Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2,6,6-Tetrabromo-3,4,4,5-tetramethoxycyclohexanone

Md. Serajul Haque Faizi,^a Ashraf Mashrai^b and M. Shahid^b*

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and ^bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India

Correspondence e-mail: shahid81chem@gmail.com

Received 13 June 2014; accepted 22 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 16.7.

In the title compound, $C_{10}H_{14}Br_4O_5$, synthesized from the methoxy Schiff base *N*-(pyridin-2-ylmethyl)methoxyaniline and molecular bromine, the cyclohexanone ring has a chair conformation with one of the four methoxy groups equatorially orientated with respect to the carbonyl group and the others axially orientated. The C–Br bond lengthsvary from 1.942 (4) to1.964 (4) Å. In the crystal, weak C–H···O_{carbonyl} hydrogen-bonding interactions generate chains extending along the *b*-axis direction. Also present in the structure are two short intermolecular Br···O_{methoxy} interactions [3.020 (3) and 3.073 (4) Å].

Related literature

For the synthesis and applications of 2,2,6,6-tetrabromo-3,4,4, 5-tetramethoxycyclohexanone and related structures, see: Khan *et al.* (2004). For applications of brominated compounds, see: Alaee (2003); Czerski & Szymanska (2005); Cupples *et al.* (2005).

Experimental

Crystal data

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.228, T_{max} = 0.366$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	172 parameters
$wR(F^2) = 0.086$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$
2867 reflections	$\Delta \rho_{\min} = -1.01 \text{ e } \text{\AA}^{-3}$

20265 measured reflections

 $R_{\rm int} = 0.054$

2867 independent reflections

2466 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C3-H3\cdots O1^{i}$ 0.982.413.361 (5)163Summation and a(i)a+3a+1a+1

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenberg & Putz, 2006); software used to prepare material for publication: *DIAMOND*.

The authors are grateful to the Department of Chemistry, Aligarh Muslim University, India for support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2305).

References

- Alaee, M. (2003). Environ. Int. 29, 683-689.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenberg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cupples, A. M., Sanford, R. A. & Sims, G. K. (2005). *Appl. Environ. Microbiol.* **71**, 3741–3746.
- Czerski, J. & Szymanska, J. A. (2005). Int. J. Occup. Med. Environ. Health, 18, 275–279.
- Khan, F. A., Das, J. & Rout, B. (2004). Tetrahedron Lett. 45, 9285–9288.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o826 [doi:10.1107/S160053681401472X]

2,2,6,6-Tetrabromo-3,4,4,5-tetramethoxycyclohexanone

Md. Serajul Haque Faizi, Ashraf Mashrai and M. Shahid

1. Comment

Brominated organic compounds have a broad spectrum of applications. The polybrominated biphenyls, polybrominated diphenylethers and hexabromobenzene are widely used as flame retardants. Other brominated molecules such as 1,4-dibromobenzene (1,4-DBB) and bromoxynil serve as fumigants, as intermediates in the synthesis of dyes, as agrochemicals, pharmaceuticals, or herbicides (Alaee *et al.*, 2003; Czerski *et al.*, 2005; Cupples *et al.*, 2005). Very few examples of the synthesis and applications of compounds similar to the title compound, $C_{10}H_{14}Br_4O_5$, 2,2,6,6-tetrabromo-3,4,4,5-tetramethoxycyclohexanone (TBTM) have been reported in the literature (Khan *et al.*, 2004). Our synthesis of this compound, by the reaction of the Schiff base *N*-(pyridin-2-ylmethyl)methoxyaniline (PMMA) with molecular bromine in methanol has not previously been reported and its structure is reported herein.

In the racemic title compound (Fig. 1), the cyclohexanone ring has a chair conformation with one of the four methoxy groups equatorially oriented with respect to the carbonyl group and the others axially orientated. The C—Br bond lengths are variable [C—Br = 1.946 (4), 1.964 (4), 1.942 (4) and 1.959 (4) Å]. In the crystal, weak intermolecular C—H···O_{carbonyl} hydrogen-bonding interactions (Table 1) generate one-dimensional chains extending along *b* (Fig. 2). Also present in the structure are a number of short intramoleculat Br···O contacts [Br···O, 2.961 (3)–3.169 (4) Å] as well as two short intermolecular Br···O_{methoxy} interactions [Br4···O2ⁱⁱ, 3.020 (3) Å and Br1···O3ⁱⁱⁱ, 3.073 (4) Å] [for symmetry codes: (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x, -y + 1, -z]. The overall packing in the unit cell is shown in Fig. 3.

2. Experimental

Molecular bromine (0.15 g, 1.00 mmol) was added carefully to a methanolic solution (10 mL) of *N*-(pyridin-2-ylmethyl)methoxyaniline (0.20 g, 1.00 mmol). The color of the reaction mixture turned immediately from yellow to red and a yellow precipitate formed after one hour of stirring. The precipitate was filtered off, washed first with acetone then with diethylether and then redissolved in deuterated methanol and kept in an NMR tube for crystallization. Crystals of the title compound suitable for X-ray analysis was obtained within 15 days by slow evaporation of the solvent.

3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.98 ° (methylene) or 0.96 Å (methyl) and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figure 1

The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

Figure 2

The one-dimensional hydrogen-bonded chain structure in the title compound extending along b, with hydrogen bonds shown as dashed lines.

Figure 3

The molecular packing viewed along the *c*-axial direction.

2,2,6,6-Tetrabromo-3,4,4,5-tetramethoxycyclohexanone

Crystal data $C_{10}H_{14}Br_4O_5$ $M_r = 533.81$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.396 (5) Å b = 12.441 (5) Å c = 12.316 (5) Å $\beta = 105.502$ (5)° V = 1535.0 (11) Å³ Z = 4

F(000) = 1016 $D_x = 2.310 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 999 reflections $\theta = 2.6-28.6^{\circ}$ $\mu = 10.50 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.20 \times 0.15 \times 0.12 \text{ mm}$ Data collection

Bruker SMART APEX CCD	20265 measured reflections
diffractometer	2867 independent reflections
Radiation source: fine-focus sealed tube	2466 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.054$
ω scans	$\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Sheldrick, 2004)	$k = -15 \rightarrow 15$
$T_{min} = 0.228, T_{max} = 0.366$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.05	H-atom parameters constrained
2867 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 1.8635P]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.85$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.01$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6442 (4)	0.0403 (3)	0.2171 (3)	0.0253 (8)	
C2	0.7031 (4)	0.1525 (3)	0.2524 (3)	0.0244 (8)	
C3	0.6061 (4)	0.2460 (3)	0.2078 (3)	0.0236 (8)	
H3	0.6444	0.3136	0.2429	0.028*	
C4	0.4661 (4)	0.2290 (3)	0.2259 (3)	0.0253 (8)	
C5	0.4051 (4)	0.1254 (3)	0.1655 (3)	0.0231 (8)	
H5	0.3972	0.1352	0.0850	0.028*	
C6	0.4933 (4)	0.0256 (3)	0.2045 (3)	0.0245 (8)	
C7	0.6279 (5)	0.3481 (3)	0.0472 (4)	0.0381 (11)	
H7A	0.6112	0.3431	-0.0331	0.057*	
H7B	0.7215	0.3594	0.0805	0.057*	
H7C	0.5784	0.4073	0.0657	0.057*	
C8	0.3675 (5)	0.2322 (5)	0.3844 (4)	0.0517 (14)	
H8A	0.3942	0.2343	0.4652	0.078*	
H8B	0.3162	0.1683	0.3597	0.078*	
H8C	0.3141	0.2943	0.3561	0.078*	

C9	0.4060 (5)	0.4176 (4)	0.2142 (5)	0.0489 (13)	
H9A	0.3407	0.4663	0.1706	0.073*	
H9B	0.4933	0.4387	0.2097	0.073*	
H9C	0.4029	0.4193	0.2914	0.073*	
C10	0.1701 (5)	0.1231 (5)	0.0796 (5)	0.0619 (17)	
H10A	0.0869	0.1052	0.0951	0.093*	
H10B	0.1814	0.0800	0.0182	0.093*	
H10C	0.1699	0.1978	0.0599	0.093*	
01	0.7121 (3)	-0.0326 (2)	0.2003 (3)	0.0409 (8)	
O2	0.5874 (3)	0.2513 (2)	0.0895 (2)	0.0273 (6)	
O3	0.3779 (3)	0.3107 (2)	0.1706 (3)	0.0322 (7)	
04	0.4841 (3)	0.2319 (3)	0.3426 (2)	0.0336 (7)	
05	0.2763 (3)	0.1030 (2)	0.1766 (3)	0.0346 (7)	
Br1	0.76975 (4)	0.15408 (4)	0.41548 (4)	0.03859 (15)	
Br2	0.86086 (4)	0.16954 (4)	0.19556 (5)	0.04340 (15)	
Br3	0.48249 (5)	-0.02879 (4)	0.35148 (4)	0.03964 (15)	
Br4	0.42888 (5)	-0.08868 (3)	0.09570 (4)	0.03854 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.028 (2)	0.028 (2)	0.0225 (19)	0.0045 (17)	0.0103 (16)	0.0020 (16)
C2	0.0189 (19)	0.031 (2)	0.026 (2)	0.0010 (15)	0.0107 (16)	-0.0048 (16)
C3	0.0242 (19)	0.0233 (19)	0.0241 (19)	-0.0026 (15)	0.0077 (16)	-0.0036 (15)
C4	0.0220 (19)	0.032 (2)	0.0231 (19)	0.0070 (16)	0.0088 (16)	-0.0032 (17)
C5	0.0210 (19)	0.029 (2)	0.0227 (19)	-0.0029 (16)	0.0120 (16)	0.0013 (16)
C6	0.028 (2)	0.026 (2)	0.0216 (18)	0.0004 (16)	0.0100 (16)	0.0013 (15)
C7	0.042 (3)	0.034 (2)	0.040 (3)	-0.0062 (19)	0.014 (2)	0.004 (2)
C8	0.044 (3)	0.079 (4)	0.041 (3)	0.012 (3)	0.028 (2)	-0.008 (3)
C9	0.051 (3)	0.031 (3)	0.065 (3)	0.013 (2)	0.016 (3)	-0.014 (2)
C10	0.020 (2)	0.092 (4)	0.067 (4)	-0.012 (3)	-0.001 (2)	0.032 (3)
01	0.0357 (17)	0.0313 (17)	0.058 (2)	0.0098 (13)	0.0158 (15)	-0.0045 (15)
O2	0.0300 (15)	0.0288 (15)	0.0262 (14)	-0.0063 (12)	0.0129 (12)	-0.0037 (11)
O3	0.0279 (15)	0.0296 (15)	0.0391 (16)	0.0100 (12)	0.0092 (13)	-0.0027 (13)
O4	0.0319 (16)	0.0483 (18)	0.0256 (15)	0.0072 (13)	0.0161 (13)	-0.0052 (13)
O5	0.0206 (14)	0.0475 (19)	0.0388 (17)	-0.0042 (12)	0.0134 (13)	0.0066 (14)
Br1	0.0321 (2)	0.0495 (3)	0.0289 (2)	0.00714 (19)	-0.00106 (18)	-0.00593 (19)
Br2	0.0262 (2)	0.0488 (3)	0.0627 (3)	0.00206 (18)	0.0249 (2)	0.0017 (2)
Br3	0.0440 (3)	0.0459 (3)	0.0336 (2)	0.0030 (2)	0.0184 (2)	0.0132 (2)
Br4	0.0484 (3)	0.0277 (2)	0.0401 (3)	-0.01180 (18)	0.0127 (2)	-0.00577 (18)

Geometric parameters (Å, °)

C1—01	1.201 (5)	С7—О2	1.420 (5)	
C1—C2	1.540 (6)	C7—H7A	0.9600	
C1—C6	1.545 (5)	C7—H7B	0.9600	
C2—C3	1.540 (5)	C7—H7C	0.9600	
C2—Br1	1.942 (4)	C8—O4	1.439 (5)	

supporting information

C2—Br2	1.959 (4)	C8—H8A	0.9600
C3—O2	1.419 (5)	C8—H8B	0.9600
C3—C4	1.545 (5)	C8—H8C	0.9600
С3—Н3	0.9800	С9—ОЗ	1.434 (5)
C4—O4	1.399 (5)	С9—Н9А	0.9600
C4—O3	1.416 (5)	С9—Н9В	0.9600
C4—C5	1.537 (6)	С9—Н9С	0.9600
C5—O5	1.410 (5)	C10—O5	1.415 (6)
C5—C6	1.542 (5)	C10—H10A	0.9600
С5—Н5	0.9800	C10—H10B	0.9600
C6—Br4	1.946 (4)	C10—H10C	0.9600
C6—Br3	1.964 (4)		0.9000
	1.904 (4)		
01—C1—C2	121.7 (4)	C1—C6—Br3	104.8 (2)
O1—C1—C6	121.4 (4)	Br4—C6—Br3	106.80 (19)
C2—C1—C6	116.9 (3)	O2—C7—H7A	109.5
C1—C2—C3	114.2 (3)	O2—C7—H7B	109.5
C1—C2—Br1	107.8 (3)	H7A—C7—H7B	109.5
C3—C2—Br1	112.3 (3)	O2—C7—H7C	109.5
C1-C2-Br2	107.7 (3)	H7A—C7—H7C	109.5
C3-C2-Br2	108.8 (3)	H7B—C7—H7C	109.5
Br1—C2—Br2	105.50 (18)	O4—C8—H8A	109.5
02-C3-C2	107.3 (3)	04—C8—H8B	109.5
02 - C3 - C4	106.2 (3)	H8A—C8—H8B	109.5
$C_2 - C_3 - C_4$	113.4(3)	O4-C8-H8C	109.5
02—C3—H3	109.9	H8A - C8 - H8C	109.5
C2—C3—H3	109.9	H8B - C8 - H8C	109.5
C4—C3—H3	109.9	O3 - C9 - H9A	109.5
04-C4-03	111 5 (3)	$O_3 - C_9 - H_9B$	109.5
04-C4-C5	1164(3)	H9A - C9 - H9B	109.5
03-04-05	103.8(3)	$\Omega_3 - C_9 - H_9C$	109.5
04 - C4 - C3	105.8(3)	H9A - C9 - H9C	109.5
03-04-03	105.0(3)	H9B - C9 - H9C	109.5
$C_{5} - C_{4} - C_{3}$	109.1(3)	05-C10-H10A	109.5
05-05-04	109.1(3) 113.5(3)	05 - C10 - H10R	109.5
05 - 05 - 04	108.2(3)	H_{10A} C_{10} H_{10B}	109.5
C_{4}	100.2(3)	05-C10-H10C	109.5
05 C5 H5	107.3	$H_{10A} = C_{10} = H_{10C}$	109.5
C_{4} C_{5} H_{5}	107.3	H10R C10 H10C	109.5
$C_{4} = C_{5} = H_{5}$	107.3	$C_3 O_2 C_7$	116.3 (3)
$C_{5} = C_{5} = C_{15}$	107.5 116.0 (3)	$C_3 = C_2 = C_7$	116.5(3)
$C_{5} = C_{6} = B_{r}A$	10.0(3)	$C_{4} = O_{3} = C_{7}$	110.4(3) 118.2(2)
C_{1} C_{2} C_{1} C_{2} C_{2	107.7(2) 108.0(3)	$C_{-} O_{-} C_{0}$	110.2(3) 1155(3)
C_{1}	1120(3)	05-05-010	115.5 (5)
CJC0DIJ	112.7 (3)		
01 - C1 - C2 - C3	147 2 (4)	C_{3} — C_{4} — C_{5} — C_{6}	567(4)
C6-C1-C2-C3	-33.0(5)	05-C5-C6-C1	-1704(3)
01-C1-C2-Br1	-873(4)	C4-C5-C6-C1	-440(4)
5. CI CL DII	0,.0(1)		

C6—C1—C2—Br1	92.6 (3)	O5—C5—C6—Br4	68.3 (3)
O1—C1—C2—Br2	26.2 (5)	C4C5C6Br4	-165.3 (3)
C6—C1—C2—Br2	-154.0 (3)	O5—C5—C6—Br3	-49.5 (4)
C1—C2—C3—O2	-69.5 (4)	C4C5C6Br3	77.0 (3)
Br1—C2—C3—O2	167.3 (2)	O1—C1—C6—C5	-148.5 (4)
Br2—C2—C3—O2	50.9 (3)	C2-C1-C6-C5	31.7 (5)
C1—C2—C3—C4	47.5 (4)	O1—C1—C6—Br4	-27.3 (4)
Br1-C2-C3-C4	-75.7 (3)	C2-C1-C6-Br4	152.9 (3)
Br2—C2—C3—C4	167.9 (2)	O1—C1—C6—Br3	86.3 (4)
O2—C3—C4—O4	-175.7 (3)	C2-C1-C6-Br3	-93.5 (3)
C2—C3—C4—O4	66.7 (4)	C2—C3—O2—C7	-118.5 (4)
O2—C3—C4—O3	-55.0 (4)	C4—C3—O2—C7	119.9 (4)
C2—C3—C4—O3	-172.6 (3)	O4—C4—O3—C9	50.5 (5)
O2—C3—C4—C5	58.4 (4)	C5—C4—O3—C9	176.6 (4)
C2—C3—C4—C5	-59.2 (4)	C3—C4—O3—C9	-66.7 (5)
04—C4—C5—O5	60.8 (4)	O3—C4—O4—C8	52.1 (5)
O3—C4—C5—O5	-62.2 (4)	C5—C4—O4—C8	-66.7 (5)
C3—C4—C5—O5	-179.7 (3)	C3—C4—O4—C8	172.0 (4)
O4—C4—C5—C6	-62.8 (4)	C4—C5—O5—C10	105.2 (5)
O3—C4—C5—C6	174.3 (3)	C6-C5-O5-C10	-128.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O1 ⁱ	0.98	2.41	3.361 (5)	163

Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.