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Objective: Detection of diabetic retinopathy (DR) outside of specialized eye care settings is an important
means of access to vision-preserving health maintenance. Remote interpretation of fundus photographs acquired
in a primary care or other nonophthalmic setting in a store-and-forward manner is a predominant paradigm of
teleophthalmology screening programs. Artificial intelligence (AI)-based image interpretation offers an alternative
means of DR detection. IDx-DR (Digital Diagnostics Inc) is a Food and Drug Administration-authorized autono-
mous testing device for DR. We evaluated the diagnostic performance of IDx-DR compared with human-based
teleophthalmology over 2 and a half years. Additionally, we evaluated an AI-human hybrid workflow that com-
bines AI-system evaluation with human expert-based assessment for referable cases.

Design: Prospective cohort study and retrospective analysis.
Participants: Diabetic patients � 18 years old without a prior DR diagnosis or DR examination in the past

year presenting for routine DR screening in a primary care clinic.
Methods: Macula-centered and optic nerve-centered fundus photographs were evaluated by an AI algorithm

followed by consensus-based overreading by retina specialists at the Stanford Ophthalmic Reading Center.
Detection of more-than-mild diabetic retinopathy (MTMDR) was compared with in-person examination by a retina
specialist.

Main Outcome Measures: Sensitivity, specificity, accuracy, positive predictive value, and gradability ach-
ieved by the AI algorithm and retina specialists.

Results: The AI algorithm had higher sensitivity (95.5% sensitivity; 95% confidence interval [CI], 86.7%e
100%) but lower specificity (60.3% specificity; 95% CI, 47.7%e72.9%) for detection of MTMDR compared with
remote image interpretation by retina specialists (69.5% sensitivity; 95% CI, 50.7%e88.3%; 96.9% specificity;
95% CI, 93.5%e100%). Gradability of encounters was also lower for the AI algorithm (62.5%) compared with
retina specialists (93.1%). A 2-step AI-human hybrid workflow in which the AI algorithm initially rendered an
assessment followed by overread by a retina specialist of MTMDR-positive encounters resulted in a sensitivity of
95.5% (95% CI, 86.7%e100%) and a specificity of 98.2% (95% CI, 94.6%e100%). Similarly, a 2-step overread
by retina specialists of AI-ungradable encounters improved gradability from 63.5% to 95.6% of encounters.

Conclusions: Implementation of an AI-human hybrid teleophthalmology workflow may both decrease reli-
ance on human specialist effort and improve diagnostic accuracy.
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The Center for Disease Control estimates that 415 million
people worldwide have diabetes mellitus.1 Current guidelines
recommend that an eye care provider perform a dilated eye
examination every 1 to 2 years to screen for vision-
threatening complications of diabetic retinopathy (DR) or
diabetic macular edema (DME).2 With approximately
ª 2023 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
200 000 ophthalmologists practicing worldwide, the eye
care workforce is challenged to meet the rising demand of
DR detection and treatment.3 Teleophthalmology performed
by remote, asynchronous interpretation of fundus
photographs by experienced human readers in a store-and-
forward manner has been one means of addressing this
1https://doi.org/10.1016/j.xops.2023.100330
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widening gap in public health.4 More recently, artificial
intelligence (AI)-based medical devices for the detection of
DR by fundus photographs have also become available for
clinical use.5-8

IDx-DR (Digital Diagnostics Inc) is a United States Food
and Drug Administration (FDA)-authorized, deep-learning-
based, autonomous device for DR detection in the primary
care setting. To operate IDx-DR, a trained medical assistant,
typically in a nonophthalmic setting, uses a 45� non-
mydriatic fundus camera to acquire 1 macula-centered im-
age and 1 optic disc-centered image from each eye of a
patient with diabetes. The images are then submitted to a
cloud-based algorithm that returns a result of whether or not
the patient has more-than-mild-DR (MTMDR), defined as
meeting or exceeding the ETDRS level 35 or having clini-
cally significant DME.9 Patients receiving an MTMDR
result are recommended by the autonomous system to be
referred to an ophthalmologist for an in-person examina-
tion, whereas those without MTMDR are instructed to
repeat testing in 12 months.5

The pivotal trial for IDx-DR, which led to FDA autho-
rization of the device, compared the results of 900 partici-
pants tested by the AI system against the interpretation by
reading center personnel of widefield stereoscopic photo-
graphs and macula-centered spectral-domain (SD) OCT.
The trial used a reflexive dilation protocol in which patients
were pharmacologically dilated if the device was unable to
assess fundus images acquired without mydriasis. The de-
vice achieved a rate of gradability of 96.1% along with a
sensitivity of 87.2% and specificity of 90.7% for diagnosing
MTMDR.

Since this trial, several other studies have reported on the
performance of IDx-DR outside of the setting of a formal
clinical study. Among 1616 reflexively dilated patients at
a hospital in the Netherlands, IDx-DR had an estimated
sensitivity of 79.4% and specificity of 93.8% compared with
retina specialists.10 A second study in the Netherlands using
image interpretation based on the International Clinical
Diabetic Retinopathy Severity Scale (ICDRSS) as a
standard of comparison found that the device had a
sensitivity of 68% and specificity of 86%.11,12 Results
from a study conducted in Germany found that IDx-DR
had a sensitivity of 65.2% and specificity of 66.7%.13

When used in a hospital in Spain, IDx-DR achieved 100%
sensitivity and 81.8% specificity for MTMDR.14 Finally,
when used with 310 children < 21 years old, the
sensitivity and specificity were 85.7% and 79.3%,
respectively, compared with retina specialists.15 Outside of
the device’s pivotal trial, the performance of IDx-DR has
not yet been reported in an adult population in the United
States.

Apart from fully autonomous DR screening, the coop-
eration between human experts and AI has not been well
explored. Although until recently most tasks in health care
could be better performed by an experienced human than an
algorithm, increasingly, AI models are able to exceed hu-
man experts.16,17 In other tasks, humans and AI models
have complementary strengths and weaknesses across
different cases and their combined judgments exceed the
individual performance of either.18 However, in some
2

situations, human interaction with an AI can result in an
overall worse performance than either one alone.19,20

There are a variety of ways that humans and AI models
may interact to optimize performance and resources.
Further exploration of this interaction is important because
a simulated economic analysis suggested that a
semiautomated approach to DR screening involving
human experts and AI may be less expensive than a solely
human-based or fully automated screening system,
although these figures may vary depending on the cost of
human labor and screening adherence rates.21-23

The present study evaluates the performance of an AI
system as a substitute for or complement to a human-based
teleophthalmology screening program for DR. The investi-
gation occurs in the context of the Stanford Tele-
ophthalmology Autonomous Testing and Universal
Screening (STATUS) program, a screening program for DR
at 7 primary care sites in the San Francisco Bay Area. The
first 18 months of the STATUS program involved store-and-
forward teleophthalmology performed by retina specialists
in an academic reading center. This phase of the program
was followed by a 12-month study period in which an AI
system (IDx-DR) was implemented at the same primary care
sites with the same imaging hardware operated by largely
the same personnel. Performance of the AI system was
evaluated against a standard of care for teleophthalmology
in DR screening, adjudicated consensus reading by retina
specialists, as well as against an in-person examination by a
retina specialist supported by multimodal imaging (Figs S1,
S2, available at www.ophthalmologyscience.org/). Finally,
an AI-human hybrid workflow was evaluated both for DR
diagnosis and for AI-ungradable encounters.
Methods

Clinical Sites

The STATUS program is a DR screening network involving the
Byers Eye Institute at Stanford University, 5 Stanford-affiliated
regional primary care sites (Santa Clara, Los Gatos, Hayward,
Castro Valley, and Pleasanton), and 2 Stanford-affiliated endocri-
nology clinics (Palo Alto and Emeryville) in the San Francisco Bay
Area. For 18 months before the implementation of IDx-DR, these
primary care sites participated in a human-based store-and-foward
teleophthalmology program that obtained fundus images with the
same nonmydriatic fundus camera that is paired with IDx-DR
(TopCon NW400, TopCon) without the use of autonomous AI in
the evaluation of images. Immediately after the human-based tel-
eophthalmology phase of the program, the IDx-DR system was
introduced, and the study period spanned 12 months.

Consent was waived because the study was retrospective or
adhered to standard of care treatment for the patient without
introduction of any additional risk. All patients were verbally
informed of the DR screening workflow and elected to participate
in the procedure. The study was approved by the Institutional
Review Board of Stanford University. The described research ad-
heres to the tenets of the Declaration of Helsinki.

Image Acquisition and Patient Evaluation

Patients � 18 years old with type 1 or type 2 diabetes mellitus
without a prior DR diagnosis or a DR examination in the past 12
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months who presented to the primary care clinic for diabetes
management were offered the opportunity to undergo DR tele-
ophthalmology screening. These criteria were adopted to be in
compliance with FDA labeling and intended use for IDx-DR and
reflect current DR screening recommendations. Screening was
performed with human-based teleophthalmology evaluated by
retina specialists at the Stanford Ophthalmic Reading Center dur-
ing the first phase of the program and with evaluation by IDx-DR
during the second phase of the program. During both phases,
fundus imaging was performed by a trained medical assistant using
a TopCon NW400 nonmydriatic fundus camera to acquire 1 45�
macula-centered image and 1 optic disc-centered image for each
eye. Because patients were not pharmacologically dilated in the
program, for 2 minutes before imaging, patients sat in a window-
less room with the lights turned off, computers and other ambient
light sources turned off or blocked, and eyelids closed. After
acquisition of 4 fundus images per session, the images were sub-
mitted for diagnosis.

During the teleophthalmology phase, single-reader evaluation
occurred by a rotating pool of fellowship-trained retina specialists
(T.L. and V.M.) at the Stanford Ophthalmic Reading Center who
judged whether the images had sufficient quality for evaluation,
and if so, evaluated the images for DR (no DR, mild non-
proliferative DR [NPDR], moderate NPDR, severe NPDR, and
proliferative DR) and DME (DME present or absent) based on the
categories of the ICDRSS (N ¼ 790 patient encounters). Because it
was not possible to produce a full count of the number of intra-
retinal hemorrhages per retinal quadrant in the two 45� image fields
of view, a key differentiation between moderate and severe NPRD
in the ICDRSS, the 2 categories were combined into a single
category, moderate-severe NPDR. Image interpretation was per-
formed using Picture Archiving and Communication Software that
allowed readers to manipulate image brightness and contrast (Zeiss
Forum, Carl Zeiss Meditec). Patients who received an MTMDR or
ungradable result were referred to an ophthalmologist for in-person
examination. During the teleophthalmology phase, assessment of
image quality and the decision of whether to repeat image acqui-
sition was left to the discretion of the medical assistant.

During the AI phase, the device’s secure cloud-based AI sys-
tems assessed image quality before clinical evaluation. If� 1 of the
images was judged by IDx-DR as having insufficient quality for
diagnosis of MTMDR, all 4 images were rejected without clinical
evaluation per the device’s standard operation. Medical assistants
were trained to repeat acquisition up to 4 times before accepting a
patient encounter as ungradable. If IDx-DR judged the submitted
images to be of sufficient quality for clinical evaluation, it rendered
a clinical result of the presence or absence of MTMDR defined as
either ETDRS level 35 or higher or DME in � 1 eye. Patients who
received an MTMDR or ungradable result were referred to an
ophthalmologist for in-person examination (N ¼ 1222 patient en-
counters; 776 AI-gradable, 446 AI-ungradable).

Human Consensus Overread and In-Person
Examination

Overread of a subset of images from AI-gradable patients (n ¼ 199
encounters) was performed by 2 fellowship-trained retina special-
ists at the Stanford Ophthalmic Reading Center who determined
whether the images were gradable and, if so, assigned a diagnosis
of DR or DME based on the ICDRSS ("human consensus"). The
subset of 199 patients included all AI-gradable patients who were
seen for an in-person examination (n ¼ 122) as well as a random
subset of AI-gradable patients not seen for an in-person examina-
tion (n ¼77) selected by random number generation. In cases
where the 2 readers differed in their assessment, a third reader
(E.D.) evaluated the images. The overreads were binned into a
patient-level grade of the presence or absence of MTMDR in � 1
eye so that they could be directly compared with the output from
IDx-DR. In 3% (6 of 199) of cases, the 3 readers were unable to
render a patient-level consensus (1 ungradable, 1 MTMDR-
positive, and 1 MTMDR-negative evaluation), and an indepen-
dent fourth assessment by an ophthalmologist resolved the
disagreement. During the AI phase of the program, nearly all AI-
ungradable images were prospectively read by a single retina
specialist (n ¼ 438), and a subset of these were further overread by
an adjudicated consensus of 3 retina specialists (n ¼ 223) in the
manner described above.

A subset of patients who underwent IDx-DR evaluation were
seen at the Byers Eye Institute at Stanford for an in-person eye
examination by a fellowship-trained retina specialist ("in-person
examination," n ¼ 180). The examination occurred at a median of
53 days after the IDx-DR encounter. The patient encounter
involved a dilated fundus examination, SD-OCT imaging (Cirrus,
Carl Zeiss Meditec), and other retinal imaging. The diagnosis was
based on a documented examination and assessment. Because the
criteria for moderate NPDR per the ICDRSS and ETDRS 35 or
greater differ based on the inclusion of cotton wool spots in
ETDRS, a separate grade was assigned for the 2 systems (i.e., the
presence of absorbent cotton wool spots and microaneurysms
indicated ETDRS 35 but only mild NPDR per ICDRSS), although
this only resulted in a different patient-level MTMDR diagnosis in
1 instance. In 52.2% of encounters, 200� ultrawide-field color
fundus imaging (Optos Inc) was performed. The images were
evaluated using ICDRSS and ETDRS criteria. In cases where the
objective evaluation of the Optos image differed from the docu-
mented diagnosis from in-person examination, a second reader
(E.D.) adjudicated the evaluation. In 2 cases (2% of encounters),
the adjudicated Optos evaluation changed the patient-level
MTMDR grade from that documented in the in-person
examination.

Statistics

Data were managed and analyzed using Python (version 3.9.0)
with Pandas (version 1.3.0) and Microsoft Excel (version
16.16.27). Figures were created in Google Sheets and Adobe
Illustrator. Student t tests were conducted as 2-tailed tests.

Data Availability

Data without patient identifiers used in the analyses for the
manuscript will be made available to investigators upon request.
Results

Performance of the AI System and Human-
based Teleophthalmology

During the teleophthalmology phase of the DR screening
program, 5.6% of gradable encounters (5.1% of all en-
counters) resulted in a diagnosis of MTMDR. In compari-
son, during the AI phase, the AI system identified MTMDR
in 19.0% of gradable encounters (11.9% of all encounters).
The increased proportion of patients diagnosed with
MTMDR by the AI system began the first month that the
system was introduced and persisted throughout the study
period (Figs 3, S4, available at www.ophthalmology
science.org/). This suggested that the more than threefold
increase in the rate of MTMDR resulted from either
3
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Figure 3. Percentage of monthly encounters with a more-than-mild diabetic retinopathy (MTMDR)-positive diagnosis identified by human-based tele-
ophthalmology (blue) or artificial intelligence (AI) system (red) among gradable encounters.
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higher specificity of the human teleophthalmology readers,
higher sensitivity of the AI system for MTMDR, or both.

An adjudicated consensus overread by retina specialists of
the fundus images ("human consensus") from the AI phase of
the program showed agreement between the human consensus
and AI system on the presence or absence of MTMDR in
78.4% of cases. Both the human consensus and the AI system
were compared to in-person examination by a retina specialist
("in-person examination") that was supported by a combina-
tion of SD-OCT and widefield fundus photography. The hu-
man consensus compared with the in-person examination had
an accuracy of 91.8%, including 69.5% sensitivity (95%
confidence interval [CI], 50.7%e88.3%) and 96.9% specificity
(95% CI, 93.5%e100%) for the presence or absence of
MTMDR (Figs 5 and 6 and S7 and S8, available at
www.ophthalmologyscience.org/). When the DR assessments
were expanded beyond being positive or negative for
MTMDR to a modified 4-stage classification based on
ICDRSS, the human consensus and in-person examination had
the same diagnosis in 83.3% of encounters and were within 1
stage of each other in 96.5% of encounters (Figs S9, S10,
available at www.ophthalmologyscience.org/). The
comparison of the AI system to in-person examination had a
70.0% accuracy including 95.5% sensitivity (95% CI, 86.7%e
100%) and 60.3% specificity (95% CI, 47.7%e72.9%) (Figs
5, 6, S7, S8).

Evaluation of Discrepancies in Disease
Assessment

Encounters in which there was a discrepancy in the DR
diagnosis between the AI system and the in-person exami-
nation result did not show any statistically significant pre-
dilection for age, sex, or self-reported race or ethnicity
(Student’s 2-tailed t test for age, P ¼ 0.74; chi-square sta-
tistic for sex, 3.51, P ¼ 0.061; chi-square statistic for White
vs. non-White race, 0.446, P ¼ 0.50; N ¼ 1222). There was
also no association with ocular comorbidities including
4

cataract or ocular surface disease when analyzed for the
subset of patients who had a documented in-person exami-
nation (chi-square statistic for cataract, 0.0419, P ¼ 0.84;
chi-square statistic for ocular surface disease, 0.0546,
P ¼ 0.815216; n ¼ 80).

Close examination of the fundus images from discrepant
cases between the AI system and in-person examination
showed a single case in which there was an intraretinal
hemorrhage in the midperipheral retina outside of the fields
of view of the AI system’s fundus images; all human
consensus reads for this case were also MTMDR-negative
(Fig S11, available at www.ophthalmologyscience.org/).
Inspection of the cases in which the AI system gave an
MTMDR-positive assessment compared with an MTMDR-
negative diagnosis on in-person examination showed 1
instance of a branched retinal vein occlusion without DR
found on in-person examination; human readers also made a
diagnosis of MTMDR-positive while noting that the pattern
of hemorrhages on 1 side of the fundus midline made a
retinal vein occlusion more likely than DR (Figs S11, 12,
available at www.ophthalmologyscience.org/). Close
inspection of 2 other encounters in which the AI system
was MTMDR-positive showed an intraretinal hemorrhage
that was not described on the in-person examination; there
was no widefield fundus image taken during those in-person
examinations to confirm the presence or absence of the
hemorrhages at that encounter (Fig S13, available at
www.ophthalmologyscience.org/).

Images were examined from 5 encounters in which the
human consensus was MTMDR-negative, whereas both the
AI system and the in-person examinations were MTMDR-
positive. In 4 of the cases, there were microaneurysms or
small intraretinal hemorrhages, while the fifth had exudates
confirmed on SD-OCT imaging (Fig S14, available at
www.ophthalmologyscience.org/). There were also 2
encounters that the AI system assessed as MTMDR-
positive, whereas both the human consensus and in-person
examinations were MTMDR-negative; however, close
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Figure 5. Confusion matrices comparing more-than-mild diabetic retinopathy (MTMDR) positive or negative results of screening encounters by the artifical
intelligence (AI) system versus the in-person examination, and the human consensus overread by retina specialists versus the in-person examination. All
numbers represent a patient-level assessment within a screening encounter (n ¼ 80 patient encounters evaluated by the AI system and in-person exam-
ination; n ¼ 122 encounters evaluated by both the human consensus and the in-person examination; note that these groups of patients are not mutually
exclusive).
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inspection of the fundus photographs and ultrawide-field
fundus images showed 1 clear intraretinal hemorrhage in
each encounter (Fig S13).

Patients who were screened by the AI system could
have up to 6 human assessments for DR (MTMDR-posi-
tive, MTMDR-negative, or ungradable), including up to 3
human overreads of the fundus images acquired during the
AI screening encounter, up to 2 evaluations of ultrawide-
field fundus images, and 1 in-person dilated fundus ex-
amination. The level of agreement between these inde-
pendent human assessments was calculated with a Fleiss
statistic, a measure of interrater reliability across > 2 raters
and multiple categories. For cases in which the AI-system
Figure 6. Sensitivity, specificity, and gradability of encounters for human conse
and a 2-step AI-human hybrid workflow. 95% confidence intervals are displaye
agreed with the in-person examination, the Fleiss statistic
was 0.71, indicating a high level of interrater agreement
among independent human evaluations. In contrast, cases
in which the AI system and in-person examination had
discordant diagnoses had a Fleiss statistic of 0.06, indi-
cating a low level of agreement among the independent
human evaluations.

AI-Human Hybrid

When judged against the in-person examination diagnosis as
an estimate of the true state of disease, the AI system had a
positive predictive value of 47.7%, indicating that fewer
nsus adjudicated among retina specialists, artificial intelligence (AI) system,
d.
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Figure 12. Sets of fundus images from 4 representative patient encounters. In each case, the artificial intelligence system gave a more-than-mild diabetic
retinopathy (MTMDR)-positive diagnosis and both the human consensus and in-person examination were MTMDR-negative.
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than half of patients referred to an ophthalmologist would be
MTMDR-positive. We considered whether an AI-human
hybrid workflow for DR screening could improve the pos-
itive predictive value and accuracy of the program. We
analyzed the data as a 2-step workflow in which the DR
screening encounter is first performed by the AI system
followed by the most experienced retina specialist over-
reading all MTMDR-positive results before referral to an
ophthalmologist. Under this 2-step workflow, the positive
predictive value increased to 95.5% (95% CI,
6

86.7%e100%), along with accuracy of 97.4%, sensitivity of
95.5% (95% CI, 86.7%e100%), and specificity of 98.2%
(95% CI, 94.6%e100%) (Figs 6, 15). The adjudicated
consensus overread only changed the diagnosis in 2 cases
out of 80 compared with the single experienced reader.

Additionally, in this nonpharmacologically dilated pa-
tient population, the AI system rendered an ungradable
result in 36.5% of encounters. A single experienced retina
specialist was able to interpret 93.1% of all patient en-
counters as well as 88.1% of AI-ungradable encounters, and
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an adjudicated consensus agreed that the image was inter-
pretable in 77.7% of cases. Thus, we evaluated a second AI-
human hybrid workflow in which fundus images from AI-
ungradable encounters were prospectively assessed by a
retina specialist. Under this 2-step AI-human hybrid work-
flow, a diagnosis was rendered in 91.6% of encounters (Fig
6). Finally, patients who were ungradable by both the AI
system and the retina specialist were referred for an in-
person examination, and only 1 of 36 eyes (2.8%) in this
group could not be evaluated for DR or DME owing to a
dense cataract. Among the remaining 35 eyes examined in
person, 3 were found to have MTMDR (8.5%).
Discussion

As the number of individuals with diabetes mellitus increases
both within the United States and worldwide, there is a
looming public health crisis of delivering necessary eye care
to these patients. Even at current prevalence of diabetes, only
an estimated 15.3% of patients with diabetes receive rec-
ommended eye examinations.24 Teleophthalmology and
AI-based screening offer potential alternatives to in-person
examination by an ophthalmologist to increase access to
eye care in a resource-conscious manner. This study de-
scribes the results of a DR screening program at primary care
clinics in the San Francisco Bay Area that combines both AI-
and human-based teleophthalmology screening methods into
an AI-human hybrid workflow. The program initially
employed teleophthalmology by having retina specialists
perform remote, asynchronous interpretation of fundus im-
ages in a store-and-forward manner; subsequently, screening
was carried out using an FDA-approved autonomous AI
system. This continuous transition from teleophthalmology to
AI at the same clinical sites using the same fundus imaging
protocol and hardware allowed us to compare the perfor-
mance of human-based teleophthalmology and AI for remote
DR screening. It additionally allowed us to implement a
hybrid workflow that combined AI system and expert-human
evaluation.
Figure 15. Confusion matrix of a 2-step, artificial intelligence (AI)-human
hybrid workflow involving an experienced retinal specialist overreading all
patients judged as more-than-mild diabetic retinopathy (MTMDR)-
positive by the AI system. PPV ¼ positive predictive value.
We found that during the AI phase of the program, > 3
times the number of MTMDR patients were identified than
during the human teleophthalmology phase. We investi-
gated this difference by comparing the results of the AI
system and an adjudicated consensus overread of the en-
counters by retina specialists to in-person examination by
retina specialists supported by multimodal retinal imaging.
This analysis showed that although both approaches
demonstrate high accuracy, the sensitivity of the AI system
in our patient population exceeded that of human readers,
while the specificity of human readers exceeded the AI
system.

There are several explanations for the diagnostic dis-
crepancies between IDx-DR, expert human assessment, and
in-person examination. First, diagnostic errors by the AI
device may have been due in part to poor image quality and
image artifacts. Unlike the IDx-DR pivotal trial, screening in
our system was performed exclusively with patients who
were not pharmacologically dilated, likely leading to a
higher frequency of darker images and other pupil-related
image anomalies. Artificial intelligence performance did
not differ across age, sex, or self-reported race or ethnicity.

Second, IDx-DR was calibrated against images analyzed
in a reading center applying strict ETDRS criteria to fundus
photographs and aided by SD-OCT for the assessment of
DME. Although the prognostic value of the ETDRS system
for DR outcomes has been well established, in the course of
routine care, retina specialists may or may not evaluate
patients by those criteria instead favoring ICDRSS or
another grading system. Experts, including retina specialists,
may also have imperfect inter- or intrarater reliability.25

Several fundus photographs in this study contained
intraretinal hemorrhages that were not identified by most
human graders nor were documented on the in-person eye
exam, suggesting that in some cases the AI system may
catch lesions missed by experts. However, there were other
cases in which the AI system was discordant with both the
human consensus and the in-person examination, and
exhaustive examination of the fundus images could not
identify retinal biomarkers to support the AI system’s
diagnosis of MTMDR, showing that the AI system is also
not without error. Of note, there were no cases in which
IDx-DR missed DME that was subsequently detected by
SD-OCT.

Moreover, the discordant images may have sat at the
borderline of mild and moderate DR or had other attributes
that made the diagnosis difficult at a ground-truth level. This
was reflected in the Fleiss statistic calculated across all
available human diagnoses: for cases in which the AI system
and the in-person examination agreed, there was very high
agreement across the independent human diagnoses,
whereas when the AI system disagreed with the in-person
examination, humans evaluating the patient across multi-
ple modalities also tended to disagree. For instance, there
were several cases in which a fundus image with a lesion
that could be construed as a microaneurysm or a small
intraretinal hemorrhage was judged as either mild or mod-
erate NPDR. Thus, although strict adherence to a prognostic
standard like ETDRS may increase interrater reliability,
routine clinical practice may demonstrate higher agreement
7
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in clinically meaningful diagnoses (microaneurysms only
versus neovascularization) than in clinical distinctions with
less prognostic value (interpretation of a single lesions as a
microaneurysm versus intraretinal hemorrhage).

A fourth possibility is that IDx-DR may be calibrated to
prioritize sensitivity even if there is a trade-off in specificity.
One motivation for greater sensitivity is that the clinical
consequences of missing 1 case of MTMDR typically
exceed the psychosocial effect on the patient and the eco-
nomic impact on the health care system of a false positive
result. Additionally, just as a car accident in a self-driving
vehicle may be judged more harshly by the public than
one caused by a human driver, the autonomous AI screening
device may use a conservative operating point to avoid a
similar outcry. Although in the pivotal trial IDx-DR
demonstrated sensitivity and specificity without statisti-
cally significant difference, this balance may be different in
pharmacologically dilated patients or other wider data
distributions.5

The high sensitivity and comparatively lower speci-
ficity of the AI system resulted in a positive predictive
value of 47.7% among gradable results, which offers
value to a DR screening program because it would reduce
the number of patients who need to be seen by a provider
by more than half. Additionally, at this positive predictive
value, approximately 1 of 2 referred patients will be
positive for MTMDR, whereas without this screening step
approximately 1 in 10 or fewer patients referred for a
diabetic eye examination will be positive.26 Yet, the value
of AI screening for DR can be enhanced even more by
layering AI-based examinations into a tele-
ophthalmology program rather than fully replacing human
readers. We simulated a 2-step, AI-human hybrid
screening system in which patients were first evaluated by
the AI system, and then MTMDR-positive results were
overread by a single, experienced retina specialist. Under
this system, the positive predictive value increased to
95.5% at a sensitivity of 95.5% and specificity of 98.2%.
Previous work has also shown this hybrid model to be
more cost-effective than either fully automated or human-
based assessment alone.21

A second application of the AI-human workflow is the
use of expert readers to interpret fundus images from AI-
ungradable encounters. In our study, gradability was
62.5%, which is in line with other reports from use outside
of the clinical-trial setting, particularly studies in which
patients were not pharmacologically dilated.10,12-14 Because
ungradable patients are referred for in-person examination, a
low rate of gradability can overwhelm referral pathways,
confuse patients, and decrease provider reliance on the
screening system. We found that for more than three-quar-
ters of encounters ungradable for AI, retina specialists
judged that they were sufficient to evaluate for DR. These
results support a 2-step, AI-human hybrid workflow
involving all IDx-DR encounters with a referable result,
MTMDR-positive or AI-ungradable, being delegated to
human readers for further evaluation before referral for in-
person examination (Fig 16).

A hybrid workflow may also offer a transition of existing
human-based teleophthalmology screening programs into
8

AI-based screening programs. Current teleophthalmology
programs may have significant investments in personnel and
capital equipment that may disincentivize an outright
change to the use of an AI device. As AI systems improve in
specificity and as pharmacologic pupil dilation becomes
increasingly within the scope of practice at primary care
clinics, AI may gradually take on a greater share of the
workload.

Areas both within and outside healthcare have benefited
from productive AI-human interactions. For instance, in
basic neuroscience research, a human-in-the-loop approach
to the reconstruction of axons and dendrites in volumetric
electron microscopy data has advanced the field of con-
nectomics.27 In a more everyday example, the braking
speed of a self-driving vehicle that detects an impending
collision on the freeway far exceeds human reaction time.
However, the human driver may be alerted to control
vehicle steering in a low-confidence navigational situation
such as maneuvering through a field scattered with people
as they depart from an outdoor concert. Although AI is
becoming increasingly abundant in health care, it is not
always clear when the provider should take over the wheel.
Additional research on out-of-distribution awareness and
anomaly detection for medical image analysis may be
helpful.28,29 Human factors and usability engineering
should be an important consideration in the design of
medical devices, but as yet, there are no FDA-authorized
diagnostic medical devices intended for use in a hybrid
pathway with human-in-the-loop analysis of medical
images.30

Finally, to the best of our knowledge, this study rep-
resents the first results of routine clinical use of IDx-DR in
an adult population in the United States. The patients
served by the program reflect the demographically diverse
communities of the San Francisco Bay Area. Conse-
quently, our study included > 20 times the proportion of
East Asian patients compared with the IDx-DR pivotal
trial.5 The cohort also included significant numbers of
patients of Hispanic/Latino, Black, White, Pacific
Islander, or Native American self-reported race or
ethnicity.

There are several limitations to this study. One important
qualification of the study results is that all encounters during
the screening program were performed on nonmydriatic
patients. It is likely that pharmacologic pupil dilation not
only increases the rate of gradability for IDx-DR as docu-
mented in the pivotal trial, but also increases the accuracy of
the analysis among gradable images due to fewer imaging
artifacts.5 However, pharmacologic pupil dilation may not
be available in screening sites due to concerns for risk of
adverse events, scope-of-practice issues, and limited re-
sources for performing and monitoring dilated patients. Of
note, with additional training of personnel to improve
fundus image acquisition, gradability has improved to over
70% now in the second year of the AI phase of the STATUS
program.

An additional limitation includes the fact that patients
who underwent an in-person examination were not
randomly chosen from the screened population and thus
may represent a biased subset. This represents an inherent



Figure 16. Diagram of a proposed artificial intelligence (AI)-human hybrid workflow in which fundus images from AI-screening encounters with an output
of more-than-mild diabetic retinopathy (MTMDR)-positive or AI-ungradable are overread by a human expert in a traditional teleophthalmology store-and-
forward system. Patients with a MTMDR-negative outcome by the human assessment can be rescreened by the AI system in 12 months, whereas patients
with a MTMDR-positive assessment or who are ungradable by the human should be referred for an in-person eye examination.

Dow et al � Hybrid Diabetic Retinopathy Detection
limitation of the observational nature of the study, and the
findings could be further validated through a prospective,
randomized trial. Although many patients with an MTMDR-
negative IDx-DR result subsequently underwent in-person
examination, most patients had been referred for in-person
examination because of an ungradable or MTMDR-
positive IDx-DR result. The group of patients undergoing
in-person examination therefore likely had a higher preva-
lence of MTMDR than the general population, which may
have resulted in an overestimation of the positive predictive
value. Also of note, the 52-day median lag between the
referable screening result and in-person examination may be
overly long, particularly for patients with severe NPDR or
PDR. This underscores the importance of approaches that
improve the positive predictive value of screening results so
as not to overwhelm referral pathways, in addition to clear
communication to patients regarding the importance of
prompt follow-up care.
9
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Finally, although the retina specialists involved in the
study are highly qualified, their training in and use of strict
ETDRS criteria was unknown, whereas the AI system was
tested under a clinical trial setting against readers using this
prognostically validated scale. Further prospective in-
vestigations should perform in-person DR assessments us-
ing ETDRS-grading criteria.

In conclusion, this study demonstrates the feasibility of a
hybrid caseload sharing model combining both autonomous
AI and store-and-forward teleophthalmology for diabetic
retinopathy screening. The system starts with autonomous AI-
based screening, which renders a diagnosis for most patients
and catches almost all true-positive cases of MTMDR. The
lower specificity compared with human experts can be
compensated by an AI-human hybrid workflow involving
expert overreading of positive cases before referral for in-
person examination. Likewise, nearly all patients who have
an AI-ungradable encounter may be evaluated remotely and
asynchronously using an experienced reader. The remaining
10
patients who are either MTMDR-positive or ungradable by
both AI and the human reader may present for an in-person
dilated fundus examination by a retina specialist (Figure
16). The provision of necessary eye care to the hundreds of
millions of individuals worldwide with diabetes mellitus, a
figure that grows each year, is a significant public health
challenge that may not be addressed by ophthalmologists
alone. An AI-human hybrid workflow may allow scalable
software solutions to meet the rising need for essential pre-
ventative eye care while maintaining the standard level of
care offered by human assessment.
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