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Abstract: We numerically investigate spin-controlled vertical-cavity surface-emitting lasers (spin-
VCSELs) for local oscillators, which are based on an injection locking technique used in coherent
optical communications. Under the spin polarization modulation of an injection-locked spin-VCSEL,
frequency-shifted and phase-correlated optical sidebands are generated with an orthogonal polar-
ization against the injection light, and one of the sidebands is resonantly enhanced due to the linear
birefringence in the spin-VCSEL. We determine that the peak strength and peak frequency in the
spin polarization modulation sensitivity of the injection-locked spin-VCSEL depend on detuning
frequency and injection ratio conditions. As a proof of concept, 25-Gbaud and 16-ary quadrature
amplitude modulation optical data signals and a pilot tone are generated, and the pilot tone is
used for the injection locking of a spin-VCSEL. An orthogonally-polarized modulation sideband
generated from the injection-locked spin-VCSEL is used as a frequency-shifted local oscillator (LO).
We verify that the frequency-shifted LO can be used for the homodyne detection of optical data
signals with no degradation. Our findings suggest a novel application of spin-VCSELs for coherent
optical communications.

Keywords: vertical-cavity surface-emitting laser; spin polarization; injection locking; local oscillator;
coherent optical communication

1. Introduction

Coherent optical communication systems have been gaining attention due to their
benefits in a coherent detection scheme in combination with high-speed digital signal
processing (DSP) for improving signal detection accuracy, frequency utilization efficiency,
and tolerance to signal distortion [1,2]. In these systems, optical data signals are received
in a coherent manner using a local oscillator (LO), and a coherent receiver in which in-
phase and quadrature-phase components of the optical data signals can be detected. Thus,
advanced modulation formats such as quadrature amplitude modulation (QAM), which
have a high frequency utilization efficiency compared with the conventional on-off keying,
can be used. A synchronization between the LO and the optical data signals can be obtained
by using phase estimation techniques based on DSP at the receiver side [3–5]. However,
large computations are required of the DSP when the modulation format is complex due
to multi-level patterns, so hardware-based synchronization schemes are ideal in this case.
Optical phase-locked loop (OPLL) circuits have been widely investigated for obtaining the
synchronization in coherent optical communications [6,7]. However, conventional OPLL
circuits are generally complex, and obtaining a wide bandwidth for the feedback loop is
difficult. Additionally, both the OPLL and the DSP-based phase estimation schemes require
narrow linewidth lasers for reducing the phase noise of the optical data signals, which
leads to an increase in system cost.

We consider an injection locking scheme in which a semiconductor laser operating
as an LO is injection-locked to a pilot tone transmitted with optical data signals. Synchro-
nization can be carried out easily as this scheme does not require a narrow linewidth laser
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on the receiver side [8–10]. Liu et al. reported on the injection locking of a semiconductor
laser to a residual optical carrier of orthogonal frequency division multiplexing signals and
homodyne detection of the signals [9]. Although the use of the residual optical carrier for
the injection locking is straightforward for the homodyne detection, a guard band in the
optical data signals and detuned operation of a dual-parallel Mach–Zehnder modulator
(DP-MZM), which leads to distortion of the optical data signals, are necessary. To circum-
vent these drawbacks, a combination of the injection-locked LO and a frequency shifter
have been reported [10]. Hereafter, we refer to such an LO as a frequency-shifted LO.

A schematic of the coherent optical communication system based on the frequency-
shifted LO is shown in Figure 1. A pilot tone is added to data signals on the transmitter
side and used for the injection locking of a semiconductor laser on the receiver side. The
injection-locked semiconductor laser can be used as an LO for heterodyne detection with a
frequency separation of |ftone − fc|, where ftone and fc are pilot tone frequency and center
frequency of the data signals, respectively. However, heterodyne detection requires wide-
band electrical components, which is unsuitable for high-baud-rate communications. As
shown in Figure 1, homodyne detection is feasible when the frequency of the injection-
locked semiconductor laser is shifted by fm using a frequency shifter (FS) to compensate
for the frequency separation of |ftone − fc|. This method is applicable to the homodyne
detection in the coherent optical communications and to carrier frequency conversion in
beyond-5G wireless communications [11]. However, the configuration of a frequency-
shifted LO, which requires a costly and complex FS, can be further simplified.
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Figure 1. Schematic of coherent optical communication system based on frequency-shifted LO.

An approach to simplifying the frequency-shifted LO is to use the modulation side-
band of directly modulated lasers (DMLs) to shift the LO frequency without using the FS.
In particular, the photon-photon resonance effect, which occurs in external cavity struc-
tures and increases modulation sensitivity at high frequencies [12–15], may be useful for
generating modulation sidebands with a high frequency separation. However, one of the
modulation sidebands needs to be extracted by using a narrow-band optical filter, which is
unsuitable for simplifying the configuration.

The approach we propose in this study is the use of spin-controlled vertical-cavity
surface-emitting lasers (spin-VCSELs) [16–23]. The up-spin and down-spin electron densi-
ties in an active region can be freely modulated when ferromagnetic electron spin injectors
for each spin-polarized electron are fabricated [24,25]. This results in the unique spin
polarization modulation in which the difference between up-spin and down-spin electron
densities is modulated while the total electron density kept constant. The spin polarization
modulation leads to an increase in modulation sensitivity at high frequencies depending on
linear birefringence in a spin-VCSEL [26–28] and orthogonally-polarized modulation side-
bands [29]. Thus, a lasing frequency of the spin-VCSEL injection-locked to the pilot tone
may be directly shifted with high efficiency and separated from the generated sidebands
by using a simple polarization beam splitter.

In this study, we numerically investigate an application of spin-VCSELs to the frequency-
shifted LO for coherent optical communications. As a proof of concept, we verify that an
orthogonally-polarized modulation sideband generated by the spin polarization modula-
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tion of the injection-locked spin-VCSEL can be used as the frequency-shifted LO for the
pilot-tone-assisted homodyne detection of 25-Gbaud 16-QAM signals.

2. Methods
2.1. Proposed Concept

Figure 2a shows the proposed concept of frequency-shifted LOs based on injection-
locked spin-VCSELs. The spin polarization of injected electrons into a spin-VCSEL is
directly modulated by a sinusoidal signal under the injection locking to an input light with
a linear polarization (x polarization in this case). Since modulation sidebands generated by
the spin polarization modulation have orthogonal polarization against the optical carrier
(DC lasing light component), the sidebands can be easily separated from the optical carrier
by using a polarization beam splitter without a narrow-band optical filter. Additionally,
one of the sidebands can be selectively enhanced by controlling the linear birefringence
of the spin-VCSEL [29]. Therefore, we use the stronger sideband as a frequency-shifted
LO for the homodyne detection of optical data signals. An example device structure of the
frequency-shifted LO with an integrated configuration is illustrated in Figure 2b. The spin-
VCSEL is integrated on a silicon photonics platform, and bottom of the VCSEL’s mirror
consists of a lattice-shaped high-index contrast grating (HCG) instead of a conventional
distributed Bragg reflector (DBR). The HCG can have a variety of characteristics such as a
high-reflectivity and wide-band mirror, depending on its structure [30]. The lattice-shaped
HCG can switch input/output port waveguides in accordance with the polarization of
vertically injected light [31], so the polarization beam splitter in Figure 2a may be integrated
with the HCG. Although obtaining a high polarization extinction ratio for each output port
is challenging, the hybrid integration of the spin-VCSEL will be ideal for practical use.
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2.2. Simulation Model

The spin-flip model [32] has been used for analyzing novel features of spin-VCSELs [33–38].
We used the following spin-flip rate equations, including an external light injection for
simulating injection-locked spin-VCSELs and frequency-shifted LOs in coherent optical
communication systems:

dN±

dt
=

I0 ± Im sin 2π fmt
eV

− vg Ag
N± − Nt

1 + ε|E∓|2
∣∣E∓∣∣2 − N±

τc
± N− − N+

τs
(1)

dE±

dt
=

1
2

[
(1 + jα)

(
Γvg Ag

N∓ − Nt

1 + ε|E±|2
− 1

τp

)
E± +

(
γa − j2πγp

)
E∓
]
− j2π fdE± + κEi (2)

where E+ and E− are electric fields for right-handed (σ+) and left-handed (σ−) circular
polarization modes, and N+ and N− are up-spin and down-spin electron densities. Electric



Micromachines 2021, 12, 573 4 of 11

fields with x and y polarizations (Ex and Ey) are expressed as Ex = (E+ + E−)/2 and Ey
= −j(E+ − E−)/2. Ei is an electric field of the injection light with x polarization, and its
value was set considering a parameter of injection ratio (IR) defined as IR = |Ei|2/(|E+|2

+ |E−|2). Definitions and values of other parameters are shown in Table 1. The parameter
values were taken from 1.55-µm InAlGaAs VCSELs fabricated by RayCan Co., Ltd. (Suzhou,
China) [39–41].

Table 1. Simulation parameters. Ith denotes threshold current.

Symbol Meaning Value

I0 Static current 2 Ith
Im Current modulation coefficient 0.1 × Ith or 1 × Ith
fm Modulation frequency Variable
V Cavity volume 2.5 × 10−18 m3

vg Group velocity 9.3 × 107 m/s
Ag Differential gain coefficient 1.2 × 10−20 m2

Nt Transparency carrier density 3.8 × 1024 m−3

ε Gain compression factor 1.0 × 10−24 m3

τc Carrier lifetime 1.2 ns
τs Electron spin relaxation time 20 ps
τp Photon lifetime 19 ps
α Linewidth enhancement factor 2.8
Γ Confinement factor 0.05
γa Dichroism 0.5 GHz
γp Linear birefringence Variable
fd Detuning frequency Variable
κ Coupling rate 1.2 × 1011 s−1

The spin polarization modulation responses of the injection-locked spin-VCSEL and
a proof-of-concept simulation were investigated using Equations (1) and (2). As shown
in Figure 3a, we assume that the free-running spin-VCSEL is lasing with x polarization
when injected electrons are not spin-polarized, and a detuning frequency of Ei relative to
Ex is defined as ∆f. Under several injection locking conditions, the spin polarization of the
spin-VCSEL was modulated by sinusoidal signals with frequencies of fm, and Im of 0.1 × Ith
was used for analyzing small signal responses. Then, we evaluated the corresponding
modulation responses of degree of circular polarization (|E+|2 − |E−|2)/(|E+|2 + |E−|2).
The concept of frequency-shifted LOs based on injection-locked spin-VCSELs was verified
using the configuration shown in Figure 3b. Optical data signals with a 25-Gbaud 16-QAM
pattern were generated by modulating an optical carrier (Ec) with a DP-MZM model in [42].
A pilot tone (Etone) was used for injection locking of the spin-VCSEL with ∆f of −100 MHz.
This slight detuning was to verify evident injection locking, i.e., a tight synchronization
between the optical data signals and the frequency-shifted LO. Both fm and the frequency
difference between the optical carrier and the pilot tone (fc − ftone) were set to 50 GHz,
and Im of 1 × Ith was used for strong sideband generation. The optical data signals and
modulation sidebands extracted from a polarization beam splitter (i.e., Ey component) are
referred to as Esig and ELO, respectively. A coherent receiver with a 90◦ hybrid was used for
the homodyne detection which extracts in-phase (I) and quadrature-phase (Q) components
of the optical data signals. Finally, I and Q signals were evaluated in a constellation diagram
and its error vector magnitude (EVM). Note that 16-QAM symbols in the constellation
diagram will rotate if injection locking is not achieved due to the 100-MHz detuning. An
ideal LO with frequency equal to fc without injection locking was also tested for comparison
with the frequency-shifted LO based on the injection-locked spin-VCSEL.
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3. Results
3.1. Modulation Response of Injection-Locked Spin-VCSEL

The modulation responses of an injection-locked spin-VCSEL with varying γp and
∆f are shown in Figure 4. An IR of 10 dB was used for these simulations. As shown in
Figure 4a, we verified that the ∆f value affects the resonant peak frequency and resonant
peak strength of the spin polarization modulation response with γp of 30 GHz. This
tendency was also found with γp of 40 and 50 GHz as shown in Figure 4b,c. Figure 4d
shows a summary of the resonant peak frequency and strength of the spin polarization
modulation responses. The higher γp values contributed to increases in both the resonant
peak frequency and strength of the modulation response. Thus, the strong birefringence in
spin-VCSELs is useful for efficiently generating the orthogonally-polarized modulation
sideband. The strong birefringence will be particularly desirable when data signals contain
a wide bandwidth and the resulting frequency difference between the optical data signal
and pilot tone (fc − ftone) requires a high frequency. The ∆f value also affected both the
resonant peak frequency and the strength of the modulation response. ∆f nearly equal
to zero will be the most practical and ideal situation since the locking range reaches the
order of sub-gigahertz under low IRs [43]. Although high IRs are suitable for widening
the locking range of the spin-VCSEL, direct use of a weak pilot tone without any optical
amplifications is desirable for simplicity.
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Figure 4. Spin polarization modulation responses of injection-locked spin-VCSELs calculated with
IR of 10 dB. (a) γp = 30 GHz; (b) γp = 40 GHz; (c) γp = 50 GHz. Black, red, and blue curves indicate
results for ∆f of −5, 0, and 5 GHz, respectively. (d) Resonant peak strengths in relation to resonant
peak frequencies observed in spin polarization modulation responses. Values for ∆f of −5, 0, and
5 GHz are indicated by the circles, triangles, and crosses, respectively. Values for γp of 30, 40, and
50 GHz are grouped by solid, dashed, and dotted curves, respectively.

The spin polarization modulation responses of the injection-locked spin-VCSEL with
different IRs are shown in Figure 5a. ∆f = 0 and γp = 50 GHz were used for these simulations.
A low IR of −10 dB increased both the resonant peak frequency and the strength of the
modulation response compared with when a high IR of 10 dB was used. Moreover, the
response shape with a fairly low IR of −40 dB almost overlapped with that under the
free-running condition. This tendency is reasonable because the free-running condition
is a lower limit of the IR, and the resonant peak frequency is dominated by the γp value.
Polarization-resolved optical spectra of the injection-locked spin-VCSEL with the IR of
−40, −10, and 10 dB under spin polarization modulation are shown in Figure 5b–d. The fm
of 50, 45, and 38 GHz are used for Figure 5b–d, respectively. The modulation sidebands
have y polarization in contrast to the lasing optical carrier of x polarization. As shown
in Figure 5b, the sideband intensity at 50 GHz is 53 dB stronger than that at −50 GHz,
which is attributed to a relative frequency difference between the lasing polarization mode
and the non-lasing residual polarization mode in a birefringent cavity. This asymmetric
characteristic can imitate a single sideband modulation ideal for frequency shifting without
using a narrow-band optical filter. Note that the modulation sideband includes effects of
intensity modulations and chirps in the spin-VCSEL [44], which means that the sideband
intensity depends on α value. The ratio between the stronger and weaker sideband
intensities decreases when the IR increases as shown in Figure 5c,d. These results show that
efficient generation of orthogonally-polarized single modulation sideband is feasible due
to the spin polarization modulation of the injection-locked spin-VCSEL under a low IR.
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Figure 5. (a) Spin polarization modulation response under injection locking condition with different IRs and under free-
running condition; Polarization-resolved optical spectra under spin polarization modulation of injection-locked spin-VCSEL.
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3.2. Proof of Concept

Finally, a proof-of-concept simulation was conducted using the configuration shown
in Figure 3b. We used the following variable parameters: Im = 1 × Ith, fm = 50.0 GHz,
γp = 50.0 GHz, fd = 24.9 GHz, ∆f = −100 MHz, fc = 50.1 GHz, and ftone = 100 MHz. The
relation among fc, ftone, and data signal is schematically shown in Figure 6a. A constella-
tion diagram of 25-Gbaud 16-QAM signals detected with the spin-VCSEL operating as
a frequency-shifted LO is shown in Figure 6b. The 16-QAM signal pattern was clearly
observed with a low enough EVM of 0.69%. This EVM value is dominated by nonlinear
signal distortion in the DP-MZM used for the optical data signal generation. The same EVM
value was also observed when the ideal LO was used (Figure 6c). These results indicate that
the injection-locked spin-VCSEL can be used for the frequency-shifted LO in principle. As
shown in Figure 6d, the constellation rotated when the pilot tone for the injection locking
of the spin-VCSEL was removed due to the 100-MHz frequency difference between them.
This result verifies that tight synchronization was obtained by the injection locking.
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4. Discussion and Prospects

Although the proposed scheme was determined to be useful for obtaining LO for
homodyne detection, the role of amplified spontaneous emission (ASE) noise of Er-doped
fiber amplifiers which are added into optical signals should be further investigated for the
proposed scheme. The ASE noise usually degrades the EVM of the detected signal when
the injection-locked semiconductor laser is used as an LO [8]; this effect should be taken
into account for practical application. The effect of unnecessary current modulation during
the spin polarization modulation on the homodyne detected signal should also be clarified.
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It is worth noting that several technical advancements are required for the proposed
device function. First, the spin-VCSELs need to be integrated with silicon photonics-
based components such as low-loss waveguides. Although conventional VCSELs can be
fabricated on silicon [45–47], fabricating spin-VCSELs on silicon requires additional tech-
nologies such as electrical spin injections and transports [48–54]. Electrical spin injection
into long wavelength active regions such as InGaAsP and InAlGaAs quantum wells is
required, since the bandgap of silicon is 1.1 eV and well-studied GaAs quantum wells are
not compatible. The up-spin and down-spin electron injectors may be obtained by manip-
ulating remanence of vertically-magnetized ferromagnetic metal contacts such as Fe/Tb
multilayer/Schottky [55] and FePt/MgO contacts [56] using a magnetic head similar to the
case of hard disk drives. The use of spin precession of drifting electrons due to spin–orbit
interactions [57] may be another approach when transversely-magnetized ferromagnetic
metal contacts [25] are used in combination. Second, a polarization selective function of the
device, for example, polarization extinction ratio of the lattice-shaped HCG is important for
practical use. When the optical carrier remains after the polarization selective component, it
causes cross talk at the stage of polarization hybrid coherent detection. Third, birefringence
controls of spin-VCSELs including theoretical modeling are important for efficient genera-
tion of orthogonally-polarized modulation sideband with a high frequency [58–62]. Since
the sensitivity of spin polarization modulation is subject to birefringence, efficient genera-
tion of an orthogonally-polarized modulation sideband requires birefringence control with
accuracy in the order of a few gigahertz. Birefringence controls of spin-VCSELs on silicon
will be particularly challenging since heterogeneous integration of III-V materials on silicon
is usually conducted by wafer bonding techniques [47] which tend to induce non-uniform
stress distribution. Electrical birefringence tuning with sub-gigahertz accuracy [63,64] is
one such promising approach. Since spin-VCSELs have a possibility of improving optical
signal quality [65] and high-speed modulations [28], they are expected to be used also
for optical data signal generators in the coherent optical communication systems. Ideas
based on electrical spin injection into silicon [66] may provide other interesting degrees of
freedom to the spin-VCSEL.

5. Conclusions

We numerically investigated injection-locked spin-VCSELs for a frequency-shifted LO
in coherent optical communication systems. The spin polarization modulation responses
of the injection-locked spin-VCSEL indicated a resonance feature, and its peak frequency
and peak strength were controlled by the injection ratio and detuning frequency. The mod-
ulation sensitivity was maximized at the lower extrema of the injection ratio corresponding
to the free-running condition. The proof-of-concept simulation verified that 25-Gbaud
16-QAM signals can be homodyne detected by using the injection-locked spin-VCSEL as
the frequency-shifted LO.
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