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Abstract

Creating a complete picture of the regulation of transcription seems to be an urgent task of

modern biology. Regulation of transcription is a complex process carried out by transcription

factors (TFs) and auxiliary proteins. Over the past decade, ChIP-Seq has become the most

common experimental technology studying genome-wide interactions between TFs and

DNA. We assessed the transcriptional significance of cell line-specific features using regres-

sion analysis of ChIP-Seq datasets from the GTRD database and transcriptional start site

(TSS) activities from the FANTOM5 expression atlas. For this purpose, we initially gener-

ated a large number of features that were defined as the presence or absence of TFs in dif-

ferent promoter regions around TSSs. Using feature selection and regression analysis, we

identified sets of the most important TFs that affect expression activity of TSSs in human

cell lines such as HepG2, K562 and HEK293. We demonstrated that some TFs can be clas-

sified as repressors and activators depending on their location relative to TSS.

Introduction

The identification of complex mechanisms of regulation of gene expression in higher eukary-

otes is a major challenge for modern computational biology. The key question is to better

understand the role of transcription factors (TFs), which regulate the transcriptional machin-

ery in cells. Over the past decade, ChIP-Seq has become the most popular experimental tech-

nology for studying the genome-wide interactions between TFs and DNA. To date, several

databases, such as GTRD (http://gtrd.biouml.org/) [1, 2], ENCODE (https://www.

encodeproject.org/) [3], ChIP-Atlas (https://chip-atlas.org/) [4], and ReMap (http://tagc.univ-

mrs.fr/remap/) [5] have been created to systematically process and collect ChIP-Seq datasets

obtained by applying different peak callers to the primary ChIP-Seq data.

To study the effect of TF binding on gene expression, it is common practice to analyze the inte-

grated ChIP-Seq and RNA-Seq data [6, 7], since RNA sequencing is a source of transcription level

data. Another source of experimental data on the level of transcription is the CAGE (Cap Analysis

of Gene Expression) technology. Thus, FANTOM5 (fifth edition of the FANTOM database)
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contains profiled TSSs in the human genome using CAGE with single-molecule sequencers (Heli-

Scope) and a generated atlas of CAGE expression levels (TSS activities) in primary cells, tissues

and cell lines [8]. Initially, the GRCh37/hg19 assembly was used as the reference human genome.

This atlas was later redesigned to fit newer genome assembly–GRCh38/hg38 [9].

The aim of our study was to assess the direct influence of TF binding on activities of TSSs

in most of the studied human cell lines. For this purpose, we initially generated a large number

of features that were defined as the presence or absence of TFs in the different promoter

regions around each available TSS. To generate features, we used the ChIP-Seq datasets of

human TF binding regions (TFBRs) collected in the GTRD database and TSS activities from

the FANTOM5 atlas. For further selection of the most important features, we used the stepwise

forward regression where the selection of features was carried out by an automatic stepwise

procedure. As a result, the constructed regression models made it possible to compose narrow

lists of TFs, which had significant influence on TSS activities in the considered cell lines. In

other words, the composed lists consisted of features that directly related with TSS activity.

Finally, it is important to note that efforts to create atlases of candidate cis-regulatory ele-

ments (promoters, enhancers, silencers, insulators) of human and mammalian genomes has

been increased over the past decade [10–19]. A breakthrough in high-throughput sequencing

technologies [20], which made it possible to analyze the genomic landscape and gene expres-

sion from different points of view, as well as large amounts of data obtained for various types

of cells and activation stimuli, made it possible to approach the creation of such atlases for the

most studied taxa, human and mouse. Nevertheless, due to the extreme complexity (a wide

variety of types of primary cells and cell lines; cell-specific functions of enhancers [21]; features

of gene expression in various cells; differences in the implementation of the cell program

depending on an external or internal stimuli, etc.), the solution of this problem is far from

complete. Most of the research has focused on gene expression activators such as enhancers,

while the regions that suppress gene expression–silencers–are poorly understood [22].

Materials and methods

In general, the key datasets for our study were the overlapped sets of TFBRs that were compiled

through a three-step meta-processing of the ChIP-Seq datasets collected in the GTRD data-

base. Thus, for a given cell line and a given TF, we initially selected only those ChIP-Seq exper-

iments in which the cell line was not treated. In the first step of meta-processing, the following

peak callers were applied to the same raw data obtained from individual ChIP-Seq experiment:

GEM [23], MACS2 [24], PICS [25], and SISSRs [26], see Fig 1. In the second step, four result-

ing sets of TFBRs were overlapped and the False Positive Control Metric (FPCM) [27] was

applied to perform quality control for the overlapped dataset.

If FPCM exceeded the pre-specified threshold value of 3.0, then all so-called orphans (such

TFBRs that did not overlap with other initial TFBRs) were removed from the overlapped data-

set. Thus, the single refined dataset was identified for data from the given ChIP-Seq experi-

ment. Finally, in the third step, the single final dataset was obtained for the given TF as a union

of all the refined datasets corresponding to distinct experiments.

To determine the primary set of the regression features (say, PRIMARY_FEATURES), we

initially defined the following eight promoter regions (in base pairs) around each available

TSS:

½� 5000; � 1001�; ½� 1000; � 501�; ½� 500; � 201�; ½� 200; � 101�;

½� 100; 0�; ½1; 100�; ½101; 500� and ½501; 1000�:
ð1Þ
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The genomic coordinates of 209,911 TSSs and their activities were extracted from the FAN-

TOM5 atlas [9]. The first eight real-valued features were defined as relative numbers of TFs that

bonded (at least, partially) these promoter regions. In detail, if m different TFs were available for

a given cell line and TFBRs of m0 TFs overlapped with the [x1, x2]-promoter region, then the fea-

ture Abundance[x1, x2] was determined as the ratio m0 / m. In other words, the feature Abun-

dance[x1, x2] is an estimate of the concentration of TFBRs within a given [x1, x2]-promoter

region. According to its definition, each feature Abundance[x1, x2] varies in the range [0, 1]. In

general, these features indicate the abundances of promoter regions with TFBRs. It is important

to note that these Abundance-features can be interpreted as indicators of cis-regulatory modules.

Indeed, according to their definitions, cis-regulatory modules represent the stretches of DNA,

where a number of TFs can bind and regulate the expression of nearby genes and regulate the

rate of their transcription [28]. The next features were binary. Each binary feature took values {1,

0} depending on the presence or absence of TFBRs of individual TFs in a given promoter region.

Thus, PRIMARY_FEATURES consisted of 8×(m+1) features. One can expect that considerable

number of the primary features in PRIMARY_FEATURES may be irrelevant in particular regres-

sion models. In general, if there are hundreds or even thousands of features, then it is advisable to

perform feature selection to create a regression model that includes only the most important fea-

tures. For this purpose, we used well-known stepwise forward regression approach. According to

this approach, we selected at each step the single feature from PRIMARY_FEATURES the inclu-

sion of which into ordinary least squares regression gave the highest correlation (say, Ro-p)

between the predicted and observed transcriptional activity.

Finally, it is important to note that we have used all of the available 209,911 TSSs, although

one might expect some of them to be falsely generated due to CAGE technology. For such

TSSs, regression models must correctly predict negligible (or almost negligible) expression

Fig 1. The workflow of meta-processing the ChIP-Seq datasets.

https://doi.org/10.1371/journal.pone.0243332.g001
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levels due to the binarity of features. Indeed, falsely generated TSSs are not transcriptionally

active, therefore, promoter regions around such TSSs should not contain TFBRs. According to

the definition of our features, at least the majority of features for such TSSs have to take zero

values. In turn, for our regression analyses, we used only linear regression models. Therefore,

levels of expression are predicted as the inner products of regression coefficients and zero-val-

ued features. As a result, these products also have zero values (or near zero-values).

Results and discussion

Primary regression models

Basically, we focused on the following three human cell lines: HepG2 (hepatoblastoma), K562

(myelogenous leukemia), and HEK293 (embryonic kidney). We selected these cell lines

because they were the most representative cell lines in GTRD. Thus, HepG2 was represented

by 230 initial ChIP-Seq datasets obtained for 169 TFs (see Table 1); HEK293 was represented

by 210 datasets for 177 TFs, and 304 datasets for 186 TFs were available for K562.

PRIMARY_FEATURES sets were generated as described in the Materials and Methods for each

cell line independently. Thus, PRIMARY_FEATURES for HepG2 consisted of 1360 (= 8 × 170) fea-

tures that represented the presence/absence of TFBS in the promoter regions defined in (1).

The stepwise forward regression was applied to the composed PRIMARY_FEATURES to

select the most important features and obtain a primary regression model. This regression

described the relationship between TSS activities and the 20 most important features. The log-

transformed expression levels (say, LTE-levels) from the FANTOM5 atlas were used as TSS

activities hereinafter. For a given expression level EL, the LTE-level was defined as {0, if

EL< 2; lg(EL) otherwise}.

Table 2 contains the primary regression model obtained for the HepG2 cell line. S1 and S2

Tables contain the primary regression models obtained for K562 and HEK293, respectively.

All the most important features selected by stepwise forward regression were sorted in the

order of their selection. The accuracy of each intermediate regression model was measured by

the Pearson correlation coefficient Ro-p between the predicted and observed transcriptional

activities. The values of Ro-p demonstrated that it was sufficient to implement only 20 steps of

stepwise forward regression, since increments of Ro-p in the last steps became almost negligi-

ble, see Table 2. All selected features turned out to be statistically significant, p-value < 10−67.

In general, the accuracy of the primary regression models turned out to be quite acceptable,

since Ro-p varied in the range [0.626, 0.726], see Table 3. To assess the reliability of regression

models we cross-validated them. For this purpose, we have split at random the entire set of fea-

tures into training and test sets of the equal size. After that, a regression model was built on the

training set, and LTE-levels were predicted independently in both sets using the constructed

regression model. Thus, Table 3 contains also the accuracies of primary regression models

obtained on training and test sets. It turned out that the constructed regression models are

quite reliable because the differences between Ro-p are negligible. In other words, the regres-

sion models were not overfitted. The regression coefficients were obtained using the ordinary

least square regression, which was built in step 20.

Table 1. Summary on ChIP-Seq datasets.

Cell line Number of initial ChIP-Seq datasets Number of distinct TFs Number of features

HepG2 230 169 1360

K562 304 186 1496

HEK293 210 177 1424

https://doi.org/10.1371/journal.pone.0243332.t001
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The sign of the regression coefficient may clarify the function of some TFs. If the coefficient

is positive, then TF can be classified as a transcription activator or coactivator. If the coefficient

is negative, then TF can be classified as a repressor or corepressor. According to Table 2, some

TFs can act as activator and repressor depending on location of the binding site with respect to

TSSs. For example, HEY1 acted as an activator in the three promoter regions [1, 100], [501,

1000], [-500, -201], while it acted as a repressor in the [-100, 0]-promoter region. It is impor-

tant to note that our regression model re-revealed this well-known role for HEY1 [29]. It is

important to note that HEY1 prefer to act as activator for some genes and as repressor for

other genes. In particular, HEY1 preferred to avoid binding to both [-100, 0] and [1, 100]-pro-

moter regions simultaneously. In order to confirm this avoidance, we calculated the ratio of

the observed and estimated probabilities of simultaneous binding to these promoter regions. It

turned out that the ratio was equal to 0.543, hence the observed simultaneous binding is essen-

tially rare than can be expected. Table 2 also demonstrates the same effect for KLF10. It can be

classified as an activator if it is located in the [-100, 0]-promoter region, while it acts as a

repressor in the [501, 1000]-promoter region. Our regression model once again confirmed the

well-known fact that KLF10 is a repressor of multiple genes in many cell types [30]. Finally,

SMAD5, JARID1B and MLL can be classified as activators and repressors in K562 or HEK293

(see S1 and S2 Tables) depending on their location.

Table 2. Primary regression model for the HepG2 cell line.

Feature Correlation coefficient, Ro-p Increment of correlation coefficient Regression coefficient p-value

Abundance [-100, 0] 0.585 0.585 0.261 7.734 × 10−68

TAF1 [1, 100] 0.650 0.135 0.329 < 1.0 × 10−300

HEY1 [1, 100] 0.677 0.027 0.304 < 1.0 × 10−300

NONO [1, 100] 0.689 0.012 0.292 < 1.0 × 10−300

HEY1 [501, 1000] 0.698 0.009 0.243 < 1.0 × 10−300

JARID1A [101, 500] 0.703 0.005 0.239 < 1.0 × 10−300

C/EBP δ [1, 100] 0.706 0.003 0.147 3.185 × 10−291

p53 [-1000, -501] 0.709 0.003 0.479 3.646 × 10−126

KLF10 [-100, 0] 0.711 0.002 0.113 4.117 × 10−100

TBP [-100, 0] 0.713 0.002 0.139 4.066 × 10−226

KLF10 [501, 1000] 0.715 0.002 -0.208 1.653 × 10−166

HEY1 [-100, 0] 0.717 0.002 -0.141 < 1.0 × 10−300

HEY1 [-500, -201] 0.719 0.002 0.133 < 1.0 × 10−300

TBP [101, 500] 0.721 0.002 -0.097 5.945 × 10−111

TAF1 [-100, 0] 0.722 0.001 0.116 2.359 × 10−136

Sp1 [-200, -101] 0.723 0.001 0.126 2.968 × 10−157

ELF1 [-100, 0] 0.724 0.001 0.107 5.219 × 10−122

p53 [501, 1000] 0.725 0.001 0.492 3.496 × 10−131

MYC [-100, 0] 0.726 0.001 0.124 1.053 × 10−102

Sp1 [101, 500] 0.726 < 0.001 -0.148 4.647 × 10−111

https://doi.org/10.1371/journal.pone.0243332.t002

Table 3. Accuracies of the primary regression models measured by the Ro-p correlation coefficient.

Cell line Entire set of features Training set Test set

HepG2 0.726 0.725 0.727

K562 0.704 0.706 0.702

HEK293 0.626 0.625 0.624

https://doi.org/10.1371/journal.pone.0243332.t003
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It is important to note that the influence of TF binding on TSS activity in the K562 cell line was

also studied [31] using data from the ENCODE consortium [3]. TSS activities were represented by

CAGE expression levels, and approximately 120 ChIP-Seq datasets were used in this study. A single

feature for given TSS and TF was defined as the average number of ChIP-Seq reads within the [-50,

50] region of the promoter. As a result, a list (say, List-40) of 40 the most important TFs (features)

was identified by random forest regression model. It is difficult to compare the results directly

because of the differences of feature and regression types. To overcome this difficulty, we extracted

320 (8 × 40) binary features from PRIMARY_FEATURES, which represented TFs in List-40 and

applied stepwise forward regression to them. The resulting primary regression model (say,

K562_List-40) is available as S3 Table. Comparison of K562_List-40 and our primary model in S1

Table indicated that the sets of selected features are quite different. Thus, only three (15%) features,

namely, NF-YA [-100, 0], Sp1 [-200, -100] and SIX5 [-100, 0], were represented in both models. It

seems likely that the features in S1 Table are more preferable and more reliable than the features

selected by K562_List-40, since the accuracy of the primary regression in Table 2 (Ro-p = 0.704) is

significantly higher than the accuracy of K562_List-40 (Ro-p = 0.617).

Comparative analysis of cell lines

To increase the accuracy of regression models it is necessary to generate additional features and

involve them in regression models. For this purpose, we performed a comparative analysis of cell

lines using their transcription activity profiles. We determined the transcription activity profile

for the given cell line as a set of 209,911 TSS activities from the FANTOM5 expression atlas.

In general, this atlas contains expression levels for the following three types of objects: cell

line, primary cell, and tissue. We analyzed the similarity of objects of the same type using cor-

relations between their transcription activity profiles. In addition, we considered a randomly

selected sample to control the similarities between objects of various types. It turned out that

there was a high correlation between the considered objects, see Fig 2. Moreover, the highest

correlations were observed between different cell lines (see Table 4). It is important to note

that RNA-Seq data also confirmed similarity between cell lines. To demonstrate this, we calcu-

lated correlations between 25 distinct cell lines. For this purpose, we used the RNA-Seq data-

sets generated by the ENCODE3 consortium. It turned out that correlation coefficient varied

in the range [0.423, 0.845], and mean correlation was equal to 0.681, when protein-coding

transcripts from Ensembl were used for calculation of correlation.

Obviously, from a biological point of view, it is not surprising that there are relationships

between primary cells, or/and tissues, or/and cell lines, because tissues are composed of differ-

ent types of primary cells, and cell lines are immortalized or cancer-transformed cells that

resemble their tissue of origin [32]. In other words, one can expect that many pairs of primary

cells, tissues, and cell lines can be similar in terms of their transcriptional activity. However,

Table 4 and Fig 2 allowed not only confirming this fact, but also estimating the strength of

these relationships from a statistical point of view.

Due to the revealed similarities, it is not difficult to accurately predict the transcriptional

activity profile of one cell line using the profile of another cell line. In particular, the following

two regression models expressed the relationship between transcriptional activity profile for

HepG2 and the profile for HEK293 or the profile for K562:

HepG2 ¼ 0:089þ 0:906�HEK293; correlation coefficient Ro� p ¼ 0:812;

HepG2 ¼ 0:148þ 1:054� K562; Ro� p ¼ 0:766:

S1 Fig demonstrates these two regression models.
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Advanced regression models

Based on comparative analysis performed in the previous section, we can confidently conclude

that cell lines are similar in terms of their transcription activity profiles. In other words, the

activities of many TSSs are almost identical in many cell lines. To incorporate this cell line

commonality into regression models, we generated a new feature called ‘mean profile’. It was

defined as a set of 209,911 mean values of activities, where an individual mean activity for each

TSS was determined by averaging all of its activities in cell lines available in the FANTOM5

atlas.

The accuracy of regression model was significantly improved when stepwise forward

regression was applied to the combination of PRIMARY_FEATURES and the mean profile.

Thus, a comparison of Ro-p values in the first row of Table 5 with Ro-p values achieved using

primary regression models (see Table 3) indicated that the accuracy increased 1.23–1.48 times.

However, such a regression model has a serious disadvantage, since it is completely useless for

predicting the activities of novel TSSs, which are absent in the FANTOM5 atlas. To avoid this

disadvantage, we generated a new feature called ‘predicted mean profile’. This feature was

Table 4. Summary on correlations between objects in the FANTOM5 atlas.

Type of objects in the FANTOM5 atlas Size Mean correlation Minimal correlation Maximal correlation

primary cell 432 0.735 0.389 0.974

tissue 135 0.744 0.485 0.975

cell line 241 0.772 0.581 0.978

randomly selected sample 300 0.712 0.322 0.975

https://doi.org/10.1371/journal.pone.0243332.t004

Fig 2. Empirical densities of the Pearson correlation coefficient between objects in the FANTOM5 atlas.

https://doi.org/10.1371/journal.pone.0243332.g002
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determined using the following two-step procedure. In the first step, the stepwise forward

regression was applied three times to PRIMARY_FEATURES determined for HepG2, K562

and HEK293 independently. As a result of the first step, three predicted profiles were obtained.

In the second step, the ‘predicted mean profile’ was generated by averaging three predicted

profiles. Thus, ‘predicted mean profile’ was determined by applying stepwise forward regres-

sion technique to all the PRIMARY_FEATURES defined for HepG2, K562 and HEK293.

Finally, the stepwise forward regression was applied to the combination of PRIMARY_FEA-

TURES and the predicted mean profile to select the most important features and get an

advanced regression model. Table 6 contains the advanced regression model obtained for the

HepG2 cell line. S4 and S5 Tables contain the advanced regression models obtained for cell

lines K562 and HEK293, respectively. The accuracy of advanced regression models is demon-

strated in the second row of Table 5.

It is important to note that the predicted mean profile was the most important feature in all

three advanced regression models. Therefore, one can conclude that common (i.e. not specific

to the cell line) transcription processes are dominant in different cell lines. However, cell line

specificity can also be detected using advanced regression models. Thus, it is well known that

HEY1 is involved in the regulation of self-renewal of liver cancer cells [33]. Therefore, it was

not surprising that HEY1 was the most represented TF in the most important features for

HepG2. According to Table 6, HEY1 was observed in the six most important features. In other

Table 5. Accuracy of advanced regression models for the HepG2, K562 and HEK293 cell lines.

Set of features Ro-p for HepG2 Ro-p for K562 Ro-p for HEK293

PRIMARY_FEATURES and mean profile 0.895 0.882 0.925

PRIMARY_FEATURES and predicted mean profile 0.743 0.733 0.732

https://doi.org/10.1371/journal.pone.0243332.t005

Table 6. Advanced regression model for the HepG2 cell line.

Feature Correlation coefficient, Ro-p Increment of correlation coefficient Regression coefficient p-value

Predicted mean profile 0.701 0.701 0.712 < 1.0 × 10−300

HEY1 [1, 100] 0.717 0.016 0.198 < 1.0 × 10−300

HEY1 [501, 1000] 0.724 0.007 0.154 < 1.0 × 10−300

Abundance [-100,0] 0.728 0.004 0.259 1.071 × 10−76

TAF1 [1,100] 0.731 0.003 0.170 2.624 × 10−275

NONO [1, 100] 0.733 0.002 0.147 3.106 × 10−232

HEY1 [-1000, -501] 0.734 0.001 0.057 1.680 × 10−54

AhR [-100, 0] 0.735 0.001 -0.059 1.330 × 10−108

Sp1 [-200, -101] 0.736 0.001 0.098 3.294 × 10−102

TBP [-100, 0] 0.737 0.001 0.095 2.166 × 10−115

c-Myc [-100, 0] 0.738 0.001 0.107 2.690 × 10−81

HEY1 [-5000, -1001] 0.738 < 0.001 0.060 3.009 × 10−138

NF-YC [501, 1000] 0.739 < 0.001 -0.168 4.312 × 10−98

GR [-500, -201] 0.740 < 0.001 0.425 1.164 × 10−89

HEY1 [-100, 0] 0.740 < 0.001 -0.083 5.989 × 10−123

TAF1 [-100, 0] 0.741 < 0.001 0.090 9.918 × 10−90

TAF1 [-1000, -501] 0.741 < 0.001 -0.098 9.337 × 10−90

HEY1 [-500, -201] 0.742 < 0.001 0.069 1.032 × 10−81

HNF3G [101, 500] 0.742 < 0.001 -0.099 1.191 × 10−88

SSRP1 [101, 500] 0.743 < 0.001 0.112 2.267 × 10−87

https://doi.org/10.1371/journal.pone.0243332.t006
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words, its binding to 6 promoter regions [-5000, -1001], [-1000, -501], [-500, -201], [-100, 0],

[1, 200] and [501, 1000] was important for transcription in the HepG2 cell line. Moreover,

based on comparison of the primary and advanced regression models (see Tables 2 and 6), one

can conclude that the features of the advanced regression model were more specific for cell

lines than those of the primary regression model. Indeed, HEY1 was observed only in the four

most important features of the primary model. Additionally, it is well-known that HNF3G

(hepatocyte nuclear factor 3-gamma) plays an important role in the development, differentia-

tion and regeneration of the liver [34]. Therefore, it was not surprising that HNF3G was

selected using the advanced regression (see Table 6) but it was not selected using primary

regression.

It is interesting to note that the most important features correlated with some additional

features from PRIMARY_FEATURES. Thus, Table 7 contains five features that most correlate

with individual most important feature identified for the HepG2 cell line. It is not difficult to

see that almost all important features (excluding GR[-500, -201]) highly correlated with the

corresponding Abundance-features. In particular, the correlation coefficient between HEY1

[501, 1000] and Abundance[501, 1000] is equal to 0.689 while for the pair (HEY1[-1000, -501],

Abundance[501, 1000]) it is equal to 0.706. According to the definition of Abundance-features,

they can obviously be interpreted as indicators of cis-regulatory modules. Therefore, one can

conclude that almost all TFs involved in the most important features prefer to bind to putative

cis-regulatory modules. For example, according to the information for the important feature

HEY1[501, 1000] in Table 7, we can expect the existence of a putative cis-regulatory module

within [501, 1000] promoter regions of some genes, and this module contains HEY1, ZNF205,

and IRF2. According to the information for TAF1[1, 100], another putative cis-regulatory

module within [1, 100] promoter regions contains TAF1, NONO, CEBPD, and HEY1. On the

one hand, HEY1, TAF1 and NONO are involved in the most important features. On the other

hand, ZNF205, IRF2 and CEBPD are not directly involved and, possibly, can be classified as

less important. Nevertheless, their impact on TSS activity was also taken into account because

they participated in the selected ‘Abundance[-100, 0]’ feature. Thus, from the point of view of

regression models, the most important features were related to TSS activity directly and indi-

vidually while less important features were related with TSS activity mutually.

According to the signs of the advanced regression coefficients, the most important features

identified by advanced regressions can also be classified as activators or repressors. In particu-

lar, based on Table 6, one can conclude that five features (namely, HEY1 [-100, 0], AhR [-100,

0], NF-YC [501, 1000], TAF1 [-1000, -501] and HNF3G [101, 500]) can be classified as repres-

sors, while the remaining features–as activators. However, one can expect that this classifica-

tion can be distorted by the presence of Abundance-features among the most important

features, since Abundance-features include information about many TFs. To understand how

reliably stepwise regression models can actually classify features into activators or repressors,

we conducted the following test. We removed all Abundance-features from the most impor-

tant features and built the ordinary least squares regression models using the remaining

important features. As a result, we observed a slight decrease in the accuracy of the regression

but the regression coefficients and their significance were changed imperceptibly. Thus, in the

case of the HepG2 cell line, the removal of the feature Abundance [-100, 0] resulted in a slight

decrease in the Ro-p correlation coefficient from 0.743 to 0.739. However, the same five features

can be classified as repressors due to the negative signs of their regression coefficients: HEY1

[-100, 0] (regression coefficient = -0.087, p-value = 1.512 × 10−86), AhR [-100, 0] (-0.048,

1.117 × 10−78), NF-YC [501, 1000], (-0.171, 2.736 × 10−78), TAF1 [-1000, -501] (-0.093,

9.954 × 10−91) and HNF3G [101, 500] (-0.087, 1.512 × 10−86). Thus, the presence of Abun-

dance-features had no essential influence on repressor/activator classification.
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It is interesting to note that we also considered an additional way of repressor/activator

classification. In this case, each TF was analyzed independently. For each TF, we constructed

the ordinary least squares regression model for which only eight binary features were used.

Based on the signs of the regression coefficients and the p-values, we considered the following

three categories: TF was classified as a significant repressor in a given promoter region if the

sign of the regression coefficient of the corresponding feature was negative and p-value< 10−5.

If the sign was positive and the p-value < 10−5, then TF was classified as a significant activator.

If the p-value> 10−5, then TF was considered insignificant. Fig 3 shows the results of this clas-

sification for all 11 TFs, which were selected as the most important for the HepG2 cell line.

The new classification approach confirmed most of the features from Table 6. Only three fea-

tures (namely, c-Myc[-100, 0], NF-YC[501, 1000] and HNF3G[101, 500]) were classified as

Table 7. Features that most correlate with the individual most important features identified for the HepG2 cell line.

Most

important

features

Feature_1 Corre-

lation_1

Feature_2 Corre-

lation_2

Feature_3 Corre-

lation_3

Feature_4 Corre-

lation_4

Feature_5 Corre-

lation_5

HEY1[1, 100] Abundance[1,

100]

0.657 Abundance

[-100, 0]

0.624 HEY1[101,

500]

0.575 Abundance

[101, 500]

0.552 NONO[1, 100] 0.548

HEY1[501,

1000]

Abundance

[501, 1000]

0.689 HEY1[101,

500]

0.670 ZNF205[501,

1000]

0.590 IRF2[501,

1000]

0.590 Abundance

[101, 500]

0.590

Abundance

[-100, 0]

Abundance[1,

100]

0.787 ZNF205[-100,

0]

0.775 Abundance

[-200, -101]

0.769 PPARG[-100,

0]

0.745 GATAD1

[-100, 0]

0.744

TAF1[1, 100] Abundance[1,

100]

0.617 NONO[1, 100] 0.595 Abundance

[-100, 0]

0.524 CEBPD[1,

100]

0.514 HEY1[1, 100] 0.506

NONO[1, 100] Abundance[1,

100]

0.622 TAF1[1, 100] 0.595 Abundance

[-100, 0]

0.574 HEY1[1, 100] 0.548 CEBPD[1, 100] 0.527

HEY1[-1000,

-501]

Abundance

[-1000, -501]

0.706 HEY1[-500,

-201]

0.634 ZNF205

[-1000, -501]

0.613 CREB1[-1000,

-501]

0.598 IRF2[-1000,

-501]

0.591

AhR[-100, 0] AhR[1, 100] 0.777 AhR[-200,

-101]

0.766 AhR[101, 500] 0.613 AhR[-500,

-201]

0.600 Abundance

[-100, 0]

0.557

Sp1[-200, -101] Abundance

[-200, -101]

0.536 NF-YC[-200,

-101]

0.445 CREM[-200,

-101]

0.429 Abundance

[-100, 0]

0.409 ATF1[-200,

-101]

0.397

TBP[-100, 0] Abundance

[-100, 0]

0.635 Abundance

[-200, -101]

0.531 Abundance[1,

100]

0.530 ZNF205[-100,

0]

0.519 TBP[1, 100] 0.508

c-Myc[-100, 0] Abundance

[-100, 0]

0.515 MAX[-100, 0] 0.438 HBP1[-100, 0] 0.410 TGIF2[-100, 0] 0.409 ZHX2[-100, 0] 0.404

HEY1[-5000,

-1001]

Abundance

[-5000, -1001]

0.647 MYBL2[-5000,

-1001]

0.582 ERF[-5000,

-1001]

0.567 ZNF205

[-5000, -1001]

0.566 GATAD1

[-5000, -1001]

0.564

NF-YC[501,

1000]

Abundance

[501, 1000]

0.425 KLF10[501,

1000]

0.423 GMEB2[501,

1000]

0.415 RFXANK[501,

1000]

0.412 RFX5[501,

1000]

0.398

GR[-500, -201] GR[-1000,

-501]

0.467 GR[-200, -101] 0.435 TP53[-500,

-201]

0.421 TP53[-1000,

-501]

0.399 GR[101, 500] 0.391

HEY1[-100, 0] HEY1[-500,

-201]

0.421 HEY1[101,

500]

0.417 Abundance

[-100, 0]

0.397 Abundance

[-200, -101]

0.397 HEY1[-200,

-101]

0.380

TAF1[-100, 0] Abundance

[-100, 0]

0.549 Abundance

[-200, -101]

0.461 HBP1[-100, 0] 0.457 HMGXB4

[-100, 0]

0.451 TBP[-100, 0] 0.447

TAF1[-1000,

-501]

NONO[-1000,

-501]

0.650 Abundance

[-1000, -501]

0.628 TBP[-1000,

-501]

0.585 KLF6[-1000,

-501]

0.584 DMAP1

[-1000, -501]

0.582

HEY1[-500,

-201]

Abundance

[-500, -201]

0.725 HEY1[-1000,

-501]

0.634 ZNF205[-500,

-201]

0.631 Abundance

[-200, -101]

0.624 CREB1[-500,

-201]

0.605

HNF3G[101,

500]

Abundance

[101, 500]

0.541 NFIL3[101,

500]

0.461 RARA[101,

500]

0.455 NR2F6[101,

500]

0.442 MIER3[101,

500]

0.433

SSRP1[101,

500]

SSRP1[1, 100] 0.584 SSRP1[501,

1000]

0.490 SSRP1[-100, 0] 0.398 Abundance

[101, 500]

0.348 PHF5A[101,

500]

0.336

https://doi.org/10.1371/journal.pone.0243332.t007
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insignificant. However, it is necessary to note that the results of the new classification are less

reliable, as the accuracy of ordinary least squares regressions was quite moderate, since Ro-p

varied in the range [0.102, 0.628], see Fig 3.

On the one hand, for construction of regression models it is sufficient to use the ‘predicted

mean profile’ and approximately 20 the most important features due to small increments of

Ro-p in last steps of feature selection. According to their p-values, selected features are

extremely significant. On the other hand, it seems likely that these sets of features can be

extended by additionally composed the lists of attendant features that also play a role in cell-

specific regulation. For this purpose, we continued to select features with the help of stepwise

forward regression. In this case, we stopped selection when the p-value of least significant

regression coefficient exceeded the threshold 10–20. The lists of attendant features for HepG2,

K562 and HEK293 cell lines are available as S6 to S8 Tables, respectively. The attendant fea-

tures can be classified as less important, but still highly significant for cell-specific regulation.

Additionally, we briefly considered the possibility of using advanced regression models

obtained for one cell line (for example, HepG2) to predict TSS activities in another highly cor-

related cells (for example, primary hepatocytes). Unfortunately, this approach is not applicable

(at least, intensively) to our features due to frequent incompleteness of the ChIP-Seq data. This

incompleteness is due to the fact that, for example, for the cell line, the ChIP-Seq experiments

were carried out using one set of TFs, while for the primary cells, the experiments were carried

out with a different set of TFs. In particular, according to Table 6, to predict TSS activities in

hepatocytes using the advanced regression model, it is necessary to have TFBRs of selected

eleven TFs, while currently (according to the GTRD database) only CTCF, EZH2 and NR1H4

have been studied in ChIP-Seq experiments. Therefore, the advanced regression model men-

tioned in Table 6 is currently still not useful for predicting TSS activities in hepatocytes.

Finally, to demonstrate the usefulness of the predicted mean profile, we performed a regres-

sion analysis of three rare cell lines DU145 (prostate carcinoma), THP-1 (acute monocytic leu-

kemia) and U937 (adult acute monocytic leukemia). Only a few TFs were studied in ChIP-Seq

experiments on these cell lines, see Table 8. It was therefore not surprising that the primary

Fig 3. Classification of repressors/activators obtained by ordinary regressions using eight features for the HepG2

cell line.

https://doi.org/10.1371/journal.pone.0243332.g003

Table 8. Accuracy of the primary and advanced regression models for the DU145, THP-1 and U937 cell lines.

Cell line Number of TFs Ro-p for primary regression model Ro-p for advanced regression model

DU145 6 0.538 0.699

THP-1 11 0.440 0.652

U937 5 0.426 0.667

https://doi.org/10.1371/journal.pone.0243332.t008
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regression models could only achieve low accuracy: 0.426� Ro-p� 0.538. However, the accu-

racy increased 1.30–1.57 times when we used the predicted mean profile to build advanced

regression models, see Table 8. These models are available in S9 to S11 Tables. The significant

increment of Ro-p values indicated that a non-cell-specific feature (the predicted mean profile)

could compensate, at least in part, for the absence of a large number of features in poorly stud-

ied cell lines.

Sum-transformation of expression levels for closely spaced TSSs

One of the specific properties of TSSs in the FANTOM5 atlas was that many of them are

located close to each other. In particular, 116,620 TSSs (55.6%) had other TSSs nearby at a dis-

tance of less than 100 bp. For such closely spaced TSSs, we replaced their individual expression

levels with sums of their expression levels and then calculate LTE-levels for sums. For the

remaining TSSs, which were separated by at least 100 bp, we did not change their individual

LTE-levels. As a result, for the given cell line, we created a new transcription profile, say, sum-

transformed profile.

To predict sum-transformed profile, we also applied stepwise forward regression to PRIMARY_-

FEATURES. In other words, we have constructed primary regression models for prediction of

sum-transformed profiles. S12 to S14 Tables contain the resulting sum-transformed regression

models. The first row of Table 9 contains the accuracy of sum-transformed regression models for

the HepG2, K562 and HEK293 cell lines. Comparison of Ro-p values in the first row of Table 9 with

Ro-p values achieved using primary regression models (see Table 3) indicated that the accuracy

increased 1.073–1.15 times. Thus, the transition from transcription activity profiles to sum-trans-

formed profiles has become the second way to increase the accuracy of regression models.

Finally, it is interesting to note that the list of features selected by the sum-transformed

regression models and the list of features selected by the primary regression models were sig-

nificantly overlapped. For example, Table 2 and S12 Table contained 12 (60%) identical fea-

tures. The second row of Table 9 contains the percentage of identical features for the three

analyzed cell lines.

Conclusions

1. Using the stepwise forward regression method, we identified the sets of the most important

TFs that affect expression activity of TSSs in human cell lines such as HepG2, K562 and

HEK293.

2. With the help of the constructed regression models, we demonstrated that some TFs can be

classified simultaneously as repressors and activators depending on their location relative

to TSS.

3. A comparative analysis of cell lines revealed high similarity between them. We expressed

the commonality of cell lines using the novel feature ‘predicted mean profile’. We demon-

strated that this feature is useful for improving the accuracy of regression models, as well as

for analyzing rare cell lines.

Table 9. Ro-p correlations and percentages of identical features for sum-transformed regression models for the

HepG2, K562 and HEK293 cell lines.

Characteristics of sum-transformed regression models HepG2 K562 HEK293

Ro-p correlation 0.781 0.768 0.721

Percentage of identical features 60% 60% 55%

https://doi.org/10.1371/journal.pone.0243332.t009
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