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Abstract: More than two years on, the COVID-19 pandemic continues to wreak havoc around
the world and has battle-tested the pandemic-situation responses of all major global governments.
Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to
heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In
this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges
of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It
is hoped that in addition to investigating COVID-19, the logistics deployed within this project
will be applicable to other infectious agents, pandemic-type situations, and also other complex,
non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of
the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then
discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the
aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry
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(MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the
data and make meaningful discoveries, with the final aim being the translation of these discoveries
into the clinics to improve patient care.

Keywords: COVID-19; post COVID condition; proteomics; metabolomics; genomics; metagenomics;
transcriptomics; network medicine

1. Introduction
1.1. Clinical Problem and Phenotype Definition

COVID-19 is a multisystemic disease that is characterized by a complex heterogenous
clinical pattern—the so called “infectious phenotype”. In the time since its initial outbreak
in Wuhan at the end of 2019, the pathogen responsible for this disease, SARS-CoV-2, has
spread to every country on Earth, infecting over 500 million people, and leading to the death
of over 6 million people [1]. COVID-19 symptoms can range from asymptomatic/mild
in about 80% of cases, to severe illness in around 5% of cases, potentially resulting in
death (exact percentages depending on infectious variant and underlying immunity) [2].
Although vaccinations and improved patient care have greatly reduced the burden of
this disease, fatality rates still remain extremely high with a global average of 138 deaths
per 100,000 population; for reference, influenza, which is often compared to COVID-19,
accounts for between 4.1 and 9.3 deaths per 100,000 [3,4].

1.1.1. Susceptibility to SARS-CoV-2 and Clinical Presentations

Once SARS-CoV-2 infection is established, viral replication begins within the nasopha-
ryngeal mucosa before spreading towards the lower respiratory tract. The trimeric spike (S)
protein, which covers the surface of SARS-CoV-2, binds to the host cell receptor angiotensin-
converting enzyme 2 (ACE-2) and mediates viral cell entry [5]. Through this mechanism,
SARS-CoV-2 is capable of infecting host tissues within the lungs, where ACE-2 is highly
expressed, as well as other tissues which express ACE-2 such as the heart, kidneys, liver,
and brain [6,7].

Among symptomatic patients, the lungs are the organs most affected by the disease,
causing respiratory failure which may progress to acute respiratory distress syndrome
(ARDS) requiring mechanical ventilation. This is frequently accompanied by an over-
whelming inflammatory reaction (cytokine storm) [8,9]. Risk factors of clinical severity
and fatality have been identified and include older age and/or comorbidities, of which
diabetes, obesity, hypertension, cardiovascular, and chronic kidney diseases are the most
frequent [10]. Intriguingly, phenotype variability goes beyond severity: clinical data have
promptly demonstrated that COVID-19 is a multisystem disease and can present with
thrombo-embolic, kidney or neurological symptoms [11–13].

1.1.2. Post COVID Condition

Most COVID-19 patients with mild to moderate disease progressions will usually
recover after two to three weeks, but those patients presenting with severe disease usually
take at least six weeks to recover. Around 54% and 34% of hospitalized and non-hospitalized
patients respectively, will then continue to persist with COVID-19-related symptoms, most
commonly including fatigue and muscle weakness, dyspnea, joint and chest pain, and
neurocognitive impairment [14,15]. Interestingly, a literature report from the Belgian Health
Care Knowledge Center showed an increasing trend of the incidence of displaying post
COVID symptoms depending on study follow-up, with a median incidence of 17% (non-
hospitalized patients) and 50.9% (hospitalized patients) at 1–3 months, increasing to 25%
(non-hospitalized patients) and 62% (hospitalized patients) at 6 months+ follow up [16].

Several studies put the incidence of displaying persistent post COVID symptoms
between 30% and 90% at 6 months past initial disease onset [17]. The pathogenesis of post
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COVID condition is still unclear, but it has been observed to more likely affect patients
that suffered severe COVID-19 or those that required hospital admission [18]. A higher
incidence is also seen in patients that presented with more than five symptoms during
the acute phase of the disease, female patients, obese patients, and those patients with
diabetes [19].

Recently, a multi-omic study with a focus on single-cell-omics by Su et al. [20] in-
vestigated post COVID conditions at between 2- and 3-months post COVID-19 diagnosis.
They reported 61% of patients to have at least one symptom and also reported four main
risk factors to develop post COVID symptoms: type 2 diabetes, reactivated EBV, auto-
antibodies, and SARS-CoV-2 blood viral load. These risk factors have the potential to be
used to predict patient risk to developing post COVID condition if measured at diagnosis.
For example, around half of the patients exhibited auto antibodies at follow-up, also had
them at diagnosis, yet the vast majority of these patients did not have any documented
autoimmune conditions, suggesting the presence of a pre-existing subclinical condition in
these patients. In addition to these risk factors, the study was also able to group patients
into four distinct immune endpoints: type 1, type 2, intermediate, and naïve. These end-
points were characterized by unique immune system responses, COVID-19 disease severity,
and risk of developing post COVID condition. However, one major drawback to this study
was the lack of a genomic aspect, and so any links between host genomics and presence of
auto-antibodies or patient immune endpoint groupings cannot be inferred.

In another study looking to identify predictors of post COVID condition, by
Cervia et al. [21], a specific immunoglobulin signature during COVID-19 infection was
identified in patients who later went on to develop post COVID condition. Using this
signature in combination with certain clinical factors, the team were thus able to develop a
post COVID prediction model for hospitalized patients.

These studies add to mounting research suggesting post COVID condition is a result of a
mix of viral and host factors, such as the host microbiome or residual inflammation [22,23], and
highlight the necessity of large scale multi-omic investigations that are able to consider host
and viral factors in the context of the genomics, transcriptomics, proteomics, metabolomics,
and metagenomics.

1.2. Previous Research and Gaps in Knowledge

The high morbidity and mortality rates of SARS-CoV-2 since the beginning of the pan-
demic have gradually fallen through a combination of vaccines, milder viral strains, and the
rapid translation of research to clinical settings. Currently, most governments are relying
on their vaccination programs to reduce the strain on their healthcare systems. Yet, with
the continued emergence of new variants of concern presenting with antibody-escaping
features, hospitalizations and reinfection risks continue to increase whilst vaccine efficacy
decreases over time (especially against symptomatic infections), prompting governments
to recommend “booster shots” in an effort to reinforce their populations immunity [24,25].
In consequence, there is an urgent need to identify and thoroughly map disease pathways
at all levels: from the genome and metagenome, to the transcriptome, proteome, and
metabolome, in order to elucidate SARS-CoV-2 specific therapeutic targets and biomarkers.
Despite the global research effort into COVID-19 pathogenesis, most research tends to
focus on single-omic datasets, such as the genome or proteome; even the few articles that
have adopted a multi-omic design tend to only investigate two [26–28] or three [29–31]
omic-levels. This has led to many gaps in our knowledge of COVID-19 pathogenic path-
ways, whereby parts of a pathway have been identified, but upstream and downstream
consequences are still unknown. This project thus aims to fill these gaps using an unbi-
ased approach to discover novel therapeutic targets and vaccination strategies as well as
predictive/prognostic biomarkers.
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1.2.1. Viral Genome

Owing to its proofreading gene, nsp14, SARS-CoV-2 is characterized by a stable
genome [32]. Nevertheless, as SARS-CoV-2 continues to circulate around the world, muta-
tions and variants have emerged. Regarding some notable current and previous variants of
concern (as of 01/06/22): Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2)
have all shown increased transmissibility and severity [33–37], whilst for the Omicron vari-
ants (BA.1 and BA.2), transmissibility is also increased, but severity appears to be reduced,
especially among populations with a high level of immunity [38–42]. The most recently
added variants, two more Omicron variants, BA.4 and BA.5, first detected in South Africa
in January and February 2022 respectively, have since become the dominant variants there,
while the Portuguese National Institute of Health estimated that BA.5 accounted for around
37% of positive cases in Portugal as of 8 May 2022, and the ECDC suggests it will likely
become the dominant variant in Europe within the next few months [43]. The observed
growth advantage of these lineages is likely due to improved immune evasion compared to
previous omicron variants, resulting in increased transmissibility, but no observed impact
on severity [44,45]. This appears to be in line with the virulence-transmissibility evolution-
ary trade-off theory whereby it is expected that the emergence of new dominating viral
variants will favor increased transmissibility over virulence.

Initial research into viral variant pathogenicity seems to suggest they induce distinct
humoral responses and transcriptional profiles [46,47]. However, more research is required
in order to identify variant-specific molecules for therapeutic and sanitary countermeasures.

1.2.2. Nasopharyngeal Microbiome

For COVID-19 patients, pathogenic respiratory co-infections have been found fre-
quently in a number of studies, with between 7–14% of hospitalized patients presenting
with bacterial co-infections [48,49]. For those patients admitted to the ICU, this number has
been seen to rise up to 41% of patients presenting with secondary co-infections, although
other studies have also noted lower numbers of 13.9% for ICU patients [50,51]. However,
most studies only include targeted diagnosis and the majority tends to focus on bacteria,
excluding co-infections of viruses, archaea, and fungal species which make up a sizeable
proportion of the microbiome diversity.

Conversely, metagenomic high throughput sequencing (mHTS) has the ability to
unbiasedly detect all microorganisms in a sample, providing extra information on the
composition of the microbiome. Using such methods, the diversity of the respiratory
microbiome in COVID-19 patients has been observed to decrease by 38% compared to
healthy individuals, with a decrease in commensal bacteria and an increase of opportunistic
pathogens [52]. Due to a lack of multi-omic studies investigating both host -omics and the
microbiome, the consequences of this dysbiosis on COVID-19 progression and severity is
yet to be fully characterized. It could be that opportunistic pathogens further exacerbate
lung damage, or, it may be due to a reduction in commensal species involved in priming
the innate immune system, weakening the patient’s immune response [53].

Further, recent evidence has found the microbiome to strongly influence the metabolome
around the body and has been associated with cardiovascular disease, drug response, and
asthma [54–56]. Specifically, to COVID-19, it has been seen that respiratory microbiome
changes due to SARS-CoV-2 are associated with transcriptomic differences in several metabolic
pathways [57]. This perhaps reflects metabolomic differences associated with COVID-19
pathogenesis and severity, but as no multi-omic studies have been conducted to investigate
this link between the metabolome and microbiome, this currently remains speculation.

1.2.3. Host Transcriptome

In COVID-19 patients, suppression of interferon (IFN) response has emerged as a
major clinical determinant, with a complete loss of response associated with the most
severe cases; a key differentiator from severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS) [58–60]. The non-structural proteins NSP
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1, 8, 9, and 16, have been indicated as partially responsible for this phenomenon via
global suppression of mRNA splicing and translation, and via interfering with membrane
trafficking of proteins [61]. Further, enhanced nuclear factor kappa-B (NF-kB) signaling,
through a number of SARS-CoV-2 upregulated pathways, has been shown to lead to
excessive inflammation, with inhibition of such molecular processes resulting in alleviation
of severe symptoms [62–64]. However, more research is required to better understand
these aforementioned pathways in the context of COVID-19 pathogenesis, particularly AGE-
RAGE signaling which is associated with COVID-19 comorbidities and consequences like
diabetes, inflammatory disease, and acute respiratory distress syndrome (ARDS) [63,65–67].
Also, of interest is the olfactory transduction pathway which is significantly activated
during COVID-19 disease; dysfunction of this pathway (resulting in the loss of smell
symptom) has been associated with faster recovery, perhaps due to the ultra-rapid antiviral
response observed in olfactory receptor neurons [63,68–70]. This link begs further study,
and may partially explain why older patients who tend to poses fewer such neurons, have
a suppressed earlier antiviral response and higher disease severity in general.

Additional explanations for the increased severity seen in older populations come in
the form of age-induced differences in gene expression. Both TMPRSS2 and ACE2, receptors
recognized by the SARS-CoV-2 spike protein, show an increased expression with age in
mammals, which may be partially responsible for the increased disease severity seen in these
patients [71]. Further to this, a study by Mercatelli et al. [72], identified significant overlaps
between SARS-CoV-2 interacting proteins and host age-related proteins, with viral infection
affecting aging molecular mechanisms centered around eight proteins. Of these proteins, EEF2,
NPM1, HMGA1, APEX1, and CHEK1, were found to have an age-dependent modulation in
the lung tissues of males, whilst APEX1 was shown to have an age-dependent modulation in
females. Such findings suggest a potential mechanism by which age-/sex-dependent severity
of COVID-19 may manifest.

Other dysregulated genes include ACO3, ATL3, S100A8, S100A9, IL-1B, IL-6, IL-8,
TXNIP, ARRDC3, ACE-2, and the MHC-II family of genes, and remain of interest due
to their roles in cytokine storm development, inflammation, antigen presentation, viral
replication, and immune evasion; 416 genes in total were seen to be deregulated specifically
due to SARS-CoV-2 in a transcriptomic analysis [73–78]. This gene dysregulation is likely
linked to adherent ncRNA dysregulation also seen in SARS-CoV-2 infections [79–81]. Viral
transcript interaction with human ncRNA, as well as viral ncRNA, can enhance viral
evasion of the immune system, enhance replication, promote transcript stability, and/or
produce alternative transcripts to enhance virulence [82,83]. Specifically, ORF-6, -7a, and -7b
contain complementary sequences to a number of ncRNAs involved in the innate/acquired
immune response, antibody production, vaccine response, disease severity, and metabolic
pathway activation [84–88]. The association of these viral transcripts to human ncRNAs
has mainly been demonstrated in silico and remain to be studied in vivo/in vitro.

For further analysis of mRNA and ncRNA, multi-omic studies featuring transcriptomic
and proteomic natures will be essential due to the lack of correlation between the two-omic
levels, as observed in numerous studies [89–95].

1.2.4. Host Proteomics and Metabolomics

The dysregulation seen within the genome, transcriptome, and microbiome, is also
reflected in the proteome and metabolome. This dysregulation can lead to the identi-
fication of circulating biomarkers which play critical roles in clinical decision making.
Indeed, a number of studies have investigated protein/metabolite biomarkers in relation to
COVID-19, identified those that are differentially expressed, and presented molecular sig-
natures that can either differentiate severity or predict progression [96]. However, although
these molecular signatures tend to relate to similar pathways, such as platelet degranula-
tion, complement, or coagulation, the specific protein/metabolite patterns in each study
are almost never in agreement. This is perhaps related to the tendency of these studies to
use lower patient numbers (ranging between 8 and 69) or to use targeted identification
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techniques [97–105]. Unbiased, shotgun mass spectrometry techniques with larger patient
numbers could potentially overcome this discordance, and result in much more applicable
biomarker patterns. Additionally, a multi-omic exploration of such a cohort would be
able to identify biomarkers across all strata, further strengthening the credibility of such
observed molecular patterns.

1.2.5. Host Genomics

Numerous genome studies have been launched by a variety of institutions. From these
studies, several genes/loci have been identified to impact the etiology of COVID-19; of note
is the 3p21.31 locus, OAS 1/2/3 located at 12q24.13, and the ABO loci which were highlighted
early on in the COVID-19 pandemic [106]. Both 3p21.31 and 12q24.13 carry haplotypes of
Neanderthals origin, which tend to be more difficult in terms of disentangling the causal
genetic variants due to their size (often spanning tens of thousands of bases) [107,108].

The protective OAS 1/2/3 alleles on 12q24.13, which confer around a 23% reduction
in the risk of becoming critically ill from COVID-19 [109]. These genes encode enzymes
catalyzing short polyadenylate synthesis, this subsequently activates ribonuclease L which
degrades intracellular double-stranded RNA and triggers other antiviral mechanisms [110].
A medallion randomization study found higher levels of circulating OAS 1 levels were
associated with the observed reduced risk, whilst other transcriptome-wide evidence
suggested a stronger association with OAS 3 levels [111,112]. However, a recent study
pinpoints to a SNP at rs10774671, located in a splice acceptor site at exon 7 of OAS 1 [109].
Polymorphisms at this site determines the length of the protein encoded by OAS 1, with the
protective allele (G) resulting in a longer and more active enzyme, increasing ribonuclease
L activation and antiviral countermeasures.

Moving onto the locus 3p21.31, a major common risk factor is rs10490770. Carriers of
the risk allele (C) are at increased risk of all-cause mortality and development of COVID-19
complications such as severe respiratory failure, venous thromboembolism, and hepatic
injury [113]. An age dependent impact was also observed, with a more pronounced effect
of the risk allele observed in individuals under 60 years of age. Importantly, this risk allele
is commonly seen among European (allele frequency = 14.4%) and South Asian (allele
frequency = 47.1%) populations, as well as in Admixed Americans, African, and East
Asian populations to a lesser extent (allele frequency = 9.5%, 2.4%, and 0.4% respectively).
Although specific causal links for 3p21.31 are not yet established, evidence points to variants
of SLC6A20 (which interacts with ACE2) and CXCR6 (involved in T-cell recruitment) to
explain the increased susceptibility and severity [114].

For the ABO locus, blood group O has been correlated with reduced susceptibil-
ity, perhaps attributed to anti-A IgG protection [106,115,116]. Other highlighted genetic
risk factors include INFAR2, DPP9, TYK2, ACE2, and the HLA gene family [111,117,118].
These genes are all involved in immune signaling, antigen presentation, and/or cell entry
receptors [119–121].

One of the largest genome sequencing studies, which investigated over 7000 critical
COVID-19 cases and almost 50,000 controls was able to identify 16 new COVID-19 asso-
ciated variants [122]. Five of these variants have direct roles in interferon signaling, this
includes a probable destabilizing amino acid substitution in IFNA10, as well as another
variant resulting in a reduction of a subunit of its receptor, IFNAR2. The results of the study
provide robust evidence that reduced interferon signaling increases patient susceptibility
to developing critical COVID-19. In addition to this, the study also identified variants
of genes controlling levels of coagulation factor VIII to be associated with critical illness,
which may explain some of the clotting abnormalities seen in severe COVID-19.

For most variants and genes associated with COVID susceptibility/severity, questions
remain surrounding their causal links with the disease, and how changes within the genome
reflect disease pathogenesis within the patient.
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1.2.6. Network Integration

Classical reductionism continues to be challenged amid mounting evidence of the
importance of looking instead at the numerous interactions between biological components.
Previously, such a narrow approach was demanded due to the limitations in data collec-
tion and analysis. Now however, multi-omic data can be integrated via computational
networks and analyzed to better explain classification, improve predictions, or understand
complex molecular pathways that would remain hidden for single-omic studies [123–125].
Song et al. [126] has demonstrated the benefits of such an approach in a study that identified
two FDA-approved drugs suitable for repurposing to treat cardiovascular calcification,
a pathology that has been under investigation for over 80 years. Previous attempts of
this approach in the context of COVID-19 has resulted in improved therapeutic options,
novel biomarkers, and enhanced pathophysiological knowledge, yet most studies featured
low patient numbers and only included limited biological strata [28–30,104]. Below we
present the largest, most detailed multi-omic analysis of a COVID-19 patient cohort to
date, featuring data from all levels (host and viral genome, transcriptome, metagenome,
proteome, and metabolome). Such an effort holds the promise of revealing novel compo-
nents, crucial interactions, and emergent properties of this disease which would otherwise
remain hidden.

2. Materials and Methods
2.1. Cohort Population, Inclusion Criteria, and Sampling Methodology

The general scheme of the clinical study and sample collection is depicted in Figure 1.
Patient recruitment is currently ongoing with a planned 225 total patients and 50 total
controls expected to be recruited from Cliniques Universitaires Saint-Luc (CUSL), Brussels,
Belgium. In addition, patients are also being recruited from other hospitals in the Brussels
and Wallonie region of Belgium in a multi-centric effort, and so total cohort size could
potentially exceed this. The patient population will be split into three groups comprised of
75 individuals each: mild/moderate, severe, and critical. The control population will be
split into two groups: 25 respiratory failure patients and 25 healthy individuals.

Patients will be >18 years old and provide informed consent. COVID-19 status will
be determined via a SARS-CoV-2 RT-PCR test performed on nasopharyngeal (NP) swabs.
Patient grouping will be based on CDC disease severity guidelines [127]. Respiratory
failure controls should have a diagnosis of hypoxemic respiratory failure from an infectious
origin (excluding SARS-CoV-2), and should not have tested SARS-CoV-2 positive within
6 months. Healthy controls should present without respiratory failure (i.e., SpO2 > 93%),
and should not have tested SARS-CoV-2 positive within 6 months.

Biological samples will consist of whole EDTA blood, Tempus™ Blood RNA Tube,
heparinized plasma, and NP swabs, taken in the first instance at the time of patient inclusion
during the acute phase, and at the second instance around three months later. Later time
points may be added for patients beyond three months, however, the principle focus of this
project is the investigation of patients displaying post COVID condition at three months
after diagnosis. All samples will be stored at −80 ◦C until patient recruitment is finished
and the multi-omic analysis begins.
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Sample Size Considerations

In this project, we guarantee complete -omics exploration of 225 patients with ideally,
75 each critically, severely and mildly/moderately ill patients and 50 controls. These
realistic figures are based on sample inventory done while preparing this project and the
ongoing patient recruitment rate at CUSL.

To compare this cohort size to similar multi-omic approaches used in the context of
e.g., Alzheimer [128], cancer [129], or cardiovascular disease [130–132], we can see these
studies tend to be characterized by smaller (n = 25, n = 63, n = 157) or slightly larger patient
cohort sizes (n = 276, n = 364). In addition to this, COVID-19 multi-omic studies also tend
to be characterized by both smaller cohort sizes (n = 14, n = 20, n = 102, n = 209), as well
as the exploration of a reduced number of -omic strata in comparison to this proposed
study [20,28–30]. Further, focusing specifically on post COVID condition, there is again
a tendency for studies to either investigate smaller cohort sizes or cohorts of similar size
(n = 103, n = 106, n = 121, n = 134, n = 143, n = 165, n = 215 [18,21–23,133–135]). Taken
together, it is likely that the size and detail of this study will achieve not just similar, but
also more significant results in comparison to these aforementioned studies.

2.2. Multi-Omic Analysis

All analyses will be conducted on patient samples collected at the point of diagnosis,
as well as on patient samples collected during follow-ups.

2.2.1. Viral Genotyping

Viral RNA will be extracted from the NP swab sample using the QIAamp Viral RNA
Kits (Qiagen, Hilden, Germany). qPCR will be used to assess SARS-CoV-2 viral load, and if
viral load is sufficient for sequencing, library preparation will then be performed using the
Illumina COVIDSeq Kit (Illumina, San Diego, CA, USA), and sequencing will be carried
out on an Illumina NextSeq 1000 system.
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2.2.2. Shotgun mHTS

Both DNA and RNA of bacteria, fungi, and viruses will be extracted from the NP swab
sample using the AllPrep DNA/RNA kit (Qiagen, Hilden, Germany), and the RNA will
then undergo reverse transcription via the QuantiTect Reverse Transcription Kit (Qiagen,
Hilden, Germany). Both DNA and cDNA libraries will be prepared using the Illumina
DNA prep kit (Illumina, San Diego, CA, USA), and sequencing will be carried out on an
Illumina NextSeq 1000 system.

2.2.3. Host Genomics

DNA will be extracted from whole EDTA blood via the QIAamp DNA blood kit
(Qiagen, Hilden, Germany), library preparation will be performed using the Illumina
Truseq DNA Exome kit (Illumina, San Diego, CA, USA), and sequencing will be carried
out on an Illumina NovaSeq 6000 system.

2.2.4. Whole Transcriptomic Shotgun RNAseq

RNA will be extracted from whole blood (Tempus™ Blood RNA Tube (Thermo Fisher
Scientific, Waltham, MA, USA) via the Tempus™ Spin RNA Isolation kit (Thermo Fisher
Scientific, Waltham, MA, USA), followed by in-column DNase treatment using the RNA
Clean & Concentrator™ kit (Zymo Research, Irvine, CA, USA). Library preparation will be
performed using the Illumina Stranded Total RNA Prep (Illumina, San Diego, CA, USA)
and sequencing will be carried out on an Illumina NovaSeq 6000 system.

2.2.5. Classical Shotgun Bottom-Up Proteomic Profiling

Plasma samples will first undergo protein depletion using the TOP 14 Abundant
Protein Depletion kit (Thermo Fisher Scientific, Waltham, MA, USA), using a ratio of
500 µL depletion resin to 18 µL plasma. Once depleted, samples will then be heated
to 95 ◦C for 5 min, cooled, and 300 µL of the sample will be added to a separate LoBind
Eppendorf (Thermo Fisher Scientific, Waltham, MA, USA). DTT will then be added to a final
concentration of 5 mM and incubated at 56 ◦C for 1 h at 1000 RPM agitation (Thermomixer
C). Following this, chloroacetamide will be added to a final concentration of 50 mM and
incubated in the dark at room temperature for 30 min. After incubation, 100% TCA will be
added to a final concentration of 15% and the sample will be vigorously vortexed (10 s) and
spun down, followed by a 30-min incubation on ice. After, the tube will be centrifuged at
4000× g for 5 min, supernatant discarded, and three washes performed as follows: 500 µL
100% acetone added (chilled to −20 ◦C), sonicated at 37 kHz (pulsed) for 2 min, centrifuged
at 4000× g for 5 min, and supernatant discarded. After three repetitions, the tube will
air dry for 10 min under a fume hood to ensure all acetone is removed, and the pellet
reconstituted in 75 µL TEAB 50 mM by two repetitions of sonicating for 2 min and briefly
vortexing (10 s). Finally, trypsin will be added in a 1:50 protease:protein ratio and incubated
overnight at 37 ◦C with 750RPM agitation.

Once incubated, the sample will then be split into fractions using the Pierce high
pH reversed-phase peptide fractionation kit (Thermo Fisher Scientific, Waltham, MA,
USA). Fractions will then be freeze-dried and resuspended in 20 µL 3.5% ACN/0.1% TFA
and finally a total of 1.2 µg peptide in 8 µL of buffer will be analyzed by reverse phase
chromatography coupled to mass spectrometry on an Orbitrap Exploris 240 system coupled
with an Ultimate 3000 RSnano LC system.

2.2.6. Non-Targeted Metabolomic Profiling

A volume of plasma will be added to a LoBind Eppendorf followed by 3 volumes of
100% acetonitrile (MS grade). Samples will then be vortexed vigorously for 10 s and spun-
down, then incubated at −20 ◦C overnight. Following this, samples are then centrifuged
at 10,000× g at 4 ◦C for 10 min, and the upper-phase will be transferred to a new LoBind
tube and mixed gently to homogenize. Then the homogenate will be divided into four
equal parts, transferred to new Eppendorf tubes and dried down on a heating block at
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30 ◦C coupled with a nitrogen flush system. Two tubes will then be resuspended in 50%
ACN/0.1% formic acid for Reverse-phase based UPLC and two tubes will be resuspended
in 95% ACN/0.1% formic acid and 10 mM ammonium formate for HILIC based UPLC.
Samples will then be centrifuged at 10,000× g at 4 ◦C for 5 min, after which, the supernatant
will be transferred to vials ready for injection.

Once samples are ready, they will then be analyzed on a Synapt-XS Q-ToF mass
spectrometer (Waters) calibrated in resolution mode, coupled with an Acquity Premier
UPLC system. Reverse-phase and HILIC samples will be analyzed on the UPLC-Q-ToF
system coupled with an Acquity Premier HSS T3 2.1 × 100 mm, 1.8 µm column (Waters
p/n 186009468) and an Acquity Premier BEH Amide 2.1 × 100 mm, 1.7 µm column (Waters
p/n 186009505), respectively. For both methods, one vial will be analyzed in positive
electrospray mode, and the other will be analyzed in negative ionization mode.

2.3. Network Construction and Multi-Omic Integration

As data are generated, network based statistical methods (such as the nearest neighbor
algorithm) will be used to construct individual networks for each -omic data described
above. A visual for the proposed networks can be seen in Figure 2. Nodes will represent
patients, and the edges connecting them will be based on pairwise similarities of the -omic
data. This will result in patients clustering based on -omic measurements, signaling match-
ing molecular signatures. These clusters will then be annotated with defined phenotypes
and outcomes, for example, patients who did or did not develop critical illness. Differ-
ential analysis of these clusters would then identify molecules/microbes/proteins/genes
presenting different patterns between groups. The final step of multi-omic integration
would consist of fusing all the individual networks together. The networks will be fused
by similarity network fusion (SNF) [136], and a feature ranking scheme [137] will sort the
features according to their network contribution for a specified patient outcome, generating
a ranking list of the most important features/pathways that can be investigated. Such
an approach will not only be used to discover differences between patient groups (i.e.,
mild/moderate vs. severe), but will also be used to find multi-omic differences between
the acute and post-COVID phases of patients, shining a new light on potential causes or
biomarkers of the post COVID sequelae.
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2.4. Clinical Translation

As a continuation of the project, as connections are revealed through the network
construction, annotation, and fusion steps, results will be examined and interpreted in the
light of available clinical and fundamental literature, and will enable the generation of
novel scientific hypotheses. These will be validated through either an independent testing
cohort using targeted assays or through in-house in vitro infection models.

3. Conclusions

In this article we highlight the progresses made in the area of COIVD-19 research in
the context of a multi-omic overview of the disease, discussing transcriptomics, proteomics,
metabolomics, metagenomics, and host and viral genomics. We identify current gaps in the
disease knowledge such as the pathogenesis of post COVID-19 condition, the link between
COVID-19 induced respiratory microbiome changes and transcriptomic differences, and
interactions between viral transcripts and host ncRNA, to list a few. We also identify the
need for more detailed multi-omic studies in the sphere of COVID-19 research.

To bridge these gaps, we have proposed a large scale, explorative, multi-omic study of
a Belgium cohort featuring 225 COVID-19 patients (split evenly between critical, severe,
and mild/moderate phenotypes) and 50 control patients (25 healthy controls and 25 non-
COVID-19 respiratory disease patients). We plan to investigate these patients during
the acute and post-COVID phase at 6 levels of biological strata: the viral genome, the
respiratory microbiome, the host genome, the blood transcriptome, the blood proteome,
and the blood metabolome, using gold standard HTS and mass spectrometry technologies.
The data generated will then be analyzed through a network medicine approach and new
hypotheses will be generated and later validated in follow up experiments.

The aim of such a project is to thoroughly explore the multi-omic state of each patient
during and after SARS-CoV-2 infection, in order to identify previously unknown char-
acteristics, biomarkers, or consequences of COVID-19 disease, with the ultimate aim of
improving patient care. Additionally, we aim to allow the protocols, bioinformatics, and
logistics developed during this project to be rapidly redeployed when another pandemic-
type situation arises, improving novel-disease research efficiency and allowing for rapid
clinical translation.
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