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Abstract: The development of a health evaluation system from human-related data is an important
issue in preventive medicine. Previously, most studies have focused on disease assessment and
prevention in patients. However, even if certain risk factors are all within normal ranges, individuals
may not necessarily be completely healthy. This study focused on healthy individuals to develop a
new index to assess health risks; this index can be used for the prevention of multiple diseases in
healthy people. The kernel density technique was proposed to estimate the distribution of common
risk factors and to develop a health risk index. A dataset of hypertension, hyperlipidemia, and
hyperglycemia (Triple H) data from the National Health Insurance Research Database in Taiwan
was used to demonstrate the proposed analytical process. The results of risk factor changes after
six weeks of exercise were used to calculate the health risk index. The results showed that the
subjects experienced a 7.29% reduction in their health risk index after the exercise intervention. This
finding demonstrates the potential impact of an important reference index on quantifying the effect
of maintenance in healthy people.
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1. Introduction

For a long time, the diagnosis and treatment of diseases have been critical aspects of medical
development. Many scholars have used data mining techniques on medical data to analyze the
relationships between disorders and the real causes of those disorders [1–4]. Additionally, intelligent
medical systems have been developed to help doctors diagnose illnesses [5–7]. However, abnormalities
in physiological indicators may be a gauge of not only one disease but of multiple diseases. Therefore,
in recent years, determining the common risk factors and developing a predictor model for multiple
diseases have become more important. Chang et al. [8] proposed a two-stage analysis procedure that
used data mining techniques and mathematical approaches to determine the common risk factors
(such as systolic blood pressure (SBP), triglycerides (TGs), uric acid, glutamate pyruvate transaminase,
and gender) and predictive models for hypertension and hyperlipidemia. Medical decision systems,
based on analyzing risk factors and predicting the functions of diseases, can help patients understand
the risks of developing diseases and efficiently provide diagnostic references for medical personnel. In
the current era of medicine, preventive medicine has gradually become more accepted. The motivation
of this study was to propose a new health risk index to assess the health status of people from the
perspective of preventive medicine. The rapid development of medical devices has made it easy to

Int. J. Environ. Res. Public Health 2019, 16, 1168; doi:10.3390/ijerph16071168 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-7869-3965
http://www.mdpi.com/1660-4601/16/7/1168?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16071168
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 1168 2 of 12

obtain information about physiological indicators. In the past, when all physiological indicators were
within the standard range, the probability of illness was small and the patient was likely healthy.
However, such information does not help the concept of preventive medicine. Therefore, a novel index
must be developed to assess health status when there are changes in risk factors in healthy people.

Certain health care practices have also recently become more accepted; for example, people have
started to use exercise, meditation, and diet to control risk factors. Whelton et al. [9] studied the
effect of aerobic exercise on blood pressure and found that SBP and diastolic blood pressure (DBP)
decreased by an average of 3.84 and 2.58 mmHg, respectively, over a period of aerobic training in 2419
subjects aged between 21 and 79 years old. Additionally, Fagard [10] designed a one-year experiment
to observe the effects of exercise and diet on blood pressure; SBP and DBP decreased by an average
of 3.4 and 2.4 mmHg, respectively, in 68 subjects after the implementation of an exercise regimen.
Fagard [10] also found that exercise combined with dietary control resulted in a more significant effect
than only exercise or only dietary control. Stewart et al. [11] designed an exercise plan for 115 subjects
aged between 55 and 75 years old who were divided into two groups: a control group and a group that
exercised three times a week. The results demonstrated that exercise could improve physical fitness
and decrease the risk of many physiological factors related to cardiovascular diseases and diabetes.
Based on the above discussion, exercise maintenance can reduce the values of several risk factors.

However, there has been little research on a method to evaluate the health status of a healthy
individual when their risk factors change even after exercise maintenance. For example, hypertension
patients are defined by an SBP of >140 mmHg or a DBP of >90 mmHg. When the SBP ranges between
120 and 135 mmHg, which is within the normal range, the resulting health effects may differ in different
individuals. Vasan et al. found that in 9845 subjects with normal blood pressure, only 5.3% became
hypertensive after four years; however, 17.6% of the subjects who developed hypertension originally
had an SBP between 120 and 129 mmHg and a DBP between 80 and 84 mmHg [12]. The American
Diabetes Association defines diabetes as a fasting blood glucose level of >126 mg/dL. The normal
fasting blood glucose level for non-diabetics should range between 70 and 100 mg/dL. Although
a fasting blood glucose level of <100 mg/dL is normal, a fasting blood glucose level between 100
and 125 mg/dL is considered pre-diabetic. Nichols et al. found that 8.1% of patients with fasting
glucose levels between 100 and 109 mg/dL and 24.3% of those with levels between 110 and 125 mg/dL
developed diabetes after an average of 41.4 months [13]. Therefore, risk factor values that are closer
to the threshold will increase the risk of developing the respective disease. From the perspective of
preventive medicine, understanding the degenerating state of healthy individuals will help prevent
future disease.

Maintainability is widely used in industrial applications. Maintainability can be used to assess
the life of a machinery or production system. The physical structures of the human body contain
similar production systems; thus, an approach transferring the concepts of maintainability to human
health assessment is the focus of this study. In practical applications, information on risk factors
(such as blood pressure, heart rate, Electroencephalography (EEG), and Electromyography (EMG)
can be collected quickly with the widespread use of home medical equipment. Therefore, in this
study, a kernel density technique was used to develop a health risk index based on risk factors from
human-related data. In practice, changes in health risk indicators can be used to establish an early
warning mechanism. When the health risk indicator is gradually declining, the patient will still be
considered healthy; however, if they fail to control the risk factor, they will likely develop the disease.
Thus, a health risk index can estimate the health status of people and help them better understand
their health conditions. Additionally, manufacturers should apply new techniques [14–16] to develop
rapid physiological devices or sensors to measure most risk factors. For example, Zhang et al. presents
state-of-the-art research progress on cardiovascular health informatics and focuses on three major
challenges: unobtrusive and wearable multi-parameter sensors, fast multimodal imaging technologies,
and novel multi-scale information fusion heart models [17].
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In this paper, the health risk index was proposed to evaluate a person’s level of health. Figure 1
displays the framework of this study. The differences from previous methods are primarily a result
of different study purposes. Previous research has developed disease prediction models through
algorithmic designs by collecting information about specific diseases in healthy and unhealthy
populations. Those algorithms use feature selection techniques to identify risks and establish a
classification model by collecting data on risk factors. Their purpose is to determine whether a person
is healthy or sick by measuring risk factors. Conversely, this study focuses on the assessment of
healthy people. The similarity lies in the determination of risk factors, whereas the difference lies in the
development of health risk indicators based on the data of healthy people. The purpose of this study
was to assess health outcomes, particularly in high-risk groups. When health risk indicators decrease,
individuals may develop diseases or otherwise become unhealthy. At this point, risk factors must be
controlled to avoid disease. The results of this study can be used to jointly develop AI in healthcare
through cloud computing to evaluate the trends and changes of users’ health. This information is
important for disease prevention.
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2. Materials and Methods

This study proposed a novel three-stage analysis procedure involving the feature selection method,
the kernel density estimation method, and mathematical approaches to calculate the health risk index
of healthy people. Stage 1 adopted the findings from our previous study [8]. The procedure used six
classification techniques to individually screen for the key risk factors for multiple diseases. Based on
the results of previous research [8], we used five common risk factors: fasting plasma glucose (FPG),
total cholesterol (T-CHO), TGs, SBP, and DBP, to determine the risks for hypertension, hyperlipidemia,
and hyperglycemia. After identifying these risk factors, we compared the risk factors for each disease
to determine the common risk factors for multiple diseases. Stage 2 used the kernel density estimation
method to fit density curves for the common risk factors individually. Finally, stage 3 calculated the
health risk index based on the kernel density function of the common risk factors. The two primary
methods of kernel density estimation and the calculation of the health risk index are described below.
The proposed methodology is explained below using data on 6496 subjects (3104 males and 3392
females) with Triple H disease from the National Health Insurance Research Database in Taiwan and
the research results of Stewart et al. [11], who conducted a six-week exercise intervention. The reason
for applying Stewart et al. [11] research data is that the five risk factors proposed are the same as the
five common risk factors in this study. Also, the effectiveness of preventive maintenance was evaluated
using a health risk curve.
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2.1. Kernel Density Estimation Method

The kernel density estimation approach was first described by Rosenblatt [17] and Parzen [18]. It is
a nonparametric statistical method used to estimate an unknown probability distribution. The method
does not require a priori knowledge or make any additional assumptions regarding data distribution.
In practice, it is often assumed that the values of the risk factor follow a normal distribution; however,
this assumption lacks strong supporting evidence. Therefore, in this study, we adopted the kernel
density method to estimate the risk factor distribution.

If x1, x2, . . . , xn are independent and identically distributed unknown observations, the probability
density function f̂h can be estimated by the kernel density function as follows:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(1)

where K(·) is a kernel function that was symmetric and integrated into one. The h variable is the
bandwidth to determine the degree of smoothness of the kernel function. This study evaluated six
types of common kernel functions, including Gaussian, Epanechnikov, Triangular, Uniform, Bright,
and Cosine, to estimate the kernel density values for all the common risk factors. Table 1 shows the six
common types of kernel functions.

Table 1. The common types of kernel function.

Types Kernel Function

Uniform K(u) = 1
2 for |u| ≤ 1

Triangular K(u) = (1− |u|) for |u| ≤ 1
Biweight K(u) = 15

16
(
1− u2)2 for |u| ≤ 1

Epanechnikov K(u) = 3
4
(
1− u2) for |u| ≤ 1

Gaussian K(u) = 1√
2π

e−
1
2 u2

Cosine K(u) = π
4 Cos

(
π
2 u
)

for |u| ≤ 1

When using the kernel density estimation method, we must choose the kernel function and set
the bandwidth. The choice of kernel function was adopted through the six common types in Table 1.
To select the kernel function, all values of the risk factors were initially used to calculate the probability
density value as the real density value. Then, the six common types of kernel functions in Table 1 were
used to estimate the kernel density function for the risk factor as the estimated density value. Finally, a
suitable kernel function was chosen using the minimum difference between the sum of the real density
value and the estimated density value. Therefore, each density function of the risk factors might be
fitted with different kernel functions.

The bandwidth of the kernel function is an important parameter that has a strong influence on
the resulting estimate. A narrow bandwidth would allow more over-fitting of the data. Conversely, an
overly wide bandwidth would not have an appropriate data fit. Figure 2 shows the differences from
100 standard normally distributed datapoints. When the bandwidth was set to 0.05 or 2, there was a
large difference from the original density distribution; conversely, if the bandwidth was set to 0.337,
there was an excellent fit.
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The mean integrated squared error (MISE) was used to choose the best bandwidth. The MISE can
be calculated as follows:

MISE(h) =
∫

Bias2
(

f̂h(x)
)

dx +
∫

Var
(

f̂h(x)
)

dx (2)

The MISE was separated into two parts including Bais
(

f̂h(x)
)

= E
[

f̂h(x)
]
− f (x) and

Var
(

f̂h(x)
)
= E

[
f̂ 2
h (x)

]
− E2

[
f̂h(x)

]
. f̂h(x) was the estimated density value using the kernel function,

and f (x) was the unknown true density value.
∫

Bias2
(

f̂h(x)
)

dx using the Taylor expansion method

was derived as 1/4
[
h4µ2

2R( f )
]
, µ2 =

∫
z2K(z)dz and R( f ) =

∫
f ′′ (x)2dx. n and h were the sizes of

the data and bandwidth, respectively. If n was large and h was small, the variance of f̂h(x) can be
derived as (1/nh)

∫
K2(z)dz. Therefore, an approximate mean integrated squared error (AMISE) was

calculated as follows:
AMISE =

1
4

h4µ2
2R( f ) +

1
nh

∫
K2(z)dz (3)

We estimated the optimal bandwidth by minimizing AMISE regarding h by the first derivative.
The optimal bandwidth h was:

ĥAMISE =

[∫
K2(z)dz

µ2
2R( f )

] 1
5

n−
1
5 (4)

In practice, the above formula has an infinite loop problem when calculating both
∫

K2(z)dz and
an unknown function f ′′ (x). Liu et al. compared the accuracies of nine types of bandwidth selection
methods and found that no particular method performed better for all problems [19]. Therefore, in
this study, we used the NDR0 method, which was suggested by Liu et al. [19]. The NDR0 method has
the advantage of being easily calculated using the standard deviation (σ̂) and inter-quartile range of
the dataset. The bandwidth can be calculated using the NDR0 as follows:

ĥ = 0.9min
(

σ̂,
IQR
1.34

)
n−

1
5 (5)

From the above procedure, we can determine the probability density function of the risk factors
using the kernel density estimation approach. Next, the health risk index was proposed to estimate the
health status of healthy people.
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2.2. Health Risk Index Calculation

The R(t) was defined as a function of human health evaluation; it describes the t value of the risk
factor once it has reached a certain value for a physiological state that was still healthy. In other words,
R(t) is the health risk at value t for a particular risk factor. With an increase in the risk factor value, the
disease or health risk will also increase. We assumed that n of multiple diseases were studied, and
there was one normal state (healthy people) and (2n − 1) combinations of people who suffered from
different diseases. The f1,i variable is representative of healthy individuals with the ith risk factor in the
probability density function. The f2,i, f3,i, . . . , f2n ,i variables represent the probability density function
of the different combinations of diseases with the ith risk factor. The probability density function
used the kernel density estimation approach. In this study, the health risk index Ri(t) was defined for
healthy people with the ith risk factor and was calculated as follows:

Ri(t) =


f1,i

f1,i+ f2,i+···+ f2n ,i
, f or xi ≤ t ≤ yi

0 , others
(6)

where t represents the value of the ith risk factor, and the interval [xi, yi] represents the range of values
in the ith risk factors for healthy people. Figure 3 presents an example of three different status functions
of a risk factor to describe the health risk index. The solid line represents the function of the risk factor
values of healthy subjects, and the other two lines with signs represent groups that suffered from
different diseases.
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Since the t value of the risk factor only fell onto the x and y-axes for healthy subjects when it was
between x and y, R(t) was the ratio of the probability density of the normal group P1(t) to all of the
probability densities of the three status functions. Therefore, R(t) can be simplified as:

R(t) =
P1(t)

p1(t) + p2(t) + p3(t)
, for x ≤ t ≤ y. (7)

Each probability density value was a positive number less than 1. Therefore, R(t) was between 0
and 1.

If any of the risk factors were over the threshold values, we determined that the person had the
disease(s). Therefore, the health risk index Rhri(t) for a healthy person can be presented as follows:

Rhri(t) =
n
Π

i=1
Ri(t) (8)
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We can plot the curve of the health risk index from Rhri(t) for all t values of the risk factors.
According to the health risk index curve, we can then evaluate the effect on health risks when risk
factors change after a period of maintenance activities (such as exercise or diet control). Figure 4 shows
an example of the health risk curve for SBP from 90 to 160 mmHg based on real data.
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In Figure 4, when the SBP is greater than 127 mmHg, the health risk curve begins to decline,
indicating a gradual decline in health. When the SBP is greater than 140 mmHg, the health risk index
is zero, indicating that the individual has the disease. For example, if a healthy person had an SBP
of 135 mmHg before dietary control, the health risk index Rhri(t) of SBP would be 0.4. Moreover, if
their SBP decreased to 130 mmHg after a period of dietary control, the new health risk index Rhri(t)
of SBP would be 0.72. Therefore, the difference value between 0.4 and 0.72 (0.32) is the effect of the
dietary control.

3. Results and Discussion

Hypertension, hyperlipidemia, and hyperglycemia are three common diseases that are associated
with metabolic syndrome and related to metabolic abnormalities. If a person has these diseases,
the risk of developing other chronic diseases increases as well. A dataset from the National Health
Insurance Research Database in Taiwan was used to elucidate the proposed analytical procedures.
The dataset included 6496 subjects (3104 males and 3392 females) aged over 15 years old and 17
physiological indicators.

Next, the analysis procedure established the appropriate kernel function for the common risk
factors in every physiological state of hypertension, hyperlipidemia, and hyperglycemia. Tables 2–6
show the risk factors of the kernel density functions that were selected by the proposed estimation
approaches used in this study. An example in Table 2 describes the results and indicates the outcome of
the kernel density approach for FPG in the different physiological states (hypertension, hyperlipidemia,
and hyperglycemia). In the normal state, the minimum value of the estimated six kernel density
approaches was 0.0725. Therefore, the Gaussian type was selected as a suitable kernel function for FPG
in the normal state. Similarly, the minimum value was 1.0622 for hyperlipidemia + hyperglycemia and
1.1331 for hypertension + hyperlipidemia + hyperglycemia. The Gaussian type was also the suitable
kernel function for FPG in hyperlipidemia + hyperglycemia and hypertension + hyperlipidemia +
hyperglycemia. The Triangular type was the appropriate kernel function for FPG for hypertension,
hyperlipidemia, hyperglycemia, hypertension + hyperlipidemia, and hypertension + hyperglycemia,
with the minimum values shown in Table 2.
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Table 2. The selection of Kernel density function for the fasting plasma glucose (FPG).

FPG
Kernel Density Function

Gaussian Epanechnikov Uniform Triangular Biweight Cosine

Normal 0.0725 0.0761 0.0781 0.0731 0.0753 0.0749

Hypertension 0.2387 0.2430 0.2508 0.2376 0.2425 0.2419

Hyperlipidemia 0.1242 0.1304 0.1374 0.1242 0.1286 0.1279

Hyperglycemia 0.9441 0.9485 0.9492 0.9428 0.9473 0.9468

(Hypertension & Hyperlipidemia) 0.2001 0.2052 0.2127 0.1995 0.2039 0.2033

(Hypertension & Hyperglycemia) 1.4843 1.4868 1.4935 1.4826 1.4863 1.4860

(Hyperlipidemia & Hyperglycemia) 1.0622 1.0658 1.0668 1.0624 1.0647 1.0643

(Hypertension & Hyperlipidemia &
Hyperglycemia) 1.1331 1.1383 1.1439 1.1332 1.1367 1.1361

Table 3. The selection of Kernel density function for the total cholesterol (T-CHO).

T-CHO
Kernel Density Function

Gaussian Epanechnikov Uniform Triangular Biweight Cosine

Normal 0.1184 0.1228 0.1281 0.1198 0.1214 0.1209

Hypertension 0.3555 0.3649 0.3781 0.3557 0.3613 0.3601

Hyperlipidemia 0.3247 0.3368 0.3404 0.3290 0.3328 0.3315

Hyperglycemia 0.8521 0.8631 0.8690 0.8532 0.8600 0.8587

(Hypertension & Hyperlipidemia) 0.4810 0.4864 0.4985 0.4796 0.4847 0.4841

(Hypertension & Hyperglycemia) 1.0488 1.0525 1.0584 1.0470 1.0515 1.0510

(Hyperlipidemia & Hyperglycemia) 0.9328 0.9400 0.9488 0.9331 0.9376 0.9368

(Hypertension & Hyperlipidemia &
Hyperglycemia) 1.1214 1.1237 1.1235 1.1197 1.1230 1.1227

Table 4. The selection of Kernel density function for the triglyceride (TG).

TG
Kernel Density Function

Gaussian Epanechnikov Uniform Triangular Biweight Cosine

Normal 0.1542 0.1569 0.1605 0.1542 0.1559 0.1555

Hypertension 0.4502 0.4506 0.4492 0.4490 0.4506 0.4506

Hyperlipidemia 0.3936 0.3973 0.4019 0.3945 0.3963 0.3959

Hyperglycemia 1.1723 1.1753 1.1776 1.1699 1.1745 1.1742

(Hypertension & Hyperlipidemia) 0.7481 0.7513 0.7497 0.7491 0.7504 0.7500

(Hypertension & Hyperglycemia) 1.4460 1.4466 1.4408 1.4404 1.4470 1.4470

(Hyperlipidemia & Hyperglycemia) 1.4483 1.4489 1.4411 1.4481 1.4487 1.4486

(Hypertension & Hyperlipidemia &
Hyperglycemia) 1.5712 1.5751 1.5875 1.5712 1.5737 1.5732

Table 5. The selection of Kernel density function for the systolic blood pressure (SBP).

SBP
Kernel Density Function

Gaussian Epanechnikov Uniform Triangular Biweight Cosine

Normal 0.1858 0.2023 0.2047 0.1914 0.1964 0.1947

Hypertension 0.4879 0.5139 0.5477 0.4952 0.5051 0.5021

Hyperlipidemia 0.2450 0.2562 0.2753 0.2474 0.2528 0.2519

Hyperglycemia 0.6924 0.7011 0.7258 0.6821 0.6983 0.6970

(Hypertension & Hyperlipidemia) 0.4440 0.4853 0.5307 0.4584 0.4709 0.4661

(Hypertension & Hyperglycemia) 1.1052 1.1400 1.1756 1.1091 1.1275 1.1232

(Hyperlipidemia & Hyperglycemia) 0.5720 0.5863 0.5930 0.5712 0.5811 0.5795

(Hypertension & Hyperlipidemia &
Hyperglycemia) 0.8430 0.8601 0.8902 0.8378 0.8545 0.8523
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Table 6. The selection of Kernel density function for diastolic blood pressure (DBP).

DBP
Kernel Density Function

Gaussian Epanechnikov Uniform Triangular Biweight Cosine

Normal 0.2350 0.2585 0.2459 0.2463 0.2487 0.2459

Hypertension 0.5148 0.5454 0.5393 0.5201 0.5339 0.5295

Hyperlipidemia 0.2434 0.2656 0.2722 0.2501 0.2578 0.2557

Hyperglycemia 0.5583 0.5688 0.5843 0.5502 0.5657 0.5647

(Hypertension & Hyperlipidemia) 0.4065 0.4329 0.5135 0.4163 0.4276 0.4242

(Hypertension & Hyperglycemia) 0.9539 0.9985 1.0707 0.9558 0.9801 0.9745

(Hyperlipidemia & Hyperglycemia) 0.3873 0.4009 0.4333 0.3878 0.3962 0.3948

(Hypertension & Hyperlipidemia &
Hyperglycemia) 0.6384 0.6800 0.7062 0.6471 0.6642 0.6591

Based on the results in Tables 2–7 summarizes all kernel density functions for the five common
risk factors in every physiological state.

Table 7. The suitable kernel function for five risk factors.

Kernel Function
Risk Factors

FPG T-CHO TG SBP DBP

Normal Gaussian Gaussian Gaussian Gaussian Gaussian

Hypertension Triangular Gaussian Triangular Gaussian Gaussian

Hyperlipidemia Triangular Gaussian Gaussian Gaussian Gaussian

Hyperglycemia Triangular Gaussian Triangular Triangular Triangular

(Hypertension & Hyperlipidemia) Triangular Triangular Gaussian Gaussian Gaussian

(Hypertension & Hyperglycemia) Triangular Triangular Triangular Gaussian Gaussian

(Hyperlipidemia & Hyperglycemia) Gaussian Gaussian Rectangular Triangular Gaussian

(Hypertension & Hyperlipidemia &
Hyperglycemia) Gaussian Triangular Gaussian Triangular Gaussian

Based on the data in Table 7 and the proposed formula, the health risk curve of the five risk
factors in the normal state was calculated and plotted (Figure 5). Figure 5a–d displays the health
risk curves for FPG, T-CHO, TG, SBP, and DBP. The health risk curves of the risk factors display
monotonic decreasing curves, as shown in Figure 4. When the FPG reached 126 mg/dL, T-CHO or TG
reached 200 mg/dL, SBP reached 140 mmHg, or DBP reached 90 mmHg, the health risk value became
0. When any risk factor value remained over the threshold, the probability that the subject was in the
normal physical state was 0. The health risk index of the physiological system could be determined
by multiplying the health risk values of the risk factors. Table 8 shows the results of ten subjects who
were selected from the dataset.
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Table 8. The result of ten subjects for Health risk index.

Subjects FPG T-CHO TG SBP DBP Physiological State Health Risk Index

1
89 177 153 141 90 Hypertension 0(0.9527) (0.4751) (0.2632) (0.0000) (0.0000)

2
88 185 109 124 92 Hypertension 0(0.9579) (0.4100) (0.5070) (0.2521) (0.0000)

3
86 119 56 97 60

Normal 0.7357(0.9672) (0.8985) (1.0000) (0.9899) (0.8552)

4
238 190 103 140 69 (Hypertension &

Hyperglycemia) 0(0.0000) (0.3606) (0.5591) (0.0000) (0.6752)

5
80 143 53 133 67

Normal 0.0347(0.9793) (0.7189) (1.0000) (0.0663) (0.7432)

6
105 167 99 92 60

Normal 0.1114(0.3917) (0.5543) (0.6012) (0.9976) (0.8552)

7
79 169 117 101 73

Normal 0.1128(0.9800) (0.5375) (0.4378) (0.9785) (0.4997)

8
97 234 263 112 80 Hyperlipidemia 0(0.8187) (0.0000) (0.0000) (0.7724) (0.3183)

9
81 167 87 109 61

Normal 0.2926(0.9785) (0.5543) (0.7346) (0.8627) (0.8512)

10
89 152 100 110 71

Normal 0.2005(0.9527) (0.6766) (0.5901) (0.8425) (0.6256)
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Ten subjects were randomly recruited to measure the risk factor data. The brackets in Table 8
indicate the health risk index values. For example, the FPG value for subject 1 was 89 (0.9527); this
indicated that the health risk index of an FPG level of 89 mg/dL was 0.9527. The health risk index of
the physiological system of several subjects was 0 because some of the risk factor values were over
the clinical thresholds, such as in Subjects 1, 2, 4, and 8. Subject 4 suffered from hypertension and
hyperglycemia. The six healthy people were Subjects 3, 5, 9, 10, 7, and 6, arranged in descending
order according to their health risk indexes. Although the six subjects had normal health statuses, the
reliability values of the physiological systems differed. When applying the health index, the study of
Stewart et al. [11] was used as a reference. Stewart et al. [11] simulated the effect of five risk factors
after implementing an exercise regimen. After a six-week exercise routine, FPG, T-CHO, TG, SBP, and
DBP levels decreased an average of 0.2 mg/dL, 5.2 mg/dL, 13.4 mg/dL, 5.3 mmHg, and 3.7 mmHg,
respectively. We determined the change in the risk factors by calculating the health risk index. The
results showed that subjects experienced a 7.29% reduction in their health risk index for hypertension,
hyperlipidemia, and hyperglycemia.

The dataset on hypertension, hyperlipidemia, and hyperglycemia (Triple H) from the National
Health Insurance Research Database in Taiwan and the research results of Stewart et al. [11] were
used to explain the proposed methodology and application. Previous research has focused on
disease prediction and medical treatment after disease identification. If judged as healthy, there
is no corresponding early warning mechanism. The difference between the proposed method and
the previous method is that this study develops an evaluation health risk index from the perspective
of probability reliability. The estimation of the optimal probability distribution is established using
the kernel density approach rather than using a normal probability function. The research results can
be applied to solve the problem of health warning. When people are considered healthy, health risk
indicators can be further calculated to understand their level of health. This benefits the individuals
because risk factors can be controlled based on fitness by implementing strategies to increase exercise
or control diet. Furthermore, the health risk index can be used to evaluate the effectiveness of the
strategy and adjust the strategy. This will concretely improve the effective use of resources in the
medical/health field.

4. Conclusions

Based on the analysis of the results, we can make several conclusions regarding research in this
area. The human body is a complex system, and a single-disease study is insufficient to assess multiple
diseases. Most previous studies that conducted medical data analyses focused on risk factor selection
and creating prediction and control models of diseases. These studies were able to monitor risk factors
and estimate the risk of developing various diseases. However, the human body may not necessarily
be completely healthy even when risk factors are all within normal ranges. Therefore, our study
focused on assessing the degree of health. In this paper, common risk factors for multiple diseases
were used to estimate the optimal probability density function, and a novel health risk index was
proposed to evaluate the health status of healthy people.

In practice, a health risk curve can be used to elucidate the relationship between risk factors
and health risk. Prevention is often more desirable than curing diseases, and proper maintenance
(such as participating in sports) may reduce the likelihood of further health decline. Furthermore,
the effectiveness of preventive maintenance can be assessed through a health risk curve to determine
appropriate adjustments to the maintenance strategy.
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