

hence the study about the applanation force during eye

care testing procedure is unique.

Materials and methods

Modelling of eye geometry

The eye model was made with the loft protrusion

method. The dimensions of different parts of the eye
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model are listed in Table 1 and are referred to from the

references [18–26]. Initially, the cornea base was

created with an ellipse and it was used as the guide

curve for loft protrusion in the eye model. The eye

model was assumed to have been thin shell-like

structure and the 2d cross section of the eye was

created at the four key points. The regions used were

superior, inferior, temporal, and nasal (Fig. 1). This

method of modeling was chosen to get approximate

asymmetry in the eye. The internal parts of the eye

were not modeled because the pressure at any point

inside a closed system with static liquid is constant

[27]. Hence, modeling the internal parts will not make

much difference in terms of the pressure changes.

Analysis setup

The eye model was divided into nine different parts as

4 parts of the sclera, 1 part of the cornea, and 4 parts of

the corneoscleral junction for the simplification of the

meshing. The average element size of the complete

eye model is 1.9816 mm. The mesh model resulted in

a total node count of 58,999 and a total element count

of 11,613.

The main aim of the simulation is to determine the

force applied by the tonometer over the eye. The

tonometer will apply force over the surface of the

cornea to provide a predetermined deformation or

plunging depth on the surface of the cornea. In the

previous simulation in the literature, the main con-

centration was impact analysis. Since the tonometer is

not impacted on the eye, analysis was carried out in

ANSYS static structural to find the reaction force or

applanation force responsible for deformation of the

cornea for a given fixed set of displacement of the

tonometer. This is simulated by moving the tonometer

probe onto the eye in direction towards the retina or of

the apex of the orbit and calculating the reaction force

on the tonometer. The tonometer was taken as a

cylinder with a diameter of 1.7 mm [6]. The tonometer

was modeled and made in contact with the cornea such

that there is no penetration and deformation. This

contact is defined as frictionless.

Table 1 Eye modeling parameters

Ocular parameters References

Corneal anterior curvature 7.75 mm [18]

Corneal thickness

Central 0.52 mm [19, 20]

Peripheral 0.67 mm [19, 20]

Scleral radius 11.2 mm [22]

Subfoveal scleral thickness 317 lm [23]

Choroidal thickness 298 lm [24]

Axial length 22.7 mm [25]

Corneoscleral junction angle

Superior 178.1� [26]

Inferior 177.7� [26]

Nasal 173.9� [26]

Temporal 177.0� [26]

Fig. 1 Key point sketches (dimensions in mm)
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Human ocular tissues are generally viscoelastic and

exhibit nonlinear material properties [28]. But it is

difficult to incorporate the nonlinear properties into

the eye mode [29]. Hence, the material properties of

the eye model were assumed to be homogenous,

isotropic, and linearly elastic. Table 2 lists the

properties of the different parts of the eye model and

are referred from [30, 31].

The sclera was given the condition of the remote

displacement zero. This boundary condition allows the

deformation to occur on the mesh elements of the eye

but constraints the movement in the space. This

simulates the eye held in place by the eye socket which

is similar to the research done in [11, 15] but without

modeling of the orbital muscles. The intraocular

pressure inside the eye is fixed normal to the sclera

and cornea surface this pressure diverges outward. The

tonometer probe is constrained to move in a positive X

direction, i.e., from the cornea center toward the sclera

such that the tonometer contacts the surface of the

cornea and will deform the cornea. In the study,

displacement of the tonometer varies from 0.3 mm-

0.7 mm and the IOP eye is varied in the normal range

from 10 to 20 mmHg during which the behavior of the

eye is studied and analyzed.

Results

The human eye is modeled using FEM-based simula-

tion software that is more close to the actual size. The

model consists of the human cornea, sclera (4

components), and the junction between cornea and

sclera. The tonometer probe designed is 1.7 mm in

diameter. The simulation is carried out on the designed

model of the eye, by placing the standardized designed

tonometer at the center of the cornea. The deformation

of the cornea takes place when external pressure

exceeds the internal pressure [15], and a set of the

predetermined plunging depth of the cornea

(0.3–0.7 mm) is produced. The reaction force respon-

sible for the known deformation at the center of the

cornea is tabulated and analyzed. To analyze the effect

of varying IOP of the eye on tonometry, the research is

repeated in the normal range of IOP (10–20 mm Hg).

The FEM-based investigation has resulted in a

deformation chart of the eye and also stress distribu-

tion of the eye during tonometry. Figure 2 indicates

the deformation chart and Fig. 3 is the stress distribu-

tion chart of the eye with plunging depth of cornea

varied from 0.3 to 0.7 mm at the center of the cornea

and the IOP of eye maintained at 20 mmHg. The

chart indicates the variation in the magnitude of

deformation and stress on the surface of the cornea,

sclera, and the junction of cornea and sclera. The force

on the cornea is plotted against the deformation in Plot

1. The magnitude of applanation force on the cornea

during tonometry is investigated for a predetermined

set of deformation of the cornea and is tabulated in plot

1. Plot 1 also depicts the influence of IOP on

tonometry.

Discussion

The eye model with dimensions obtained from

[18–26] constituting the cornea, sclera, and junction

of cornea and sclera was modeled using FEM-based

simulation software. The displacement of the cornea

during tonometry is considered in the range of

0.3–0.7 mm along the direction from the cornea

toward the retina. The study is carried out at the

normal range of IOP of the human eye from 10 to

20 mmHg in steps of 5 mmHg.

The deformation chart of the human eye during

tonometry is indicated in Fig. 2. The cornea at the

center is deformed by a tonometer (indicated by an

arrow). The chart indicates that the junction of cornea

Table 2 Different material properties corresponding to different parts of the eyeball model

Material properties/part of the

eyeball

Young’s

modulus

Poisson’s

ratio

Bulk modulus Shear modulus

(MPa)

Density (kg/

mm3)

Sclera 2 MPa 0.4 3.3333 MPa 0.71429 9.6e–07

Cornea 0.2 MPa 0.43 0.47619 MPa 0.06993 9.6e–07

Tonometer probe 2e?05 MPa 0.3 1.6667e?05 MPa 76,923 7.5e–06
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and tonometer undergo maximum deformation com-

pared to plunging depth and the deformation is in

outwards expansion. This is due to the material

properties of the cornea which is less stiff compared

to the sclera and the sclera is held in place which

results in more deformation at the junction of the

cornea tonometer periphery. Meanwhile, the human

eye model is more close to the actual eye and is not

symmetrical, and superior-temporal zone and nasal-

inferior zone sections at the junction of the cornea and

Fig. 2 Deformation of cornea under tonometry for varying displacement of tonometer, a 0.3 mm, b 0.4 mm, c 0.5 mm, d 0.6 mm,

e 0.7 mm, f 0.7 mm isometric view with tonometer with 20 mmHg of IOP

Fig. 3 Stress distribution (MegaPascal) of eye under tonometry for 20 mmHg IOP for displacement of a 0.3 mm, b 0.4 mm, c 0.5 mm,

d 0.6 mm, e 0.7 mm, f 0.6 mm cut section view
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sclera are thinner compared to the other parts of the

sclera. This results in the eye deforming more at the

junction of the cornea and sclera regions. The

deformation chart also depicts the behavior of the

eye during tonometry. For the plunging depth from 0.3

to 0.5 mm the maximum deformation is under

0.65 mm and as the plunging depth increases the

maximum deformation remains at 0.75 mm. This

means during tonometry the eye will undergo defor-

mation in vertical elongation.

Figure 3 summarizes that the stress is concentrated

at the junction of cornea and sclera and experiences

maximum stress of about 0.2 MPa during 0.3–0.7 mm

displacement of the cornea for constant IOP of the eye.

Figure 3f points at the position of maximum stress at

the junction of cornea and sclera. It also depicts that

along with the junction, the front side of the eye is

under stress during tonometry. The literature [29]

reveals that it would be highly challenging to evaluate

the stress concentration at the junction during

tonometry.

The simulation is carried out for determining the

amount of force applied on the cornea for the

predetermined displacement of the cornea during the

tonometry test. Plot 1 demonstrates that the force

applied on the cornea is small at lower deformation of

the cornea and further steeply increases at larger

deformation of cornea. Hence, the force increases

from 0.02 to 0.045 N for an increase in the plunging

depth of the cornea from 0.3 to 0.7 mm. The force on

the cornea increases with increasing the IOP of the eye

from 10 to 20 mmHg during tonometry. Plot 1

concludes that force on the cornea is increased by

approximately 0.004 N for every 5 mmHg increase in

IOP of the eye.

The research work is carried out with a design of a

standard tonometer of size 1.7 mm diameter and also

by considering the standard tonometer such as Gold-

mann applanation tonometer. The simulation is

repeated with Goldmann Applanation tonometer of

3.06 mm diameter, at 20 mmHg IOP of eye and by

varying the plunging depth of the cornea from 0.3 to

0.7 mm in the steps of 0.1 mm along the direction

towards retina. The reaction force experienced by the

Goldmann applanation tonometer for providing the

plunging depth of cornea from 0.3 to 0.7 mm in steps

of 0.1 mm was found out to be 0.028956 N,

0.031776 N, 0.034597 N, 0.037417 N and

0.040237 N, respectively. The results are very close

to the observations obtained with the tonometer of

1.7 mm diameter. The results prove that the force of

applanation on cornea depends on the IOP of eye and

the area under the influence of force of applanation and

is independent of the dimensions of the tonometer.

Also, the force of applanation on cornea varies linearly

with respect to the deformation of cornea.

The limitation of the study is that the simulation

approach has not considered the flow of aqueous

humor in the anterior chamber of the eye to develop

the required pressure in the eye.

Plot 1 Force (Newton) exerted on cornea by tonometer for varying deformation of cornea (mm)
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Validation

For the validation of the eye model and simulation

results, the experimental results from [32] was

considered. The experiment was performed by [32],

where corneal indentation device is indented on the

eye results in displacement over the surface of cornea.

Similarly, in simulation approach, plunger of the

tonometer applies fixed displacement on the surface of

eye and the corresponding force output is observed.

The experimental data and the simulation data are

compared in Fig. 4. The slope of the data is compared

to determine the error. The plot does not lie on each

other because of the material properties of tonometer

and properties of the eye model will differ from actual

eye and indentation device. The plunger used in the

experimental study has a diameter of 20 mm, hence

the simulation plunger was altered to 2 mm diameter.

The average error is 20.055%.

Conclusion

The outcome of the research is that a maximum force

of up to 0.045 N will be applied on the cornea during

tonometry with a standard tonometer while the IOP is

in the normal range. The analysis has also resulted in

quantifying the stress to be 0.2 MPa on the cornea at

the junction during tonometry while IOP is in the

normal range. The plot of the amount of deformation

on the entire surface of the cornea and sclera are

measured accurately while performing tonometry. The

stress experienced by the cornea at the junction of

cornea and tonometer is assessed in the course of

tonometry.

In the present study, the force on the cornea is

evaluated based on the size of the probe and the

amount of deformation of the cornea. In the future may

be utilized for the design of new technology develop-

ment of tonometer or can also be implemented as an

additional constituent in any working tonometer. The

results can also be utilized as feedback to determine

the amount of force applied on the cornea in all the

clinical eye testing procedures and if it is increased can

act accordingly. In the future, the circulation of

aqueous humor in the anterior chamber could be

considered for the accurate analysis of the simulation

work.
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