
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jesus M. Paramio,
Centro de Investigaciones Energéticas,
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Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive

malignant tumor of the digestive system. Its grim prognosis is mainly attributed

to the lack of means for early diagnosis and poor response to treatments.

Genomic instability is shown to be an important cancer feature and prognostic

factor, and its pattern and extent may be associated with poor treatment

outcomes in PDAC. Recently, it has been reported that long non-coding RNAs

(lncRNAs) play a key role in maintaining genomic instability. However, the

identification and clinical significance of genomic instability-related lncRNAs in

PDAC have not been fully elucidated.

Methods: Genomic instability-derived lncRNA signature (GILncSig) was

constructed based on the results of multiple regression analysis combined

with genomic instability-associated lncRNAs and its predictive power was

verified by the Kaplan-Meier method. And real-time quantitative polymerase

chain reaction (qRT-PCR) was used for simple validation in human cancers and

their adjacent non-cancerous tissues. In addition, the correlation between

GILncSig and tumor microenvironment (TME) and epithelial-mesenchymal

transition (EMT) was investigated by Pearson correlation analysis.

Results: The computational framework identified 206 lncRNAs associated with

genomic instability in PDAC and was subsequently used to construct a genome

instability-derived five lncRNA-based gene signature. Afterwards, we

successfully validated its prognostic capacity in The Cancer Genome Atlas

(TCGA) cohort. In addition, via careful examination of the transcriptome
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expression profile of PDAC patients, we discovered that GILncSig is associated

with EMT and an adaptive immunity deficient immune profile within TME.

Conclusions: Our study established a genomic instability-associated lncRNAs-

derived model (GILncSig) for prognosis prediction in patients with PDAC, and

revealed the potential functional regulatory role of GILncSig.
KEYWORDS

long non-coding RNAs, genome instability, tumor microenvironment, pancreatic
ductal adenocarcinoma, epithelial-mesenchymal transition
Highlights

We established a mutational hypothesis-derived

computational framework for identifying genomic instability-

associated lncRNAs in PDAC and constructed lncRNA

signatures to better predict the prognosis of PDAC patients.

In addition, we investigated the immune profile

characteristics and potential functional regulatory effects

associated with lncRNA signatures, and we found that

GILncSig is associated with EMT as well as adaptive immune

deficiency immune profiles within the TME.

Our findings may improve prognostic prediction methods

for PDAC and provide potential guidance for precise

immunotherapy in the future.
1 Introduction

Pancreatic ductal adenocarcinoma is one of the aggressive

solid malignancies, and the rising incidence of PDAC is expected

to be the second leading cause of cancer-related mortality by

2030 (1, 2). However, only 10% to 20% of pancreatic cancer

patients have the chance of surgery as most patients have distant

metastasis of the lesion at the time of diagnosis (3). Moreover,

even for patients with the chance of surgery, they still possessed a

rather low 5-year survival rate and over 80% postoperative

recurrence rate (4). Despite recent advances in pancreatic

cancer research, there has been no significant reduction in

overall mortality and morbidity (5), because of the lack of

specific symptoms and reliable biomarkers for early diagnosis,

as well as poor response to treatment due to tumor

dissemination. Therefore, there is an urgent need to develop

new and effective strategies that can predict prognosis and

improve therapeutic targeting to achieve personalized treatment.

Genomic instability is shown to be an important cancer

characteristic as well as a prognostic factor, and the pattern and

degree of which is associated with tumor progression and
02
recurrence (6, 7). Although the specific molecular mechanisms

affecting genomic instability are not fully understood yet.

Recently, long non-coding RNAs, a group of non-coding

RNAs with more than 200 nucleotides in length (8, 9), are

considered to have the potential to quantitatively measure

genomic instability (10–16). Interestingly, quite a few previous

studies have reported a variety of lncRNAs that may contribute

to the carcinogenesis and development of PDAC (17–19).

Therefore, we believe that lncRNAs may represent a new class

of PDAC biomarkers and therapeutic targets. Likewise,

genomic-instability related lncRNAs were successfully used to

build prognostic models for other types of cancer, including

breast cancer, gastric cancer, and glioblastoma (20–22).

Besides, it is widely believed that studies targeting the

crosstalk between tumor cells and the TME will shed light on

the novel treatment measures for pancreatic cancer. Immune

checkpoint inhibitors have been reported to show durable

clinical benefits in many malignancies (23). However, we

found that the effect of this class of drugs was not satisfactory

in PDAC, which may be ascribed to the distinct TME profile.

Cancer often creates a favorable TME for its successful growth

by disrupting the immune, vascular, and connective tissue

components of the stroma that counter the physiological

responses to damage. Among them, the intensive interstitial

and highly immunosuppressive environment is a special weapon

for PDAC (24–26). At the same time, the degree of T-cell

infiltration in PDAC patients correlates with disease

progression, and patients with a higher level of T-cell

infiltration are generally more sensitive to immunotherapy

(27, 28).

In this study, we employed bioinformatics and statistics

methods, combined with the lncRNA expression profile of

tumor genomes, the somatic mutation profile of tumor

genomes, and the clinical features of PDCA patients to

establish a genomic-instability associated lncRNA-derived

signature called GILncSig. The GILncSig risk score was

calculated as a surrogate tool for assessing the likelihood of

survival in patients with PDCA, and its prognostic value was
frontiersin.org
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further validated by survival analysis. Moreover, to understand

the concomitant functional regulatory effects of GILncSig on the

transcriptomic expression profiles, we conducted graph-based

clustering analysis, differential expression analysis and

functional enrichment analysis to in-depth analyze

transcriptome expression characteristics associated with

GILncSig, revealing that GILncSig is related to EMT. In

addition, we investigated the lncRNA signature associated

immune profile characteristics and potential functional

regulatory effects. We believe that our findings may improve

the prognostic prediction method of PDAC and provide

potential guidance for future precise immunotherapy.
2 Materials and methods

2.1 Data collection

RNA-seq expression data, clinical features, clinicopathological

characteristics, survival information, and somatic mutation

information of patients with pancreatic ductal adenocarcinoma

were collected from TCGA database (https://portal.gdc.cancer.

gov/). LncRNA expression data were downloaded from the

TANRIC database (http://bioinformatics.mdanderson.org/main/

TANRIC: Overview, version 1.0.6). Due to the missing values in

the follow-up dataset, 7 patients from the TCGA cohort were

excluded, and the remaining 171 samples were retained for further

study. A flow chart of the inclusion and exclusion criteria for patient

data is presented in Supplementary Figure 1. The patients with

PDAC used in this study were randomly divided into the following

two patient sets after matching for gender, age, and tumor stage:

training set (n = 87) and test set (n = 84), with no significant

differences in clinical features between these two sets. The training

set was used to identify prognostic lncRNA signature and build

prognostic risk model, while the testing set was used to

independently validate the performance of the prognostic

risk model.
2.2 Identification of genome instability-
associated lncRNAs

As described in the previous study, a mutator hypothesis-

derived computational frame combining lncRNA expression

profiles and somatic mutation profiles in a tumor genome was

used to identify genome instability-associated lncRNAs (29). In

brief, the cumulative number of somatic mutations was first

calculated for each pancreatic cancer patient and sorted in

descending order. Next, the first 25% and last 25% of patients

were defined as genomic instability (GU) and genomic stability

(GS) sample groups, respectively. Finally, the expression profiles

of lncRNAs of the GU and GS groups were compared using the

significance analysis of microarrays (SAM) method, and the
Frontiers in Immunology 03
differentially expressed lncRNAs between these two groups (fold

change > 1.5 or<0.67 and false discovery rate (FDR)

adjusted P< 0.05) were defined as genome instability-associated

lncRNAs (29).
2.3 Functional enrichment analysis

To understand the potential functional regulation exerted by

the identified genome instability-associated lncRNAs, an

exploratory graph-based clustering analysis using the Louvain

clustering algorithm was performed on the entire TCGA dataset,

identifying three distinct clusters in all pancreatic ductal

adenocarcinoma patients. Functional enrichment analysis of

the extracted top 50 differentially expressed genes and top 30

differentially expressed transcription factors (TFs) from each

cluster was conducted using the Metascape webtool (www.

metascape.org) to determine significantly enriched Gene

Ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways (30). As a result, we found that

cluster 1 was implicated in EMT.
2.4 Statistical analysis

We used univariate and multivariate Cox proportional

hazard regression analysis to evaluate the association between

the expression level of genome instability-associated lncRNA

and overall survival. According to the coefficients from the

multivariate regression analysis and the expression levels of

prognostic genome instability-associated lncRNAs, a genome

instability-derived lncRNA signature for outcome prediction

was constructed as follows:

G I L n c S i g = on
i=1coef (IncRNAi) *  exp r(IncRNAi),

(i=1,2,3…n)

In this equation, GILncSig, the established prognostic risk

score for patients with pancreatic ductal adenocarcinoma, is

calculated by adding up the product of the coefficient of each

lncRNA derived from the multivariate regression analysis and its

expression level. The median score of the patients in the training

set was used as the risk cutoff value to classify patients into either

a high-risk group with high GILncSig or a low-risk group with

low GILncSig.

Median survival and survival rates were calculated for each

prognostic risk group using the Kaplan-Meier method, and the

log-rank test was used to assess the survival difference between

the high-risk and low-risk groups at the 5% significance level.

The independence of GILncSig from other key clinical factors

was clarified by multivariate Cox regression and stratification

analysis. The performance of GILncSig was also assessed by

receiver operating characteristic (ROC) curves. Unsupervised

hierarchical clustering analysis for the identification of GU-like

and GS-like groups was performed using Euclidean distance and
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Ward’s linkage method, whereas unsupervised hierarchical

clustering analysis for the investigation of the potential

functional regulatory role of GILncSig was performed using

Louvain clustering algorithm and graph-based clustering

method. The association between GILncSig risk groups and

cluster 1 was consolidated via Pearson correlation analysis

between GILncSig risk score and EMT signature score. All

statistical analyses were performed using R-version 3.6.
2.5 Gene set enrichment analysis

Gene set enrichment analysis was carried out using two EMT

signatures constructed from previously reported literature (31,

32). Enriched-ness of gene expression in each gene set of patients

was defined by a signature score calculated through R

VISION package.
2.6 Estimated the immune profile of
tumor microenvironment

To better understand the GILncSig-related immune

landscape, we used the CIBERSORT algorithm (https://

cibersort.stanford.edu/index.php) combined with LM22 to

estimate the abundances of immune cell subsets within the

TME in each patient, as designed in the previous study (33).

An empirical P-value for the deconvolution using Monte Carlo

sampling was thereby produced, and cases with a resulting P-

value< 0.05 were available for further analysis. We then

estimated the Immune Score, namely the ratio of immune

matrix components in the TME of each sample, by the

ESTIMATE algorithm (34). The higher the Immune Score, the

larger the ratio of the immune components in TME.

Furthermore, the correlation between GILncSig risk scores and

Immune Score was validated by Pearson correlation analysis.
2.7 Tissue specimens

Five formalin-fixed paraffin-embedded pancreatic ductal

adenocarcinoma tumor specimens and their adjacent tissues

were obtained from the pathology department of the hospital,

and qRT-PCR was performed on these tissues. These patients

met the following inclusion criteria: (1) Adult patients aged ≥ 18

years and ≤ 75 years, histologically (non-cytologically)

diagnosed with PDAC; (2) Patients with stage I-III according

to the 8th edition of the American Joint Committee on Cancer

(AJCC) classification; (3) Patients with a life expectancy ≥3

months. The exclusion criteria were: (1) Patients diagnosed with

other types of pancreatic malignant tumor or malignant tumor

(s) of other tissues; (2) Patients with other severe concomitant

disease or disorder such as heart, liver, or renal failure; (3)
Frontiers in Immunology 04
Patients having no adjacent non-cancerous tissue in the

paraffin-embedded pancreatic tissue. This study was approved

by the local Ethics Committee (Second Xiangya Hospital

Ethics Committee) (approved no. 2020-465). The requirement

for written informed consent was waived for the retrospective

tissue samples included in the pancreatic ductal adenocarcinoma

tumor specimens.
2.8 RNA isolation and qRT-PCR analysis

Total RNA was prepared using The ReliaPrep™ FFPE Total

RNA Miniprep System (Promega) according to the manufacturer’s

instructions. The concentration of the total RNA was detected by

NanoDrop 2000 (Thermo Scientific™). Total RNA (1000 ng) was

reverse transcribed into cDNA using RevertAid First Strand cDNA

Synthesis Kit (Thermo Scientific™). The relative expression of

target genes to the housekeeping gene GAPDH was determined

by qRT-PCR using GoTaq® qPCR Master Mix (Promega). All

primer sequences used in this study were listed in Supplementary

Table 1. Analysis between the two groups was performed by an

unpaired t-test; P< 0.05 was considered statistically significant.
3 Results

3.1 Identification of genomic instability-
related lncRNAs in pancreatic cancer
patients

3.1.1 Identification of genomic instability-
related lncRNAs

The flowchart of the study is described in Supplementary

Figure 2. To identify lncRNAs associated with genomic

instability, we calculated the cumulative number of somatic

mutations per patient and sorted them in ascending order.

The top 25% (n = 40) and the last 25% (n = 43) of patients

were assigned to GS-like and GU-like groups based on the

cumulative number of somatic mutations. Next, a total

number of 206 differentially expressed lncRNAs (labeled as DE

lncRNAs) between GU-like and GS-like groups were identified

based on the comparison of their lncRNA expression profiles

(with the absolute value of logFC greater than 1 and FDR-

adjusted P-value less than 0.05). Among them, 95 lncRNAs were

upregulated and 111 lncRNAs were downregulated in the GU-

like group.

3.1.2 Clustering analysis for
patient classification

To classify all 178 TCGA patients into either GU-like or GS-

like groups, unsupervised hierarchical clustering analysis was

performed using 206 DE lncRNAs. As shown in Figure 1A, all

178 samples were clustered into two groups based on the
frontiersin.org
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expression levels of the 206 DE lncRNAs. The GU-like group has

significantly higher cumulative somatic mutation counts

compared with the GS-like group (P< 0.001, Mann–Whitney

U test; Figure 1B). Comparison of the expression level of

UBQLN4 gene, a newly identified biomarker for genomic

instability, reveals that the GU-like group has a significantly

higher expression level of UBQLN4 compared with the GS-like

group (P< 0.001, Mann–Whitney U test; Figure 1C).
3.2 Establishment of genomic
instability-derived lncRNA signature
and outcome prediction

3.2.1 Screening of prognostic-related lncRNAs
using Cox proportional hazard regression
analysis in the training set

To explore the potential prognostic values of 206 DE

lncRNAs, 7 pancreatic cancer patients from the TCGA cohort

were excluded due to missing values in their follow-up dataset.

The remaining 171 pancreatic cancer patients were randomly

split into 2 sets: training set (n = 87) and testing set (n = 84).

Statistical comparison of key clinical features between the

patients within the training set and the testing set revealed

that no significant differences exist between patients in these 2

sets (Table 1). The training set will be used for the following

procedures. To screen for lncRNAs that can be used as

prognostic factors, univariate Cox proportional hazard

regression analysis was first performed to determine if the

expression level of each DE lncRNA is significantly associated

with the prognosis, i.e, the overall survival (OS) of pancreatic

cancer patients. As a result, 22 DE lncRNAs were identified (P<

0.05, Table 2). Next, these 22 candidate DE lncRNAs were

subjected to multivariate Cox proportional hazards regression

analysis with common clinical features such as age, gender, and

tumor grade to further screen lncRNAs with prognostic ability

independent of other lncRNAs. Subsequently, five lncRNAs

(TM4SF1-AS1 , CASC8, PRDM16-DT, LINC00996 ,

AP000892.3, labeled siglncRNAs) were identified (P< 0.1,

Table 3) as independent prognostic factors.

3.2.2 Construction of GILncSig and outcome
prediction for the training set, testing set, and
combined TCGA set

Afterward, a genomic instability-derived lncRNA signature was

constructed based on the coefficients of the aforementioned

multivariate Cox proportional hazard regression model and the

expression level of siglncRNAs. The formula is as follows: GILncSig

score = (0.2917 × expression level of TM4SF1-AS1) + (0.1665 ×

expression level of CASC8) + (-0.2782 × expression level of

PRDM16-DT) + (-1.1024 × expression level of LINC00996) +

(-1.0421 × expression level of AP000892.3). Of the GILncSig, the

coefficient of lncRNA TM4SF1-AS1 and CASC8 were positive,
Frontiers in Immunology 05
suggesting that they are risk factors as their expressions were

correlated with a poor prognosis, whereas the coefficient of

lncRNA PRDM16-DT, LINC00996 and AP000892.3 were

negative, suggesting that they are protective factors as their

expressions were correlated with a better outcome. To predict the

survival of pancreatic patients, the risk score for each patient in the

training set was obtained through GILncSig. Using the median risk

score (1.146) as the cut-off value, these patients were classified into

two prognostic groups—either high-risk or low-risk groups.

Kaplan-Meier analysis revealed that the survival outcomes of

patients in the high-risk group are significantly worse than those

in the low-risk group (median OS 1.46 years versus 4.12 years, P<

0.01, log-rank test; Figure 2A). The survival rate of the high-risk

group was 18.6% at 3 years and that of the low-risk group was

54.3%. The area under curve (AUC) yielded by the time-dependent

ROC curves analysis of GILncSig was 0.725 (Figure 2B). Similarly,

the survival analysis and time-dependent ROC curves analysis were

applied to the testing set and the combined TCGA cohort. For the

testing set, Kaplan-Meier analysis revealed that the survival

outcomes of patients in the high-risk group are significantly

worse than those in the low-risk group (median OS 1.08 years

versus 1.92 years, P = 0.04, log-rank test; Figure 2C). The survival

rate of the high-risk group was 22.5% at 3 years and that of the low-

risk group was 48.3%. The AUC yielded by the time-dependent

ROC curves analysis of GILncSig was 0.727 (Figure 2D). For the

combined TCGA cohort, Kaplan-Meier analysis revealed that the

survival outcomes of patients in the high-risk group are significantly

worse than those in the low-risk group (median OS 1.30 years

versus 3.65 years, P< 0.01, log-rank test; Figure 2E). The survival

rate of the high-risk group was 18.8% at 3 years and that of the low-

risk group was 51.2%. The AUC yielded by the time-dependent

ROC curves analysis of GILncSig was 0.721 (Figure 2F)

3.2.3 Verification of GILncSig as a valid
prognostic factor independent of key
clinical features

To clarify the independence of GILncSig from other clinical

features, both univariate and multivariate Cox proportional

hazard regression analysis were utilized. First, we preprocessed

the data of patients in TCGA and excluded data with missing

grades, stages, or ages. Next, univariate Cox proportional hazard

regression analysis was carried out on GILncSig score and

clinical features including score, age, gender, pathological

stage, and tumor grade. As a result, GILncSig score, age, and

tumor grade were identified as significant prognostic factors (P<

0.05, Table 4). Later, multivariate Cox proportional hazard

regression analysis was performed among GILncSig score, age,

and tumor grade. Finally, GILncSig and age retained their

prognostic significance (P< 0.05, Table 5), which demonstrated

that GILncSig could act as an independent prognostic factor. As

age is significantly correlated with the overall survival of

pancreatic patients, a stratification analysis is in need to

reassure that the significantly different predicted survival
frontiersin.org
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outcomes of the high-risk and low-risk groups determined by

GILncSig were not attributed to age difference. To do so, we

stratified patients in the TCGA set into a young-patient group

(n = 90) and an old-patient group (n = 81) according to the

median age (age = 65) of the whole TCGA cohort. Then, the

GILncSig risk score for patients in each age group was calculated

to further divide them into high-risk or low-risk groups. As

shown in Figure 2, the high-risk group has significantly worse

overall survival compared with the low-risk group in both the
Frontiers in Immunology 06
young-patient group (P< 0.001, log-rank test; Figure 2G) and

old-patient group (P = 0.027, log-rank test; Figure 2H).

3.2.4 Alignment of GILncSig scores with
somatic mutation and UBQLN4 gene
expression patterns

We further explored the variation patterns of somatic

mutation counts and UBQLN4 gene expression levels with

increasing GILncSig scores to consolidate GILncSig’s
B C

A

FIGURE 1

Identification of genomic instability-related lncRNAs in pancreatic cancer patients. (A) Unsupervised clustering of 178 patients with Pancreatic
ductal adenocarcinoma based on expression patterns of 206 candidate genomic instability-associated lncRNAs. The red cluster on the left is
GU-like group and the blue cluster on the right is GS-like group. (B) Box plot of somatic mutations in the GU-like group and GS-like group.
Somatic cumulative mutations were significantly higher in the GU-like group than in the GS-like group. (C) Box plot of UQLN4 expression levels
in the GU-like group and GS-like group. The expression level of UBLNQ4 was significantly higher in the GU-like group than in the GS-like
group. Horizontal line: median value. Statistical analysis was performed using the Mann-Whitney U test.
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TABLE 1 Clinical information for three TCGA patients sets in this study.

Covariates Type TCGA set Training set Testing set P value

Age <=65 90 (52.63%) 50 (57.47%) 40 (47.62%) 0.2556

>65 81 (47.37%) 37 (42.53%) 44 (52.38%)

Gender FEMALE 78 (45.61%) 40 (45.98%) 38 (45.24%) 1

MALE 93 (54.39%) 47 (54.02%) 46 (54.76%)

Grade G1-2 120 (70.18%) 63 (72.41%) 57 (67.86%) 0.467

G3-4 49 (28.65%) 22 (25.29%) 27 (32.14%)

Unknown 2 (1.17%) 2 (2.3%) 0 (0%)

Stage Stage I-II 161 (94.15%) 82 (94.25%) 79 (94.05%) 0.9743

Stage III-IV 7 (4.09%) 3 (3.45%) 4 (4.76%)

unknown 3 (1.75%) 2 (2.3%) 1 (1.19%)

T T1-2 28 (16.37%) 14 (16.09%) 14 (16.67%) 1

T3-4 141 (82.46%) 72 (82.76%) 69 (82.14%)

Unknown 2 (1.17%) 1 (1.15%) 1 (1.19%)

M M0 77 (45.03%) 39 (44.83%) 38 (45.24%) 0.662

M1 4 (2.34%) 3 (3.45%) 1 (1.19%)

Unknown 90 (52.63%) 45 (51.72%) 45 (53.57%)

N N0 47 (27.49%) 19 (21.84%) 28 (33.33%) 0.1155

N1-3 119 (69.59%) 66 (75.86%) 53 (63.1%)

Unknown 5 (2.92%) 2 (2.3%) 3 (3.57%)
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TABLE 2 Univariate Cox proportional hazard regression analysis identified 22 DE lncRNAs that are significantly associated with the overall survival
of pancreatic cancer patients.

lncRNA Hazard Ratio P Value

PRDM16-DT 0.72247472 0.01877915

BX640514.2 1.31449287 0.00069123

AC008969.1 0.29543606 0.03292011

LINC00996 0.30959956 0.04539756

AL121929.3 0.61423882 0.0292435

AC120049.1 0.24663223 0.01804794

LINC02716 0.17449104 0.04206901

LINC02577 1.35591727 0.04757554

AC132938.2 0.23067713 0.0080087

SOCS2-AS1 0.22994143 0.02242125

TM4SF1-AS1 1.45664584 0.00014889

AL355803.1 0.39480085 0.02972008

AP000892.3 0.35868049 0.01728944

LINC01133 1.01990993 0.00016229

AP000757.2 0.78413922 0.02385144

LINC02041 1.13331718 0.00108853

AC087752.3 0.28291938 0.04381474

AL359504.1 0.1520814 0.00430568

AC104695.4 1.12588936 0.04270116

CASC8 1.2432148 0.00063661

SH3PXD2A-AS1 1.1224769 0.03158918

AC015911.3 0.3222307 0.03580903
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association with genomic instability. As can be seen in the

heatmap of Figure 3A, patients in the training set, testing set,

and combined TCGA set were sorted from left to right based on

the values of their computed GILncSig scores on the X axis,

while the expression levels of 5 siglncRNAs were shown on the Y

axis. The corresponding somatic mutation counts and UBQLN4

gene expression levels of these patients were acquired and

plotted accordingly in Figures 3B, C. Upregulated expression

levels of risky lncRNAs (TM4SF1-AS1, CASC8) and

downregulated expression levels of protective lncRNAs

(PRDM16-DT, LINC00996, AP000892.3) were detected in

patients with high GILncSig scores, whereas the opposite

expression patterns were detected in patients with low

GILncSig scores. Statistical comparison of somatic mutation

counts and UBQLN4 expression levels between high-risk and

low-risk groups within the training set, testing set, and combined

TCGA set was performed. It is revealed that high-risk groups

have significantly higher somatic mutation counts compared

with low-risk groups in all three patient sets (from left to right:

P< 0.001, P = 0.002, P< 0.001, Mann–Whitney U test; Figure 3D)

and that high-risk groups have significantly higher UBQLN4

expression levels compared with low-risk groups in the training

set and combined TCGA set. Even though the difference did not

reach significance in the testing set, there is still a discernible

trend from the box and dot plot that the high-risk group

possessed a higher expression level of UBQLN4 versus the

low-risk group (from left to right: P = 0.0017, P = 0.14, P<

0.001, Mann–Whitney U test; Figure 3E).
3.3 GILncSig adds value to the current
literature field of prognostic pancreatic
cancer biomarker

To investigate whether GILncSig can stand as a solid prognostic

biomarker for pancreatic cancer, we tested its correlation with some

mutated genes in pancreatic cancer and compared their survival

outcome predicting capability. KRAS is a classic oncogene that is

actively involved in the pathogenesis of pancreatic cancer (35–37).

In addition, growing evidence revealed that KRAS is firmly

implicated in the diagnosis and prognosis of pancreatic cancer

and is heralded as a potential therapeutic target (35, 37). First of all,
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we compared the proportion of patients with KRAS mutation

within the high-risk and low-risk groups, and as can be seen in

Figure 4A, high-risk groups occupied a higher percentage of

patients with KRAS mutation compared with low-risk groups in

the training set, testing set, and combined TCGA set. Next, we

categorized patients from the TCGA set into four different sub-

groups based on their KRAS mutation status and GILncSig risk

group membership. In other words, the following four groups were

classified: KRAS Mutation/GU-like group, KRAS Mutation/GS-like

group, KRAS Wild/GU-like group and KRAS Wild/GS-like group.

Since there was only 1 patient who belonged to the KRAS

Mutation/GS-like group, this group was removed from the

following analysis. Later, survival analysis was performed. As can

be inferred from Figure 4B, the survival outcome was significantly

different among these three groups (P = 0.015). KRAS Mutation/

GU-like group was predicted to have the worst outcome (median

survival time: 1.46 years, 3-year survival rate: 28.0%), KRAS Wild/

GS-like group was predicted to have the best outcome (3-year

survival rate: 61.2%), whereas KRAS Wild/GU-like group was in

between (median survival time: 1.72 years, 3-year survival rate:

28.7%). Our data indicated that GILncSig is able to identify a sub-

population of pancreatic cancer patients who might be at a higher

mortality rate and thus deserve a more radical treatment regimen

that could otherwise go unnoticed due to their KRAS wild type

status. Results for other pancreatic cancer-associated mutated genes

were also consistent with KRAS, and results for TP53 are presented

in Supplementary Figure 3. Therefore, we believe GILncSig can be

an asset to the current literature field of prognostic pancreatic

cancer biomarkers.
3.4 Performance comparison of GILncSig
with existing lncRNA-related signatures
in survival prediction

Finally, we compared the prediction performance of

GILncSig with two recently published lncRNA signatures: 3-

lncRNA signature obtained from Wu’s study (hereinafter

referred as WuLncSig) (38) and 3-lncRNA signature derived

from Shi’s study (hereinafter referred as ShiLncSig) (39) using

our TCGA patient cohort. As shown in Figure 4C, the AUC at 3

years of OS for our GILncSig is 0.721, which is significantly
TABLE 3 Multivariate Cox proportional hazard regression analysis of the 22 prognosis-related DE lncRNAs further narrowed down to 5 DE
lncRNAs that are independently associated with the overall survival of pancreatic cancer patients.

lncRNA Coefficient Hazard ratio P value

PRDM16-DT -0.2782435 0.75711245 0.05078589

LINC00996 -1.1024105 0.33206967 0.09393344

TM4SF1-AS1 0.29167955 1.33867397 0.00544925

AP000892.3 -1.042062 0.35272661 0.02984887

CASC8 0.16646916 1.18112711 0.02519788
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FIGURE 2

Outcome prediction of constructed GILncSig and verification as a valid prognostic factor independent of key clinical features. (A), (C), (E)
Kaplan-Meier estimates of overall survival predicted by GILncSig for low-risk or high-risk patients in the training set, testing set and the
combined TCGA cohort, respectively. Statistical analysis was performed using the log-rank test. (B), (D), (F) Time-dependent ROC curve analysis
of GILncSig at 3 years in the training set, testing set and the combined TCGA cohort. (G) Kaplan-Meier estimates of overall survival predicted by
GILncSig for low-risk or high-risk patients in young-patient group (age ≤ 65). (H) Kaplan-Meier estimates of overall survival predicted by
GILncSig for low-risk or high-risk patients in old-patient group.
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higher than WuLncSig (AUC = 0.639) and significantly higher

than ShiLncSig as well (AUC = 0.651). Even though both

WuLncSig and ShiLncSig used a smaller number of lncRNAs

(n = 3) than GILncSig (n = 5), we still maintained that our

signature should be considered the better model since it can offer

a more accurate prediction.
3.5 Functional regulation of GILncSig in
pancreatic cancer is potentially
associated with EMT and lack of adaptive
immunity participation within the TME

3.5.1 Clustering analysis of TCGA dataset yields
three different clusters of pancreatic cancer
patients

To further understand the potential functional regulatory

effects of GILncSig, an explorational graph-based clustering

analysis was performed for the whole TCGA dataset. As a

result, three distinct clusters were identified among all

pancreatic cancer patients and projected onto the UMAP

coordinate shown in Figure 5A. The clusters were labeled as

cluster 0, cluster 1, and cluster 2 respectively. Top 50

differentially expressed genes and top 30 differentially

expressed transcription factors for each cluster were extracted

and shown in the heatmaps (Figures 5B, C).

3.5.2 Cluster 1 is associated with EMT
Via close examination of the differentially expressed genes

and transcription factors derived from each cluster, it can be

inferred that cluster 1 is related to EMT, as SNAI2 and ZBED2,

which are pivotal EMT-inducing transcription factors, are

differentially upregulated within cluster 1 (40, 41). To further

confirm this association, we carried out a gene set enrichment

analysis using two EMT signatures from previous literature (32,

42). As shown in Figure 5D, patients’ enriched-ness in

expression of genes within each gene set were defined by a

signature score calculated through R VISION package. We

observed that patients highly enriched for each gene set

(whose signature score is ranked at 95th percentile or above)
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all belonged to cluster 1, further statistical comparison also

consolidated that those patients of cluster 1 have the highest

EMT signature score (Figure 5E).

3.5.3 GILncSig is associated with EMT
To explore the relationship between GILncSig and the

identified clusters, we performed survival analysis for these

three clusters and compared their GILncSig risk score levels.

As shown in Figure 6A, patients from cluster 1 have the worst

prognosis, whereas patients from cluster 0 have the best

prognosis. Interestingly, the survival outcome of the patients

from these three clusters corresponds tightly to their GILncSig

risk score levels, with patients belonging to cluster 1 having the

highest GILncSig risk score and patients belonging to cluster 0

harboring the lowest GILncSig risk score (Figure 6B).

Furthermore, Pearson correlation analysis showed that the

GILncSig risk score is significantly positively associated with

EMT signature scores (Figure 6C). Together, these data indicate

that pancreatic cancer patients with high GILncSig risk score are

more likely to undergo EMT within the tumor, which in return

may confer them a worse survival outcome.

3.5.4 TME estimation revealed inadequacy of
adaptive immunity participation within
GILncSig high-risk group

Finally, we conducted TME estimation using the

CIBERSORT algorithm to understand the GILncSig-related

immune landscape. Statistical comparison of the concentration

of 22 immune cell types within the TME revealed a strikingly

diminished adaptive immunity participation in the GILncSig

high-risk group. As can be seen from Figures 7A, B, the

concentration of naive B cells, activated CD4+ memory T cells

and CD8+ T cells were significantly reduced in the GILncSig

high-risk group. This observation is further affirmed by the

Pearson correlation analysis, which showed that the

ImmuneScore is significantly inversely correlated with

GILncSig risk score, while T cell exclusion score is significantly

positively correlated with GILncSig risk score (Figures 7C, D).

Together, these data suggest that the worse survival outcome of

pancreatic cancer patients from the GILncSig high-risk group

might be in part attributed to the inadequacy of robust adaptive

immune cells, i.e., B cell and T cell infiltration within the TME.
TABLE 4 Univariate Cox proportional hazard regression analysis
revealed that GILncSig risk score, age and grade are significant
prognostic factors.

Variables Hazard ratio P value

Age 1.02720658 0.01218871

Gender 0.87372328 0.52335853

Grade 1.39198899 0.02575897

Stage 1.36518243 0.105923

GILncSig risk score 1.01201713 0.01771823
TABLE 5 Multivariate Cox proportional hazard regression analysis
using GILncSig risk score, age and grade showed that only GILncSig
risk score and age retained their prognostic significance.

Variables Hazard ratio P value

Age 1.02728148 0.0151126

Grade 1.3172337 0.06937243

GILncSig risk score 1.01540857 0.00362892
fron
tiersin.org

https://doi.org/10.3389/fimmu.2022.970588
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.970588
In summary, our data provide evidence that the aberrant

expression pattern of GILncSig in pancreatic cancer patients can

lead to a more invasive cancer subtype, thereafter rendering

them a worse survival prognosis. This may be achieved through

the regulation of genes promoting EMT and the hindrance of

adaptive immune cell infiltration within the TME.
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3.6 Validation of lncRNA signature by
real-time quantitative PCR

The expression levels of all lncRNAs and their target genes in

five pancreatic ductal adenocarcinoma tissues and matched

normal tissues were detected using qRT-PCR. Compared with
B

C

D

E

A

FIGURE 3

Visualization of the interconnection between GILncSig risk score and expression levels of five siglncRNAs, somatic mutation counts and
expression level of UBQLN4. (A) Patients in the training set, testing set and the combined TCGA cohort were ranked from left to right on the X-
axis according to ascending GILncSig risk score, while the expression levels of the five siglncRNAs were shown on the Y-axis. (B) Distribution of
somatic mutation counts with increasing GILncSig score as X axis. (C) Distribution of UBQLN4 expression level with increasing GILncSig score as
X axis. (D) Box plots of somatic mutations in the training set, testing set and the combined TCGA cohort in the high- and low-risk groups.
Somatic mutation counts in the high-risk group were significantly higher than those in the low-risk group. (E) Box plots of UBQLN4 expression
levels in the training set, testing set and the combined TCGA cohort in both the high-risk and low-risk groups. The UBQLN4 expression level
was significantly higher in the high-risk group than in the low-risk group. Statistical analysis was performed using the Mann-Whitney U test.
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adjacent normal pancreas, the mRNA expression of TM4SF1-

AS1 and CASC8 was higher, while the expression of PRDM16-

DT(P<0.05), AP000892.3(P<0.05), and LINC00996 was lower in

PDAC tissues (Figure 8A). The expression trend of target genes

was consistent with that of lncRNAs (Figure 8B). The results of

our validation were consistent with the model, but the statistics

of most of the lncRNAs did not show significance due to the

large difference in cancer tissues among different individuals.
4 Discussion

Here, we established a computational framework for the

identification of genomic instability-related lncRNAs,

through which 206 lncRNAs associated with genomic
Frontiers in Immunology 12
instability were identified, and five lncRNAs (TM4SF1-AS1,

CASC8, PRDM16-DT, LINC00996, AP000892.3) were

selected from them as independent prognostic factors for

constructing GILncSig. It has been found that mutations in

key genes or aberrant signaling pathways drive the

pathogenesis of PDAC, such as the mutation of oncogene

KRAS and the frequent inactivation of tumor suppressors

including TP53, SMAD4, and CDKN2A. Moreover, these

gene mutations converge in KRAS, TGF-b, Wnt, Notch, and

ROBO/SLIT signaling pathways as well as chromatin

remodeling, DNA repair and other pathways and processes

(43). This suggests that the high heterogeneity of PDAC is

achieved by the overactivation of many signaling pathways

related to growth and proliferation and the alteration of the

expression levels of tumor suppressor genes, thereby affecting
B C

A

FIGURE 4

Performance comparison of GILncSig with KRAS paradigm and lncRNA-related prognostic models derived from other studies. (A) The
proportion of KRAS mutations in high- and low-risk groups in the training set, testing set and the TCGA cohort. (B) Kaplan-Meier curve analysis
of overall survival for PDAC patients belonging to KRAS Mutation/GU-like group, KRAS Wild/GU-like group and KRAS Wild/GS-like group for
patients classified by KRAS mutation status and GILncSig. Statistical analysis was performed using the log-rank test. (C) The ROC analysis at 3
years of overall survival for GILncSig, WuLncSig, and ShiLncSig.
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cell proliferation, survival and invasion. KRAS mutations, on

the other hand, are considered the earliest event in PDAC

initiation (44). Therefore, we compared the predictive ability

of GILncSig with KRAS for survival outcome and found that
Frontiers in Immunology 13
GILncSig was able to identify pancreatic cancer patients with

KRAS mutations who may have a higher mortality rate than

the rest of the patients. Studies have pointed out that the

different subtypes defined by gene expression patterns and
B

C D

E

A

FIGURE 5

Cluster 1 identified by the clustering analysis of PDAC TCGA dataset is associated with epithelial–mesenchymal transition (EMT). (A) Clustering
analysis of PDAC TCGA dataset identified 3 distinct clusters (cluster 0, cluster 1 and cluster 2) projected onto UMAP coordinates. (B) Heatmap
showing top 50 differentially expressed genes for each cluster. Red represents cluster 0, green represents cluster 1, and blue represents cluster
2. (C) Heatmap showing top 30 differentially expressed transcription factors for each cluster. Red represents cluster 0, green represents cluster
1, and blue represents cluster 2. (D) Gene set enrichment analysis in all three clusters of PDAC patients. The tested gene sets were gene
signatures extracted from previous literature that are strongly related to EMT. The first column showcases the signature score each patient
earns. The higher the signature score, the more enriched the corresponding patient is for each gene set. The second column showcases all
patients with a high signature score (ranked at 95th percentile or above). The third column showcases that patients highly enriched for each
gene set all belong to cluster 1. (E) Statistical comparison of EMT signature scores of patients in the three clusters. *P< 0.05; ***P< 0.001; Ns,
not significant.
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clinical features of patients with pancreatic cancer may be of

great value in predicting the prognosis of patients and guiding

precision medicine (45).

In addition, three of the five selected lncRNAs associated

with genomic instability (PRDM16-DT, LINC00996,

AP000892.3) were protective factors, while TM4SF1-AS1

and CASC8 often served as risk factors associated with poor

prognosis (46–50). These lncRNAs have been demonstrated

to play an important role in the occurrence, development, and

prognosis of a variety of malignant tumors (51–53). However,

most of them were found to be associated with the prognosis

of PDAC for the first time. Notably, CASC8 is not only

strongly associated with poor survival in pancreatic ductal
Frontiers in Immunology 14
adenocarcinoma, but may also be involved in the process of

EMT by competitively binding miR-671 (54).

EMT is a complex biological trans-differentiation process

that allows epithelial cells to transiently acquire mesenchymal

features, including motility and metastatic potential (55, 56).

Activation of EMT is thought to be a major driver of tumor

progression from initiation to metastasis. For instance, the EMT

transcription factor Zeb1 is not only a key factor in lesion

formation, invasion and significant metastasis, but also can

affect the stemness and colonization ability of tumor cells,

especially phenotypic/metabolic plasticity (55). Further studies

revealed that lncRNA Linc-ROR can promote tumor invasion

and metastasis by regulating Zeb1 (57). Besides, Zhu, W. et al.
B

C

A

FIGURE 6

GILncSig is tightly linked to EMT. (A) Survival analysis for patients in three clusters. (B) Statistical comparison of GILncSig risk scores for the
patients in three clusters. (C) Pearson correlation analysis between GILncSig risk score and EMT signature score. *P< 0.05; ***P< 0.001.
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FIGURE 7

GILncSig associated tumor microenvironment (TME) assessment. (A) Radial plot highlighting the differences of the median proportion of 22
immune cell types in the TME of PDAC patients in the high-risk and low-risk groups. (B) Statistical comparison of the fraction of 22 immune cell
types in the TME of patients in the high-risk and low-risk groups assigned based on GILncSig. Red represents the high-risk group and green
represents the low-risk group. (C) Pearson correlation analysis between Immune Score and GILncSig risk score. (D) Pearson correlation analysis
between T cell exclusion score and GILncSig risk score. *P< 0.05; **P< 0.01; ***P< 0.001.
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found that overexpression of lncRNA-CASC8 resulted in up-

regulation of TOB1 and low expression of miR-129-5p, which

were associated with an increased frequency of lymph node

metastasis and a higher trend of pathological stage, respectively,

thus validating the CASC8-miR-129-5p-TOB1 regulatory axis

(58). These studies all suggested the association of GILncSig with

EMT, which we also confirmed in the present study.

The tumor microenvironment of PDAC contains immune

components such as interstitial cells, inflammatory cells, and

cytokines, which comprise a complex network to promote tumor
Frontiers in Immunology 16
growth and invasion. It has also been shown that the TME of

PDAC is closely related to EMT as well as KRAS (24, 59). So, we

used CIBERSORT and estimation algorithms to analyze the

details of GILncSig-associated TME profiles, including the

estimated proportion of tumor-infiltrating immune cells

(TICs) and the quantification of adaptive immune cell

exclusion level. The results showed that naïve B cells, activated

CD4 + memory T cells, and CD8 + T cell concentrations were

significantly lower in the high-risk group. The immune score

and T cell exclusion score were significantly negatively and
B

A

FIGURE 8

qRT-PCR of lncRNAs and their target genes. (A) qRT-PCR results of lncRNAs, PDAC tissue VS normal tissue. (B) qRT-PCR results of target genes,
KRT14 is highly expressed in PDAC tissues(p=0.07), ELANE expression is lower in normal tissues(P=0.07), PDAC tissue VS normal tissue.
*P< 0.05, **P< 0.01; Ns, not significant.
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positively correlated with the GILncSigrisk score, respectively,

suggesting that this model can predict the degree of infiltration

of immune cells. It has been found that reduced infiltration of

these adaptive immune cells is associated with the development

of pancreatic cancer armed with immune evasion mechanisms

and may also impair the effect of immunotherapy in patients

(60–63). Therefore, we believe that the treatment of patients can

be better guided with the help of this model, especially in the

responsiveness of immunotherapy. To our knowledge, this is

the first and most comprehensive study to date describing the

prognostic and immunotherapeutic response predictive value of

TME in patients with PDAC.

Although our study provides important insights for

evaluating genomic instability and the prognosis of patients

with pancreatic ductal adenocarcinoma, and reveals the

association of GILncSig with PDAC immune profiles, there are

still some limitations. First, the TCGA cohort containing 171

patients was relatively smaller than the cohort of patients with

other cancer types such as breast or lung cancer. In addition,

GILncSig was validated only in the TCGA dataset and in five

patient specimens due to the lack of a reliable large independent

dataset. These shortcomings can only be remedied by further

development of these public databases in the future. Second, we

need further functional studies to understand the exact

regulatory mechanism of GILncSig in maintaining genomic

instability. Similarly, the GILncSig-associated tumor

microenvironment is achieved by bioinformatics methods, so

the results may require more in-depth studies to confirm. Third,

there is no data on immunotherapy in the TCGA dataset, so the

predictive power of GILncSig for the responsiveness to

immunotherapy is indirectly assessed.

In conclusion, we identified lncRNAs associated with

genomic instability through a computational framework based

on the mutant hypothesis in the present study. By combining

lncRNA expression profiles, somatic mutation profiles, and

clinical information of pancreatic cancers as case studies, we

identified a genomic instability-derived lncRNA signature as an

independent prognostic marker to stratify pancreatic cancer

patients at risk and validated it in the TCGA cohort. In

addition, we used CIBERSORT and estimation algorithms to

comprehensively understand the tumor microenvironment in

pancreatic cancer patients. Lastly, through the functional

enrichment analysis of a distinct cluster of PDAC patients

with high GILncSig scores and worse survival prognosis, we

found that the distraught expression of genes that promote EMT

and prevent adaptive immune cell infiltration in the TME may

be the key down-stream regulatory network for GILncSig.
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