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Abstract

Many complex diseases such as cancer are associated with multiple pathological manifes-

tations. Moreover, the therapeutics for their treatments often lead to serious side effects.

Thus, it is needed to develop multi-indication therapeutics that can simultaneously target

multiple clinical indications of interest and mitigate the side effects. However, conventional

one-drug-one-gene drug discovery paradigm and emerging polypharmacology approach

rarely tackle the challenge of multi-indication drug design. For the first time, we propose a

one-drug-multi-target-multi-indication strategy. We develop a novel structural systems phar-

macology platform 3D-REMAP that uses ligand binding site comparison and protein-ligand

docking to augment sparse chemical genomics data for the machine learning model of

genome-scale chemical-protein interaction prediction. Experimentally validated predictions

systematically show that 3D-REMAP outperforms state-of-the-art ligand-based, receptor-

based, and machine learning methods alone. As a proof-of-concept, we utilize the concept

of drug repurposing that is enabled by 3D-REMAP to design dual-indication anti-cancer

therapy. The repurposed drug can demonstrate anti-cancer activity for cancers that do not

have effective treatment as well as reduce the risk of heart failure that is associated with all

types of existing anti-cancer therapies. We predict that levosimendan, a PDE inhibitor for

heart failure, inhibits serine/threonine-protein kinase RIOK1 and other kinases. Subsequent

experiments and systems biology analyses confirm this prediction, and suggest that levosi-

mendan is active against multiple cancers, notably lymphoma, through the direct inhibition

of RIOK1 and RNA processing pathway. We further develop machine learning models to

predict cancer cell-line’s and a patient’s response to levosimendan. Our findings suggest

that levosimendan can be a promising novel lead compound for the development of safe,

effective, and precision multi-indication anti-cancer therapy. This study demonstrates the

potential of structural systems pharmacology in designing polypharmacology for precision
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medicine. It may facilitate transforming the conventional one-drug-one-gene-one-disease

drug discovery process and single-indication polypharmacology approach into a new one-

drug-multi-target-multi-indication paradigm for complex diseases.

Author summary

Polypharmacology has emerged as a new strategy for discovering novel therapeutics.

Existing efforts in the rational design of polypharmacology have three limitations: focus

on a single clinical indication, difficulties in target selection and lead identification/opti-

mization, and ignorance of genome-wide drug-target interactions. Multi-indication thera-

peutics are needed for complex diseases such as cancer, which have multiple pathological

manifestations. The design of multi-indication drugs requires the knowledge of chemical-

protein interactions on a genome scale. To enhance our capability of identifying genome-

wide chemical-protein interactions, we develop a new structural systems pharmacology

platform 3D-REMAP that overcomes the limitations of existing drug-target prediction

methods. We propose a strategy that uses the concept of drug repurposing to address chal-

lenges in designing dual-indication drugs that can synergistically achieve two desired clin-

ical end points. As a proof-of-concept, we computationally predict and experimentally

validate that levosimendan, a PDE inhibitor for heart failure that is associated with all

existing anti-cancer therapies, is a kinase inhibitor and active against lymphoma. We fur-

ther identify biomarkers that predict a patient’s response to levosimendan. This study

demonstrates the potential of structural systems pharmacology in designing polypharma-

cology for precision medicine. Our approach may facilitate transforming the conventional

polypharmacology approach to a new one-drug-multi-target-multi-disease paradigm.

Introduction

Multi-factorial, multi-genic complex diseases such as cancer and Alzheimer’s disease are asso-

ciated with multiple pathological manifestations. For example, hypertension, inflammation,

and herpes virus infection could all be related to the tau and amyloid beta pathologies of Alz-

heimer’s disease [1–3]. The successful treatments of complex diseases require targeting multi-

ple disease-causing genes that are in either the same or different pathways to achieve additive

or synergistic effect, as well as checking drug resistance. In addition, therapeutics may trigger a

systematic response that is mediated by on-target or off-target effects, leading to serious side

effects. For example, almost all of chemotherapy, targeted therapy, and immunotherapy for

cancer treatment increase the risk of heart failure [4, 5]. Thus, an ideal therapy should be not

only effective on multiple clinical indications but also able to mitigate side effects.

Recently, multi-targeted therapy (also known as polypharmacology) through either drug

combination or a single polypharmacological agent has emerged as a new paradigm of drug

discovery. It is argued that single-agent polypharmacology has advantages over the drug com-

binations [6]. In spite of serendipitous success of polypharmacology, two major challenges

remain in the rational design of polypharmacology: target selection and lead compound identi-

fication. With regards to the target selection, existing polypharmacology drug design mainly

focuses on multiple targets that are involved in a single disease, i.e. a one-drug-multi-target-

one-disease paradigm. However, it is challenging to select the right target combinations for the

disease of interest due to our limited understanding of gene-disease associations. In terms of
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lead identification, existing medicinal chemistry efforts typically combine two distinct molecu-

lar scaffolds that have desired activity towards each target of interest into a single chemical

entity through merging, fusing, or linking two molecules [7–9]. This approach often leads to

molecules with poor drug-likeness properties [10]. As a result, the subsequent lead optimiza-

tion is often a serious bottleneck in the polypharmacology. Furthermore, two additional chal-

lenges have not been addressed by existing polypharmacology paradigm. It rarely takes

genome-wide drug-target interactions and multi-indications into consideration.

Here, we develop a different strategy for the design of polypharmacology. Our method is

novel in both concept and methodology. Conceptually, we aim to target two different clinical

indications of interest at the same time, specifically, heart failure and cancer in this study.

Thus, our strategy could transfer the conventional one-drug-multi-target-one-disease

approach to a new one-drug-multi-target-multi-indication paradigm that is needed but has

not been systematically explored for the treatment of complex diseases. Methodologically, we

utilize the concept of drug repurposing instead of screening compounds against multiple tar-

gets then fusing them to address challenges in the target selection and the lead identification.

We start with approved drugs that are used for the treatment of one indication of interest.

Then, we search for their potential use for the second indication of interest. On one hand, it is

possible for us to identify genome-wide target profiles of multi-target drugs. On the other

hand, the time and cost of multi-target drug development from lead optimizations to clinical

trials could be significantly reduced because the pharmaceutical profiles (e.g. ADME, toxicol-

ogy etc.) of the compounds are already optimized for one of the indications. It is noted that

this approach is different from the conventional drug repurposing that rarely takes into

account of the synergy between primary indication and repurposed indication.

Our method is based on the premise that a drug often interacts with unintended targets,

i.e., off-targets. These off-targets may cause unwanted side effects (i.e., anti-target) or function

as therapeutic targets for other diseases. The objective of our method is to identify such targets

and associated marketed drugs that can selectively interact with multiple targets. The primary

target(s) and their off-targets could collectively reduce side effect and enhance therapeutic

effects. Selective promiscuity has been actively pursued in kinase inhibitor design [11]. How-

ever, most of the current efforts in multi-target screening only consider the binding promiscu-

ity within a single gene family. The multi-indication drug design strategy needs to extend the

concept of selective promiscuity across gene families. It is challenging to identify the genome-

wide drug-target interactions [12]. In this study, we develop a novel platform, 3D-REMAP, for

screening off-targets of marketed drugs on a genome scale. 3D-REMAP integrates diverse

chemical genomics, structural genomics, and functional genomics data as well as combines

various computational tools from bioinformatics, chemoinformatics, biophysics, and machine

learning. Although chemical genomics data provide a rich resource for the development of

machine learning model of genome-scale chemical-protein interaction prediction, they are

still noisy, incomplete, and biased. The key idea of 3D-REMAP is to apply 3-dimensional

ligand binding site comparison and protein-ligand docking to augment chemical-protein

interaction data. Then machine learning model is trained using the structure-augmented

chemical genomics data. As a result, 3D-REMAP partially overcomes the limitations of each

individual data set and method. As evidenced by the experimentally validated predictions in

this paper, 3D-REMAP outperforms state-of-the-art bioinformatics, chemoinformatics, pro-

tein-ligand docking, and machine learning methods alone.

As a proof-of-concept, we apply the proposed methodology to design dual-indication anti-

cancer therapy. The repurposed drug can both demonstrate anti-cancer activity for cancers

that do not have effective treatment and reduce the risk of heart failure that is associated with

all types of existing anti-cancer therapies. In spite of the tremendous success of kinase-
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targeting drugs and immunotherapy in the treatment of cancers, the development of anti-can-

cer targeted therapeutics faces three challenges: serious side effects, especially, cardiotoxicity,

variable drug responses, and acquired drug resistance. Regarding the cardiotoxicity of anti-

cancer therapy, it has been associated with all types of chemotherapy, targeted therapy, and

immunotherapy. For example, tyrosine kinase-targeting drugs are shown to be associated with

a higher risk of onset heart failure in adult cancer patients [4]. Recently, fatal heart failures

have been reported in patients treated with immune checkpoint inhibitors [5]. With regards to

therapeutic efficacy, the clinical responses of immune checkpoint inhibitors strongly depend

on the interplay of microenvironment and global immunity [13]. As a result, only a small por-

tion of cancer patients respond to immunotherapy. Similarly, the efficacy of kinase-targeting

cancer therapeutics depends on the catalytic activity of the targeted kinase [14]. Existing kinase

drugs mainly involve targeting a kinase that is directly activated by mutation. Due to the high

heterogeneity of cancers, many patients may not harbor the activated mutation of targeted

kinases. Thus, it is still urgently needed to target other cancer mechanisms as well as identify

patients associated with such aberrations for effective and precision anti-cancer therapy. In

addition to primary resistance to immunotherapy and kinase-targeted drugs, adaptive and

acquired resistance to anti-cancer therapies inevitably emerges [15, 16], even in cancer patients

who initially respond to the therapeutics. Acquired resistance is mediated by multiple mecha-

nisms such as modification of targeted kinases, activation of bypass signaling pathways, or his-

tological transformation. Drug combinations that can target multiple cancer pathways has

been actively pursued to combat the drug resistance in the treatment of cancer [17]. Although

the multi-targeted therapy has been discovered to either mitigate side effect [18] or enhance

therapeutic efficacy alone [19], few studies have been reported to design molecules as a dual-

indication agent that can achieve both of objectives at the same time. In this study, we for the

first time discover the multi-target dual-indication agent for the precision anti-cancer therapy.

Using 3D-REMAP, we have made several innovative discoveries. First, we discover that

levosimendan, a drug for heart failure, is a novel inhibitor of serine/threonine-protein kinase

RIOK1 and a number of other kinases. Second, we uncover that RIOK1 and its associated

RNA processing pathway is an effective novel target for multiple types of cancers, especially,

lymphoma. Different from existing targeted kinases that harbor the activated mutation, the

aberration of RIOK1 is mainly associated with its overexpression. Thus, targeting RIOK1 may

provide new opportunities in the cancer treatment. Third, we suggest that levosimendan can

be a novel lead compound for developing a more safe and effective anti-cancer therapy to over-

come the cardiotoxicity and the drug resistance of existing kinase-targeting drugs, either as a

single polypharmacological agent or a component in a drug combination. Our findings may

have significant implications in anti-cancer drug discovery and demonstrate the potential of

the genome-wide multi-target screening in precision drug discovery.

Results

Rational polypharmacology strategy for discovering dual-indication cross-

gene family multi-target agents

The rationale of our multi-target drug screening strategy is that the serious side effect caused

by therapeutic target(s) (i.e. on-target effect) or anti-target(s) (i.e. off-target effect) of a drug

can be mitigated by its or another drug’s interaction with an off-target, which is against the

side effect, as shown in Fig 1A. The drug-off-target interaction can come from a single poly-

pharmacological agent or multiple components in a drug combination. In this study, we focus

on searching for marketed drugs that may act as a dual-indication agent that can mitigate the

cardiotoxicity of anti-cancer therapy, at the same time, present anti-cancer potency.

Computational discovery of dual-indication multi-target anti-cancer therapy
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Contemporary anti-cancer therapeutics, such as tyrosine kinase inhibitors, anthracycline che-

motherapy, and immunotherapy, are all associated with the cardiotoxicity [20].

Hypothesis generation using 3D-REMAP, a genome-scale multi-target

screening platform

The rational discovery of the dual-indication therapeutic agent was achieved using a novel

genome-scale multi-target screening platform, 3D-REMAP, as illustrated in Fig 1B.

3D-REMAP framework applied here integrates diverse data from structural genomics and

chemical genomics, as well as synthesized tools from bioinformatics, chemoinformatics, bio-

physics, and machine learning. Since each data set alone is biased, incomplete, and noisy, and

a single computational or experimental tool has its inherited advantages and limitations, the

integrative analysis may provide more comprehensive and reliable results. 3D-REMAP takes

four networks as input: a protein-chemical interaction (PCI) network, which is represented by

the matrix R. In this study, the matrix R contains 650,581 positively associated chemical-pro-

tein pairs for 1,656,274 unique chemicals and 9,685 unique target proteins. In addition to R,

two other input networks are a chemical-chemical similarity network and a protein-protein

similarity network (not shown in Fig 1B). The details in the construction of PCI, chemical-

chemical similarity, and protein-protein similarity networks are presented in the Materials

and Methods section.

Since observed PCI from chemical genomics is highly sparse, one of the unique features of

3D-REMAP is to apply ligand binding site similarity search and protein-ligand docking to

screen off-targets of given drugs across human structural proteome [21–27]. The putative

drug-off-target interactions serve as imputations to fill in the unobserved entries in the matrix

R. The structural genomics data are complementary with the chemical genomics data and may

provide additional information on genome-wide PCIs. The optimal ligand binding site

Fig 1. 3D-REMAP concept figure. (A) A one-drug-multi-target-multi-indication strategy to screen drugs that can both enhance therapeutic effect and mitigate side

effect. (B) Schema of 3D-REMAP, a multi-target screening platform that integrates structural genomics and chemical genomics data and combines tools from

bioinformatics, chemoinformatics, protein-ligand docking, and machine learning. R and Q denote observed protein-chemical interactions in chemical genomics

databases, and predicted protein-chemical interactions from ligand binding site similarity coupled with protein-ligand docking, respectively. These two matrices are

the input for the machine learning algorithm weighted imputed neighborhood-regularized One-Class Collaborative Filtering (winOCCF) to predict genome-wide

drug-target interactions. See Method section for details. DTI: drug-target interaction.

https://doi.org/10.1371/journal.pcbi.1006619.g001
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similarity search requires to select a primary target that has an experimentally solved structure

or a high-quality homology model as well as a defined binding pocket as a template for the

search. In this study, five clinically used PDE3 inhibitors (milrinone, anagrelide, amrinone,

enoximone, and levosimendan) [28] that are used for the treatment of heart failure were

selected as our starting point. Using the PDE3B structure as a template (PDB ID 1SO2), poten-

tial off-targets of PDE3 inhibitors were predicted by comparing the binding site of PDE3B

with 10,472 non-redundant human protein structures using SMAP software [29–31]. Their

interactions with the five drugs were predicted using protein-ligand docking [32]. Table 1

shows the top 20 predicted PDE3B off-targets and their docking scores with five drugs. The

putative drug off-target interactions (SMAP p-value less than 2.0e-3 and docking score less

than -7.5) forms the matrix Q and fills in the part of unobserved entries in the PCI network.

Using the matrix R and Q along with chemical-chemical and protein-protein similarity net-

works as input, a weighted imputed neighborhood-regularized one-class collaborative filtering

(winOCCF) algorithm developed by our group [33], was then applied to predict the binding

profile of the given drug against the 9,685 targets. To reduce the impact of the potential false

positives from the off-target prediction, a confidence weight could be supplied to quantify the

uncertainty of the prediction. Thus, 3D-REMAP is robust to noisy data. Finally, atomic details

of the prioritized drug-target interactions are analyzed for lead optimization using flexible pro-

tein-ligand docking. Because 3D-REMAP integrates chemoinformatics, SMAP, protein-ligand

docking, and machine learning and is scalable to tens of thousands of protein targets on a

genome scale, it may predict off-targets that are overlooked by protein structure-based

approaches and other chemoinformatics methods [33, 34].

Table 1. Top 20 ranked putative off-targets of PDE3B. Docking score that is less than -7.5 is highlighted in bold.

PDB Uniprot Protein SMAP p-

value

Protein-Drug Docking Score

Milrinone Anagrelide Levosimendan Amrinone Enoximone

5U09 P21554 Cannabinoid receptor 4.13e-4 -7.4 -7.3 -9 -7.1 -7.6

1XU9 P28845 Corticosteroid 11β dehydrogenase 4.16e-5 -8.2 -7.6 -8.8 -7.1 -7.5

3HX3 P12271 Retinaldehyde-binding protein 1 5.42e-4 -7.3 -7.6 -8.8 -7 -7.6

1R5L P49638 α-tocopherol transfer protein 3.40e-5 -7.2 -7.8 -8.6 -6.6 -7.1

3VW7 P25116 Proteinase-Activated Receptor 1 6.86e-5 -7.7 -7.8 -8.4 -7.2 -7.5

3SOA Q9UQM7 Calcium/calmodulin-dependent kinase (CAMK2A) 3.66e-4 -7.6 -6.9 -8 -7 -6.9

1UW5 Q00169 Phosphatidylinositol transfer protein 4.36e-4 -7.1 -6.8 -8 -6.9 -6.8

3K1Z Q9BSH5 Haloacid dehalogenase-like hydrolase domain-containing

Protein 3

2.63e-4 -8.2 -8.4 -8 -7.7 -7.5

4Q6R O95470 Sphingosine-1-phosphate lyase 1 3.62e-4 -6.4 -7.3 -8 -6.4 -6.6

4OQA P09874 Poly [ADP-ribose] polymerase 1 3.47e-6 -7.1 -7.8 -7.8 -7 -7

2OBD P11597 Cholesteryl ester transfer protein 1.43e-3 -7 -7.2 -7.8 -6.4 -6.8

2CW6 P35914 Hydroxymethylglutaryl-CoA lyase 1.36e-3 -6.5 -7.3 -7.8 -6.3 -7.7

4OQV Q02127 Dihydroorotate dehydrogenase 3.29e-4 -8 -6.7 -7.8 -7 -8.2

5KDI Q96JA3 Pleckstrin homology domain-containing family A protein 9.93e-4 -7.3 -7.2 -7.6 -6.6 -7.1

4FC7 Q9NUI1 Peroxisomal 2,4-dienoyl-CoA reductase 1.36e-3 -6.6 -7 -7.6 -6.3 -6.5

4OTP Q9BRS2 Serine/threonine protein kinase (RIOK1) 1.45e-3 -7.0 -7.2 -7.6 -6.7 -6.7

5HZ8 P15090 Fatty acid-binding protein 1.08e-3 -7.1 -7.9 -7.5 -6.9 -6.7

4P8V Q15782 Chitinase-3-like protein 2 6.65e-4 -7.3 -6.9 -7.5 -6.6 -6.7

5FYQ P62826 NAD-dependent protein deacetylase 2.64e-4 -6.2 -6.7 -7.4 -5.9 -6.2

2ONI Q96PU5 E3 ubiquitin-protein ligase NEDD4-like protein 1.03e-3 -7 -6.6 -7.2 -6.7 -5.7

https://doi.org/10.1371/journal.pcbi.1006619.t001
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Protein kinases are predicted to be the off-target of PDE3 inhibitors

Among those off-targets predicted by 3D-REMAP, we focused on protein kinases, since a sig-

nificant number of them are known to be associated with cancers. In addition, it is relatively

easy to experimentally validate the predicted off-targets across human kinome. Levosimendan,

a marketed drug in Europe and Asia for heart failure, was selected for the initial experimental

validations because it shows better protein-ligand docking scores on kinases than the other

four drugs (Table 1). The top three predicted kinase off-targets of levosimendan are CAMK2,

RIOK1, and FLT3. Additional top-ranked predictions include RIOK3, MYLK4, LTK, CDK7,

CDK8, DYR1B, GSK3A, GSK3B, and MAP3K5. The expectation values of all of these predic-

tions are less than 1.0e-11.

RIOK1 and several other kinases are the off-targets of levosimendan

KinomeScan assay across 452 human kinases verified our computational prediction (S1

Table). RIOK1 is one of the strongest inhibited kinases by levosimendan. The percentage con-

trol of RIOK1 is 15.0 and 0.0 under the treatment of 10 μM and 100 μM of levosimendan,

respectively. The dose-response curve further shows that the Kd of levosimendan against

RIOK1 is 0.82 μM. RIOK3, the closest homolog of RIOK1, showed the similar binding strength

as RIOK1. In addition, levosimendan also inhibits a number of other kinases besides RIOK1

and RIOK3. The percentage controls of five kinases: FLT3, MAP2K5, PIP5K1A, GAK, and

KIT are less than 30.0 under the treatment of both 10 μM and 100 μM of levosimendan. Their

distributions in the kinome tree is shown in Fig 2. Both FLT3 and KIT are tyrosine protein

kinases. Their inhibitors have recently been approved for the treatment of Acute Myeloid Leu-

kemia and other types of cancers, but a combination therapy is needed to overcome rapidly

emerged drug resistance, thus improve patients’ drug responses [35, 36]. Other kinases inhib-

ited by levosimendan belong to serine/threonine protein kinase family (RIOK1, RIOK3,

GAK, and MAP2K5) and lipid kinase family (PIP5K1A). In addition to these 7 kinases, levosi-

mendan can moderately inhibit other 29 kinases (percentage of control larger than 30.0 under

10 μM of treatment but less than 30.0 under 100 μM of treatment). As a result, levosimendan

may modulate different cancer pathways from those by the tyrosine protein kinase inhibitors,

and it could be a novel lead compound for a new anti-cancer therapy to overcome drug resis-

tance of existing drugs or to target different types of cancers through polypharmacology or

drug combination.

To understand the molecular details in how levosimendan interacts with RIOK1, we re-

docked levosimendan into the ATP binding site of RIOK1 using AutodockFR, a flexible recep-

tor protein-ligand docking software [37]. The binding pose and interaction pattern between

levosimendan and RIOK1 is shown in Fig 3A and 3B, respectively. The binding pose of levosi-

mendan overlaps that of ADP. Several key interactions between ADP and RIOK1 observed in

the crystallized complex structure (PDB ID: 4OTP) are conserved in the levosimendan-RIOK1

complex. They include the hydrogen bonds formed by ILE280, SER187, and water molecules

as well as pi-alkyl interaction formed by VAL194. Therefore, levosimendan could inhibit

RIOK1 in an ATP-competitive manner. Such information may facilitate the medicinal chemis-

try efforts in optimizing levosimendan to be a more potent and selective RIOK1 inhibitor. For

example, a functional group of hydrogen bond donor may be added to its benzene ring to

form hydrogen bond interaction with a crystallized water molecule similar to that in ADP.

Amino acid mutations in the binding site may impact the ligand binding. No amino acid

mutations in TCGA [38] and COSMIC [39] are observed in the key residues involved in the

binding of levosimendan. Thus, levosimendan may target the aberration of RIOK1 that is
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Fig 2. The distribution of kinase off-targets of levosimendan in the human kinome. The off-targets are marked by red circles. The

diameter of the circles approximately corresponds to the binding strength. Illustration reproduced courtesy of Cell Signaling Technology,

Inc. (www.cellsignal.com/).

https://doi.org/10.1371/journal.pcbi.1006619.g002
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associated with overexpression or post-translational modification of protein rather than

amino acid mutations, distinguishing itself from existing kinase inhibitors.

Comparing the computationally predicted kinase off-targets of levosimendan with the

experimentally determined ones across human kinome, we correctly predicted two off-targets

out of the top three ranked predictions (RIOK1 and FLT3). Among the top twelve ranked pre-

dictions, three predicted off-targets have relatively strong binding affinities to levosimendan

(RIOK1, RIOK3, and FLT3), two have intermediate binding affinities (MYLK4 and CAMK2),

and others do not have any observed inhibitory activities (LTK, CDK7, CDK8, DYR1B,

GSK3A, GSK3B, and MAP3K5). There are four false negatives (MAP2K5, PIP5K1A, GAK,

and KIT). There is no doubt that the performance of 3D-REMAP needs to be further

improved. Nevertheless, the successfully predicted off-targets of levosimendan from

3D-REMAP cannot be achieved by state-of-the-art protein-ligand docking (PLD), ligand-

based virtual screening, and winOCCF (without the matrix Q input) alone. As shown in

Table 2, 3D-REMAP significantly outperforms all of the conventional methods when evaluated

Fig 3. (A) Predicted binding poses of levosimendan (blue stick) and co-crystallized ADP (yellow stick) on RIOK1 (ribbon model). (B) Interaction pattern of

levosimendan with RIOK1.

https://doi.org/10.1371/journal.pcbi.1006619.g003

Table 2. Comparison of the performance of 3D-REMAP with other methods when predicting that kinase off-targets of levosimendan, which are ranked at the top

2.5%.

TP FP TN FN Precision (%) Recall (%) FPR (%)

3D-REMAP 4 8 408 32 33.3 11.1 1.92

winOCCFa 0 12 404 36 0 0 2.88

PLD 0 12 404 36 0 0 2.88

Binding site similarity + PLD 1 11 405 35 8.33 2.78 2.64

Ligand similarity [40] 0 12 404 36 0 0 2.88

The true positive of the off-target is defined as the kinase with the percentage controls less than 30.0 under the treatment of 100 μM of levosimendan. PLD: Protein-

Ligand Docking, FPR: False Positive Rate, TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative.
aThe inputs of winOCCF do not include the predicted drug off-target network of PDE3B. A fixed value of 0.1 is used for the matrix Q in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006619.t002
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with the predicted and experimentally determined binding profile of 452 kinases. For the top

three predictions of nine relatively strong binders, the precision and recall of 3D-REMAP are

66.6% and 22.2%, respectively. The precision and recall for the other methods are all 0.0.

Detailed results of protein-ligand docking and ligand similarity search are in S2 and S3 Tables,

respectively.

Levosimendan can inhibit the proliferation of multiple types of cancer cells

The putative anti-cancer activity of levosimendan was tested for over 200 cancer cell lines

across nineteen cancer types (sites of primary tumor), which include bladder, breast, central

nervous system, colon, endocrine, eye, female genitourinary system, head and neck, hemato-

poietic, kidney, liver, lung, pancreas, placenta, prostate, skin, soft tissue, stomach, and testis

(S4 Table). Among them, the EC50, IC50, and GI50 of seventeen cell lines were all less than

10.0 μM. Hematopoietic Lymphoma was most sensitive to levosimendan. Four out of the sev-

enteen sensitive cell lines belong to the lymphoma cancer type. Notably, the EC50, IC50, and

GI50 for SU-DHL-8 cell line are 0.604 μM, 0.604 μM, and 0.512 μM, respectively. Fig 4 shows

the dose response curve of the SU-DHL-8 cell line under the levosimendan treatment. The cell

count activity area is 5.0, significantly higher than those of other tested cell lines. Other cancer

types sensitive to levosimendan include stomach carcinoma, endocrine carcinoma, kidney

tumor, colorectal carcinoma, bladder carcinoma, osteosarcoma, melanoma, prostate hyperpla-

sia, and sarcoma. Thus, levosimendan is a promising lead compound for designing polyphar-

macological agent or drug combination to treat multiple types of cancers, notably, lymphoma.

Anti-cancer activity of levosimendan may come from its modulation of

RNA processing pathway through the inhibition of RIOK1

Differential gene expression profile analysis across 200 cancer cell lines supports that the anti-

cancer activity of levosimendan results from its inhibition of RIOK1. First, RIOK1 is overex-

pressed in the drug sensitive cell lines. Second, Student’s t-test analysis of gene expression pro-

file identified 475 genes including RIOK1 that contribute to the cell line sensitivity to

levosimendan with q-value less than 1.0e-3 (S5 Table). Third, gene set overrepresentation anal-

ysis suggests that the drug-sensitive genes are significantly enriched with the biological pro-

cesses of Gene Ontology [41]: rRNA processing, translation, and ribosome biogenesis

Fig 4. The drug dose response curve of lymphoma SU-DHL-8 cell line under the treatment of levosimendan.

https://doi.org/10.1371/journal.pcbi.1006619.g004
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(FDR<1.0e-3), as shown in Table 3. In addition, the only overrepresented KEGG pathway is

“ribosome” (FDR = 6.62e-40). It is established that the primary function of RIOK1 is involved

in rRNA processing of ribosome [42, 43]. Thus, differential gene expression and gene set over-

representation analyses are consistent with our computational prediction and kinase binding

assay. It is reasonable to hypothesize that the inhibition of RIOK1 by levosimendan is directly

responsible for its anti-cancer activity.

Differential expression analysis also unveiled genes that were significantly associated with

resistance to levosimendan. The top genes in this set are involved in a wide variety of cellular

functions, including signal transduction, mitosis, cytoskeletal regulation, ion transport, and

drug metabolism, but no biological processes or pathways are overrepresented.

Different from gene expression profiles, amino acid mutations and copy number variations

associated with the sensitivity and resistance of levosimendan are statistically insignificant.

This is consistent with the predicted binding pose of levosimendan in RIOK1. Thus, levosi-

mendan may represent a new class of kinase inhibitors that do not depend on targets activated

by mutations.

Pharmcogenomics modeling for the anti-cancer activity of levosimendan

Using the expression values of genes that are responsible for the sensitivity and resistance of

levosimendan as features, we apply a novel feature selection method Kernel Conditional

Covariance Minimization [44] to develop machine learning models for the prediction of other

cancer cell lines or patients that may respond to levosimendan. We develop two models using

CCLE [45] and GDSC [46] data separately. The Spearman’s correlation coefficients for these

two models are 0.7547 and 0.6727, respectively. In the leave-one-out cross-validation, the pre-

dicted activity area for the most active SU-DHL-8 cell line is around 2.0. Thus, the predicted

activity area of 2.0 is used as a threshold for the prediction. S6 Table lists the top fifty ranked

predictions.

Top thirty ranked cell lines that are predicted with consensus by both CCLE and GDSC

models included JM1 (B cell lymphoma), NU-DUL-1 (B cell lymphoma), SU-DHL-5 (B cell

lymphoma), and ALL-SIL (T-Cell Leukemia). Their predicted active areas are larger than 3.8

and 2.0, respectively. It is clear that B-cell lymphoma dominates the sensitive cell lines to

levosimendan.

We further apply the trained CCLE model to predict the cases in TCGA [38] that could

respond to levosimendan (S7 Table). Consistent with the cell line assays and predictive models,

the top one hundred ranked cases are overrepresented by B-cell lymphoma (TCGA-DLBC)

with the p-value of 1.05e-2, as shown in Fig 5. The predicted activity areas for the cases of B-

cell lymphoma span a broad range from less than 0.2 to larger than 2.0, suggesting that only a

Table 3. Overrepresented GO biological process terms responsible for the anti-cancer sensitivity of levosimendan.

GO Term p-value FEa Bonfa Benja FDRa

GO:0006364. rRNA processing 6.35E-50 16.75 5.68E-47 5.68E-47 9.89E-47

GO:0006413. translational initiation 1.49E-48 22.29 1.33E-45 6.65E-46 2.31E-45

GO:0006614. SRP-dependent co-translational protein targeting to membrane 7.32E-47 28.24 6.55E-44 1.64E-44 1.14E-43

GO:0019083. viral transcription 1.60E-46 24.89 1.43E-43 2.86E-44 2.49E-43

GO:0006412. translation 3.16E-39 12.85 2.83E-36 4.72E-37 4.92E-36

GO:0002181. cytoplasmic translation 6.02E-08 21.24 5.39E-05 7.70E-06 9.38E-05

GO:0042274. ribosomal small subunit biogenesis 7.60E-08 29.04 6.80E-05 8.50E-06 1.18E-04

aFE: Fold Enrichment, Bonf: Bonferroni correction, Benj: Benjamini-Hochberg correction, FDR: False Discovery Rate

https://doi.org/10.1371/journal.pcbi.1006619.t003
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portion of B-cell lymphoma patients may respond to the treatment of levosimendan. Except B-

cell lymphoma, other TCGA projects are not significantly overrepresented in the top one hun-

dred ranked predictions. However, a number of cases in multiple cancer types have the pre-

dicted active area larger than 2.0 and fall into the cancer types that responded to levosimendan

treatment in the cell line assay. Notably, they include stomach carcinoma (TCGA-STAD), kid-

ney renal clear cell carcinoma (TCGA-KIRC), prostate adenocarcinoma (TCGA-PRAD),

colon adenocarcinoma (TCGA-COAD), bladder urothelial carcinoma (TCGA-BLCA), and

skin cutaneous melanoma (TCGA-SKCM). Thus, some patients diagnosed with these cancers

may also benefit from the treatment of levosimendan. Due to the heterogeneity of cancers, it is

necessary to develop an accurate pharmacogenomics model for the development of levosimen-

dan as a precision anti-cancer therapy.

Discussion

In this study, we computationally predicted and experimentally validated that levosimendan—

a marketed drug for heart failure—can inhibit the growth of multiple cancer cell lines, notably,

lymphoma. The anti-cancer activity of levosimendan mainly origins from the modulation of

RNA processing pathway by the inhibition of atypical kinase RIOK1. RIOK1 represents a new

anti-cancer drug target [47, 48], and the chemical space of its inhibitors has just emerged.

Tyrosine kinase inhibitors have been approved in the treatment of lymphoma [49, 50]. Our

findings suggest that levosimendan could be used in the combination therapy or as a potential

Fig 5. Percentage of cases that are ranked within top 100 in the predictive model over all cases in the TCGA project. The most statistically significant

overrepresented cancer type is B-cell lymphoma (TCGA-DLBC).

https://doi.org/10.1371/journal.pcbi.1006619.g005
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lead compound for new multi-targeted drugs for lymphoma. On one hand, levosimendan may

be combined with other tyrosine kinase inhibitors that are associated with the risk of heart fail-

ure. Different from inhibitors generated from high-throughput screening or de novo design

from a single target, it is known that levosimendan interacts with other proteins that are the

drug targets for the heart failure than RIOK1. The combination of levosimendan and the tyro-

sine kinase inhibitor may not only reduce the cardiotoxicity of the tyrosine kinase inhibitor

but also enhance the anti-cancer efficacy since they act on different cancer pathways. On the

other hand, levosimendan interacts with multiple kinases that are associated with cancers as

well as proteins that are responsible for heart failure. The binding promiscuity of levosimen-

dan may allow us to use it as a lead compound to design a new type of dual action agent by

modulating multiple targets that are involved in both side effects and disease mechanisms. In

many cases, disease-causing genes have pleiotropic effects on biological system, thereby mak-

ing on-target side effect(s) unavoidable. In contrast with the conventional drug discovery pro-

cess that designs highly selective ligands, it is possible to mitigate the side effect by designing a

drug to bind an off-target that is against the side effect [18].

To further advance the potential of levosimendan in cancer treatment, several points

remain to be investigated. First, the anti-cancer potency of levosimendan can be further

improved by designing personalized derivatives. The binding pose analysis may provide valu-

able clues to the drug design. Second, our machine learning model predicted that several other

cell lines are sensitive to levosimendan. A patent has shown that PDE3 inhibitors may be active

against HeLa cell line [51]. It will be interesting to test the sensitivity of levosimendan and

other PDE3 inhibitors on more cancer types. Finally, in vivo anti-cancer activity of levosimen-

dan need to be verified.

The rational design of dual-indication multi-targeted drugs is an extremely challenging

task. It requires modeling drug actions on a multi-scale, from genome-wide drug-target inter-

actions to system level drug responses. This study showcases that 3D-REMAP is a potentially

powerful tool towards designing polypharmacology and drug repurposing. 3D-REMAP pro-

vides a framework to integrate heterogeneous data from chemical genomics, structural geno-

mics, and functional genomics, and synthesize diverse tools from bioinformatics, machine

learning, biophysics, and systems biology for the multi-scale modeling of drug actions. An

emerging paradigm of systems pharmacology enables the understanding of cellular mecha-

nism of drug action at the organismal level, but it lacks the power to screen and design new

chemical entities. Structure-based drug design has been successful in discovering novel drug

molecules with fine-tuned binding properties to specific targets. However, the designed drug-

target interaction may not transform well into desired organismal level drug response.

3D-REMAP may bridge the structure-based drug design and systems pharmacology; thus, it

facilitates drug discovery for complex diseases. In spite of the success in this proof-of-concept

study, many aspects of 3D-REMAP could be improved. First, the prediction accuracy of each

individual algorithm, such as protein-ligand docking and protein-chemical interaction predic-

tion in the computational pipeline needs to be improved. Second, we use winOCCF to inte-

grate different experimental data sets and computational predictions. Other machine learning

methods such as deep learning may provide more powerful integration. Third, there is still a

big gap between in vitro drug activity and clinical phenotype. More data types and modeling

techniques, such as quantitative systems pharmacology and pharmacokinetics modeling as

well as data mining of electronic health records should be incorporated into the pipeline. With

the knowledge of genome-wide target profiles and their associations with diseases, significant

time and cost could be saved in the lead optimization, pharmacokinetics, pre-clinical, and

other downstream studies using pro-target strategy for drug discovery.
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Materials and methods

Materials

Solid levosimendan (formula: C14H12N6O, molecular weight: 280.28 g/mol) was purchased

from MedChemExpress (New Jersey, USA). The purity of the compound is larger than 98.0%

determined by LCMS.

Kinase binding assay

To validate our computational predictions, we employed a competition binding assay to detect

the binding of levosimendan to 425 human kinases as well as its dose-response curve to

RIOK1. The proprietary KinomeScan assay was performed by DiscoverX (Fremont, Califor-

nia, USA). The tests were performed at 10 μM and 100 μM concentrations of levosimendan,

respectively. Assay results were reported as %control, calculated as follows:

%control ¼
ðTestCompoundSignal � PositiveControlSignalÞ
ðNegativeControlSignal � PositiveControlSignalÞ

� 100

A lower %control score indicates a stronger interaction. The KinomeScan experiment and

data analysis were performed by DiscoverX.

Binding constant (Kd) was calculated with a standard dose-response curve using the Hill

equation:

response ¼ backgroundþ
signal � background
1þ ðKd

� 1=dose� 1Þ

Curves were fitted using a non-linear least square fit with the Levenberg-Marquardt

algorithm.

Cancer cell line assay

OncoPanel cancer cell proliferation assay was performed by Eurofins Panlabs, Inc. (Missouri,

USA). Cancer cells were grown in RPMI 1640, 10% FBS, 2 mM L-alanyl-L-glutamine, 1 mM

Na pyruvate, or a special medium. Cells were seeded into 384-well plates and incubated in a

humidified atmosphere of 5% CO2 at 37˚C. Compounds were added the day following cell

seeding. At the same time, a time zero untreated cell plate was generated. After a 3-day incuba-

tion period, cells were fixed and stained to allow fluorescence imaging of nuclei.

Levosimendan was serially diluted in half-log steps from 100 μM and assayed over 10 con-

centrations with a maximum assay concentration of 0.1% DMSO. Automated fluorescence

microscopy was carried out using a Molecular Devices ImageXpress Micro XL high-content

imager, and images were collected with a 4X objective. 16-bit TIFF images were acquired and

analyzed with MetaXpress 5.1.0.41 software.

Cellular response parameters were calculated using nonlinear regression to a sigmoidal sin-

gle-site dose response model:

y ¼ Aþ
B � A

1þ ðC=xÞ
D

where y is the relative cell count measured following treatment with levosimendan at a concen-

tration x. A and B are the lower and upper limits of the response, C is the concentration at the

response midpoint (EC50), and D is the Hill Slope [52].
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Cell count EC50 is the test concentration at the curve inflection point (parameter C), or half

the effective response. IC50 is the test compound concentration at 50% of the maximum possi-

ble response. GI50 is the concentration needed to reduce the observed growth by half (midway

between the relative cell count at the curve maximum and at the time of compound addition).

Activity area is an estimate of the integrated area above the response curve [45]. Activity area

values range from 0–10, where a value of zero indicates no inhibition of proliferation at all

concentrations, and a value of 10 indicates complete inhibition of proliferation at all

concentrations.

Computational methods

Ligand binding site similarity search across human structural proteome. The computa-

tional procedure has been reported previously [21–27]. Briefly, we used PDE3B (PDB ID

1SO2) that was the reported molecular target of levosimendan as the template for the binding

site analysis. The SMAP software [29–31] was applied to characterize ligand-binding potential

from the geometric, physiochemical, and evolutionary characteristics of its binding pocket,

and to predict the binding site similarity between the template and 10,472 non-redundant

human protein structures. The p-value of ligand binding site similarity was normalized by

structural classes (e.g. all-alpha, all-beta, and mixed alpha-beta). The structures whose ligand

binding sites were predicted to be similar to that of PDE3B with the p-value < 0.002 were

selected as the initial candidate off-targets of PDE3B inhibitors. Autodock Vina was used to

predict the binding energy between selected off-targets and levosimendan, milrinone, anagre-

lide, amrinone, and enoximone. Drug-target interactions (matrix Q) that had docking scores

less than -7.5 were remained to be incorporated into the genome-wide chemical protein inter-

actions network in the next step.

Genome-wide drug-target prediction. Genome-wide drug-target interactions were pre-

dicted using 3D-REMAP. 3D-REMAP takes four networks as input: chemical-protein associa-

tion (matrix R), off-target (matrix Q), chemical-chemical similarity, protein-protein similarity

networks, The chemical-protein associations were obtained by integrating three resources: 1)

publicly available databases, ChEMBL [53] (v23.1) and DrugBank [54] (v5.5.10), 2) four data

sets from recent publications about kinome assays [55–58], and 3) protein structure-based

off-target prediction from previous step. From ChEMBL, inhibition assays having IC50� 10

μM was regarded as active associations. Those with suboptimal confidence scores (i.e.

confidence < 9) were excluded. From DrugBank, drug-target, drug-enzyme, drug-carrier, and

drug-transporter associations were collected. The data sets from kinome assays are available in

different types of activity measurement. Christmann-Franck et al. collected chemical-kinase

assays from multiple past publications and presented the activity standardization protocol,

which assumed an activity with Ki� 5 μM is active [55]. If the original publication presented

percent inhibition (or percent remaining activity) at a given compound concentration, Ki was

calculated as follows:

Ki ¼
concentration� ð100 � %inhibitionÞ

%inhibition

If the original publication presented value, Ki was obtained by Ki = 10-pKi. For this study, we

followed the above standardization protocol to integrate kinome assay data with the public

databases. We considered chemical-kinase association active if Ki� 5 μM or pKi� 5. To map

chemicals from multiple sources, we used OpenBabel to convert all chemical molecules to

InChIKey, a 27-character molecular representation developed to help searching chemical mol-

ecules. Protein targets were mapped by their UniProt accession. Low confidence targets from
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reference [57] were excluded. Off-target network was obtained using the procedure described

in the previous section of Method. Chemical-chemical and protein-protein similarity scores

were calculated similarly in the reference [33]. MadFast software developed by ChemAxon

(Budapest, Hungary. https://chemaxon.com/) was used to calculate chemical-chemical similar-

ity matrix, and BLAST was used to calculate protein-protein similarity matrix. The integrated

chemical-protein association network contains 650,581 positively associated chemical-protein

pairs for 1,656,274 unique chemicals and 9,685 unique target proteins. The chemical-chemical

and protein-protein similarity matrices contain 122,421,717 and 31,266 nonzero similarity

scores, respectively.

3D-REMAP assumes that chemical and protein space can be represented by two low rank

matrices, Un×r and Vm×r, respectively. Given an observed chemical-protein interaction matrix

R, predicted off-target matrix Q, chemical-chemical similarity matrix C, and protein-protein

similarity matrix T, the U and V are obtained by iteratively minimizing the objective function,

min
U;V�0

X

ði;jÞ

wðRði;jÞ þ Qði;jÞ � Uði;:Þ � V
T
ðj;:ÞÞ

2
þ aðkUk2

þ kVk2
Þ þ btrðUTðDC � CÞUÞ þ gtrðVTðDT � TÞVÞð1Þ

Here, w is the confidence weight on the observed and predicted off-target associations which

indicate the reliability of the assigned probability of true association; α is the regularization

parameter to prevent overfitting; β is the importance parameter for chemical-chemical similar-

ity, γ is the importance parameter for protein-protein similarity, and tr(A) is the trace of

matrix A. The predicted score for the ith chemical to bind the jth protein can be calculated by

Pði;jÞ ¼ UUPði;:Þ � VT
UPðj;:Þ, where UUP and VUP are the low-rank matrices U and V after completion

of the updates. Different from original winOCCF [33], Q in 3D-REMAP is the predicted off-

target network instead of a fixed imputation value. More details on the optimization algorithm

of Eq (1) are published elsewhere [33].

Gene expression and biological pathway analysis. Cell lines are classified as “sensitive”

(activity area� 1.95), “intermediate” (1.3< activity area< 1.95), or “resistant” (activity

area� 1.3). Student’s t-test is used to compare log2-transformed mRNA probe levels between

sensitive and resistant groups, and a p-value is calculated for each probe. The fold change in

mRNA expression is calculated as:

Fold Change ¼
ES=ER; if ES > ER

� ER=ES; if ES < ER

(

where ES and ER are the mean log2 mRNA probe levels for a given gene in cell lines found in

the sensitive and resistant groups, respectively.

A false discovery rate (FDR)-adjusted p-value (q-value) is computed with a null hypothesis

of no difference between “sensitive” and “resistant” groups. The q-value is calculated according

to the following formula:

q ¼ ð
p

rank
Þ � N

where rank is the rank of the p-value and N is the number of conducted tests. Gene set over-

representative analysis was carried out using DAVID [59].

Predictive modeling of levosimendan sensitivity of cancer cell lines and TCGA sam-

ples. The gene expression profiles of cell lines in CCLE [45] and GDSC [46] are used as fea-

tures to build the pharmacogenomics model of levosimendan. Because of the inconsistency in

the genomics data between these two data sets, two separate models are developed. 640 genes

are identified to be responsible for the drug sensitivity (475 genes) and resistance (165 genes)
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based on the gene expression profile analysis as described in the previous section. They are

used as initial gene set for the machine learning model. 97 and 85 genes are further selected via

Kernel Conditional Covariance Minimization [44] for CCLE and GDSC data set, respectively.

The gene expression profile of these genes are used to train and test the final models.

Using the gene expression profile of the selected genes as features and the activity area of

cancer cell line sensitivity of levosimendan as the target variable, regression models were

trained using ElasticNet, Random Forest, Support Vector Regression (SVR), and Gradient

Boosting Regression as implemented in Scikit-learn. The features were standardized according

to the machine learning algorithms applied. The optimal parameters were determined by grid

search, and the performances were evaluated using nested leave-one-out cross-validation. Elas-

ticNet and SVR were chosen as the best performed algorithms for CCLE and GDSC, respec-

tively. After the models were trained, the response of remaining CCLE and GDSC cell lines

that were not in the training data to levosimendan were predicted using corresponding mod-

els. The response of TCGA samples to levosimendan were predicted using CCLE trained

model because the gene expression was measured by RNA-seq in both data sets.

Binding pose analysis. For experimentally validated kinase targets of levosimendan

RIOK1, the binding pose of levosimendan is predicted using protein-ligand docking software

AutodockFR [37] and visualized using DS Visualizer. Solved ADP-bound complex structure

(PDB Id: 4OTP) is used for the docking experiment. Co-crystallized water molecules are

remained in the docking.

Visualization. The kinome tree in Fig 2 is generated from KinMap [60]. The binding

poses in Fig 3 is generated from DS Visualizer (Dassault Systèmes BIOVIA, San Diego).
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