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Pancreatic cancer is a disease with an incredibly poor survival rate. As only about 20% of
patients are eligible for surgical resection, neoadjuvant treatments that can relieve symptoms
and shrink tumors for surgical resection become critical. Many forms of treatments rely on
increased vulnerability of cancerous cells, but tumors or regions within the tumors that may be
hypoxic could be drug resistant. Particularly for neoadjuvant therapies such as the tyrosine
kinase inhibitors utilized to shrink tumors, it is critical to monitor changes in vascular function
and hypoxia to predict treatment efficacy. Current clinical imaging modalities used to obtain
structural and functional information regarding hypoxia or oxygen saturation (StO2) do not
provide sufficient depth penetration or require the use of exogenous contrast agents.
Recently, ultrasound-guided photoacoustic imaging (US-PAI) has garnered significant
popularity, as it can noninvasively provide multiparametric information on tumor vasculature
and function without the need for contrast agents. Here, we built upon existing literature on
US-PAI and demonstrate the importance of changes in StO2 values to predict treatment
response, particularly tumor growth rate, when the outcomes are suboptimal. Specifically, we
image xenograft mouse models of pancreatic adenocarcinoma treated with suboptimal
doses of a tyrosine kinase inhibitor cabozantinib. We utilize the US-PAI data to develop a
multivariate regression model that demonstrates that a therapy-induced reduction in tumor
growth rate can be predicted with 100% positive predictive power and a moderate (58.33%)
negative predictive power when a combination of pretreatment tumor volume and changes in
StO2 values pretreatment and immediately posttreatment was employed. Overall, our study
indicates that US-PAI has the potential to provide label-free surrogate imaging biomarkers that
can predict tumor growth rate in suboptimal therapy.

Keywords: photoacoustic imaging, pancreatic cancer, neoadjuvant therapy, suboptimal therapy, hypoxia, blood
oxygen saturation, treatment prediction, tyrosine kinase inhibitor
INTRODUCTION

Pancreatic cancer is one of the leading causes of death worldwide and accounts for approximately
7% of all cancer deaths, with its rate of incidence increasing steadily since 2000 (1). In the United
States alone, it is projected that there will be over 49,000 deaths from pancreatic cancer in the year
2022 (1). Unfortunately, the 5-year survival rate for this disease is only 10%, and at most 20% of the
July 2022 | Volume 12 | Article 9153191

https://www.frontiersin.org/articles/10.3389/fonc.2022.915319/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915319/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915319/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.915319/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:srivalleesha.mallidi@tufts.edu
https://doi.org/10.3389/fonc.2022.915319
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.915319
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.915319&domain=pdf&date_stamp=2022-07-07


Claus et al. Photoacoustic Monitoring of Suboptimal Therapy Efficacy
diagnosed patients are deemed eligible for surgical resection (1).
Several recent studies indicate that neoadjuvant treatment can
play a major role in pancreatic cancer treatment, especially in
making previously unresectable tumor candidates for surgical
resection and organ function preservation (2, 3). The
administrat ion of cytotoxic drugs is hampered by
heterogeneous distribution of blood flow, hypoxia, and dense
stroma commonly found in pancreatic tumors (4). Numerous
treatment techniques are predicated on the increased
vulnerability of rapidly multiplying tumor cells, but cells in
hypoxic areas have a low proclivity for mitosis and thereby
may not be exposed to sufficient chemotherapeutic doses (5).

Angiogenesis induction is regarded as a critical phase in
tumor development and is one of the characteristics of
malignant growth. Vascular endothelial growth factor (VEGF),
a group of proangiogenic signaling molecules, and its receptors
VEGFR1, VEGFR2, and VEGFR3 also contribute to tumor
growth (6, 7). Hepatocyte growth factor (HGF) is a powerful
angiogenic factor that works in tandem with VEGF (8, 9). The
proto-oncogene mesenchymal–epithelial transition (MET)
encodes the receptor tyrosine kinase c-MET factor, otherwise
known as an HGF receptor. It is presently the only receptor
identified to have a high binding affinity for HGF (10). Activation
of the c-MET signaling pathway is normally regulated to sustain
cell equilibrium; however, during carcinogenesis, c-MET
signaling can become dysregulated by a variety of mechanisms
(11). Elevated c-MET protein expression has been shown in
many malignancies and has been found to be a robust predictor
of poor survival (12–15). Overexpression of c-MET is observed
in pancreatic adenocarcinoma, promoting tumor incidence and
growth (13).

Tyrosine kinase inhibitors (TKIs) that target multiple
pathways such as the c-MET and VEGF pathways are utilized
in pancreatic cancer neoadjuvant treatment (16). For example,
cabozantinib (XL-184), an orally available TKI, targets both c-
MET and VEGFR2. Blocking both arms of the MET/VEGF axis
provides major advantages (17). Cabozantinib inhibits its targets
in a powerful and reversible manner, causing disruption of
cellular processes involved in angiogenesis. This results in
severe alterations in tumor physiology, such as extensive
endothelial and tumor cell death, vascular disruption, and
increased hypoxia. Cabozantinib ’s impact on tumors
expressing MET and VEGF has been examined with in vivo
mouse models (17, 18). It substantially enhanced tumor hypoxia
(13-fold) and cell death (2.5-fold) at the 8- and 4-h time points
after the first and second dosages, respectively. The number of
hypoxic and apoptotic cells continuously increased 85- and 78-
fold, respectively, following the third treatment (18). These
results reiterate the importance of monitoring early treatment
response in cabozantinib treatment, as the structural, vascular,
and metabolic heterogeneity of tumors can pose a hurdle for
effective therapeutic response, and monitoring these changes
early on can guide us in understanding cabozantinib
therapeutic efficacy.

Clinical decisions are often chosen based on the lack of
progression in tumor volume rather than changes in functional
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or metabolic properties of the tumor. According to Katz et al.
(19), radiographic downstaging is uncommon following
neoadjuvant therapy, and RECIST response measured on
computed tomography (CT) was not regarded as an acceptable
therapeutic objective for patients with borderline resectable
pancreatic tumors, since only 12% exhibited some form of
radiographic response. The majority of studies on neoadjuvant
treatment of pancreatic cancer concentrate on radiographic
prediction of resectability or rates of radiographic downstaging
rather than attempting to identify possible functional predictors
of tumor response (20–22). There is an absence of effective
imaging techniques and serological biomarkers for the
assessment of tumor response for neoadjuvant chemotherapy
in resectable and borderline resectable pancreatic cancer (23).
Gauging the tumor microenvironment (TME) heterogeneities,
particularly vasculature and function, i.e., tumor oxygenation
status, at high resolution is needed to both evaluate treatment
response and predict recurrence at an early phase during
treatment (24). Currently, macroscopic imaging modalities
such as positron emission tomography (PET) scans and
magnetic resonance imaging (MRI) are sparingly used
clinically for pancreatic cancer to gauge therapy-induced
changes in the TME during chemo or radiotherapy (25) and
are yet to establish themselves as tools in monitoring therapy
response in pancreatic cancer. In fact, a review by Granata et al.
(26) mentions that no study has reported the usage of blood
oxygen level-dependent (BOLD) MRI in pancreatic cancer.
Furthermore, these modalities utilize exogenous contrast agents
whose pharmacokinetics in the body limit the frequency of
imaging (often several weeks) leading to the loss of crucial
information on TME modulation due to therapy at early time
points posttreatment. Hence, there is a dire need for a
noninvasive, non-ionizing, label-free quantitative imaging
modality that can longitudinally monitor and tease out
dynamic changes in the TME at early time points post-
therapy. Photoacoustic imaging (PAI) is a non-ionizing
imaging modality that involves a short nanosecond laser pulse
irradiating a biologic tissue sample to visualize optically
absorbing internal structures in the tissue (27). This technique
can acquire images of tumor vasculature [contrast provided by
hemoglobin (Hb)] and oxygen saturation (StO2) without the
need for exogenous contrast. StO2 is the ratio of hemoglobin
binding sites that are occupied by oxygen and is calculated by
dividing oxygenated hemoglobin (HbO2) by the total
hemoglobin (HbT). Both oxygenated and deoxygenated Hb
exhibit a molar extinction coefficient that is at least one order
of magnitude greater than other common chromophores such as
lipids at wavelengths between 650 and 900 nm, and spectral
unmixing of photoacoustic measurements made with at least two
wavelengths within this wavelength range can quantitatively
approximate StO2 values (28). PAI has the potential to be a
scalable tool to enable patient stratification and monitor therapy
response (29). Given the wide utility of ultrasound (US) in
clinical imaging of pancreatic tumors, we believe that
ultrasound-guided photoacoustic imaging (US-PAI) can
simultaneously provide structural (tumor volume and shape)
July 2022 | Volume 12 | Article 915319
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and functional (vascular StO2) information of pancreatic tumors
(28, 30, 31).

Several studies demonstrated the utility of PAI for vascular
characterization of preclinical tumor models and monitoring
therapy response. For example, Hacker et al. (32) used PAI to
explore the relationship between HbT and StO2 photoacoustic
biomarkers and the underlying biochemical blood parameters in a
species-specific manner. In a study by Kesǎ et al. (33), quantitative
in vivo monitoring of hypoxia and vascularization of mantle cell
lymphoma using US-PAI was performed. They analyzed levels of
oxygen and vascularization in immunocompromised mice to not
only show the reproducibility of US-PAI data but also qualify US-
PAI as a valuable noninvasive imaging modality. In a study by
Rich et al. (34) and Tomaszewski et al. (35), PAI has been shown
to be a useful tool in revealing tumor hemodynamics in patient-
derived xenograft models of head and neck squamous cell
carcinoma in murine models. These studies demonstrated that
significant changes in tumor hemodynamics correlated well with
treatment outcomes in response to radiation therapy. They found
that PAI-based changes in StO2 were detected at early time points
even before changes in tumor volume were observed. However,
this study did not choose to examine pretreatment conditions (i.e.,
volume or baseline StO2). A recent study by Liapis et al. (36)
longitudinally examined tumor hemodynamics in two types of
breast cancer xenografts focusing particularly on HbT and StO2

changes with the administration of bevacizumab, a drug that
targets circulating VEGF and prevents it from attaching to its
cell membrane receptors. They observed a sharp drop in tumor
StO2 and HbT concentration shortly after initiation of treatment
that was then restored back to pretreatment levels. Liapis et al. (36)
highlight the importance of data collection immediately following
the administration of therapeutic agents. Similarly, Hysi et al. (37)
examined changes in tumor oxygenation in murine breast cancer
models through frequency analysis of photoacoustic
radiofrequency signals and StO2 in vivo throughout the
administration of thermosensitive liposomes encapsulated with
doxorubicin. They correlated spectral slope with treatment-
induced hemorrhaging to differentiate treatment responders
from non-responders. The observed results demonstrate the
potential of US-PAI to not only monitor tumor hemodynamics
but also quantify treatment-induced functional changes. None of
the studies discussed the combined effects of pretreatment tumor
volume, baseline StO2, and their impact on tumor response.

The clinical applications of PAI are also rapidly expanding,
especially in the diagnosis and characterization of various
malignancies. The work of Nandy et al. (38) displayed the
feasibility of using functional parameters gathered by pulse-echo
US combined with photoacoustic tomography (PAT) to diagnose
ovarian cancer. Their research found that relative HbT
concentrations were on average 1.9-fold greater in invasive
epithelial ovarian cancers than healthy tissue and that StO2 was
8.2% higher in healthy ovaries than in invasive tumors (38). In
another study, Kim et al. (39) utilized multispectral PAI to stratify
thyroid nodules. Using parameters gathered from the
photoacoustic spectral gradient, relative StO2 levels, and the
skew angle of StO2 distributions, Kim et al. (39) were able to
Frontiers in Oncology | www.frontiersin.org 3
diagnose papillary thyroid cancer with a specificity of 93% and a
sensitivity of 83%. The potential of PAI in assessing cancer
response to neoadjuvant chemotherapy was also demonstrated
by Lin et al. (40), where images of the breast were taken at three
time points (once before, during, and after receiving
chemotherapy), while the unaffected breast acted as a control.
They observed noticeable decreases in the relative vascular density,
entropy, and anisotropy of tumors treated with neoadjuvant
therapy (40). While these studies demonstrate the clinical value
of PAI, we further display the potential of PAI in oncology by
using multiple hemodynamic parameters gathered during the
chemotherapeutic regimen to detect non-responsiveness in
suboptimal therapeutic regimens and especially predict tumor
growth rates.

Previously, our group demonstrated that volumetric PAI can
successfully predict the treatment response of vascular targeted
photodynamic therapy and changes in StO2 levels within 6 and
24 h posttreatment in order to reliably predict recurrence (41).
The above-listed studies, including our previous work, showcase
the potential of US-PAI in monitoring changes in StO2 post-
therapy where the therapies were specifically targeting the
vasculature and caused almost complete remission of the
tumors. In addition, absolute values observed posttreatment
were considered; however, relative changes in StO2

pretreatment and posttreatment were not extensively explored
in suboptimal therapies. This study built upon all the above-
stated literature to monitor the response to treatment by
quantifying pretreatment tumor conditions and evaluating
utility in treatment prediction when combined with
posttreatment tumor conditions. Additionally, we correlated
tumor growth measurements against the vascular functional
data acquired with US-PAI. Overall, we showcase the utility of
label-free multiparametric US-PAI in monitoring pretreatment
and posttreatment changes in StO2 and in predicting tumor
growth rates in suboptimal TKI therapy in subcutaneous
pancreatic tumor models.
MATERIALS AND METHODS

Cell Line Preparation
AsPC-1 (pancreatic adenocarcinoma) cells obtained from the
American Type Culture Collection were cultured in RPMI 1640
medium. The medium was supplemented with 10% fetal bovine
serum and 1% penicillin-streptomycin (100 U/ml). Cells were
passaged 1–2 times per week and maintained in an incubator in
5% CO2 at a temperature of 37°C.

Animal Protocol and Cell Implantation
The Institutional Animal Care and Use Committee (IACUC) of
Tufts University authorized all animal experiments conducted in
this study. Male homozygous Foxn1nu nude mice (6–8 weeks)
were sedated with 1% isoflurane USP and subcutaneously
injected with 5 million AsPC-1 cells on day 0 (abbreviated as
“D0” throughout the article. Respective days follow similar
convention; for example, Day 5 post-implantation is
July 2022 | Volume 12 | Article 915319
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abbreviated as D5). The cells (passage numbers 15–19) were
delivered in 100 µl of Matrigel (50 µl of Matrigel + 50 µl of
phosphate buffered saline) using a 1-ml insulin syringe
(29-gauge).

Drug Administration
On D11, mice were split into two randomized groups of control
(no-treatment) mice and cabozantinib-treated mice.
Cabozantinib (Cat. No.: HY-13016, MedChemExpress)
solution was made with 30% polypropylene glycol and 5%
Tween-80, and 65% D5W (dextrose 5% water) and
administered daily at 1 mg/kg (n = 5), 10 mg/kg (n = 4), 30
mg/kg (n = 5), or 100 mg/kg (n = 8) via oral gavage for 2 weeks,
except on the weekends. A total of 29 mice were used in the
study, where 15 mice (no-treatment and 100-mg/kg group) were
used initially to gauge the significance of the predictors, and the
multivariable regression models were developed using data from
all of the 29 mice in the study.

Ultrasound-Guided Photoacoustic Imaging
Acquisition
Image acquisition was performed with the Vevo LAZR-X US-
PAI system (FUJIFILM VisualSonics, Inc.) that was equipped
with a Nd : YAG nanosecond pulsed laser and optical parametric
oscillator (OPO) operating at 20-Hz pulse repetition frequency.
The laser pulse duration was 4–6 ns and was tunable between 680
and 970 nm, providing a peak energy of 45 ± 5 mJ. Linear array
transducer MX250S (15-30 MHz) operating at a center
frequency of 21 MHz was used to obtain ultrasound and
photoacoustic images at 750 and 850 nm, wavelengths
currently available with the “Oxy-Hemo” mode on the Vevo
LAZR-X system. The two wavelengths were chosen, as they
straddle an isosbestic point of oxygenated and deoxygenated
hemoglobin, facilitating the calculation of HbT and (StO2). The
ultrasound and PAI gain were set to 22 and 45 dB, respectively,
for all imaging sessions in the study. Persistence and acquisition
were set to “Maximum” and “Oxy-Hemo” modes, respectively,
for obtaining the HbT and StO2 of the tumors. Two types of
oxygen saturation values were measured, as follows: 1) StO2

average: an average of StO2 values of the pixels both with and
without non-zero photoacoustic signal within the region of
interest (ROI) and 2) StO2 total: an average of all StO2 values
of all the pixels within the ROI. StO2 total values are lower than
StO2 average because they considered all regions within the
volumetric scan. HbT average and HbT total values are
acquired in a similar fashion. Prior to image acquisition, mice
were anesthetized with 2% isoflurane. Tumor dimensions [length
(L), width (W), and height (H)] with digital calipers and
photographs were obtained. Tumor volume was calculated
using the formula (L·W·H·p)

6 . The anesthetized mice were placed
on a heated imaging table maintained at a temperature of
approximately 37°C and connected to the ECG leads to
monitor the heart rate throughout data acquisition. Optically
clear ultrasound gel (Aquasonic 100 Ultrasound Transmission
Gel, Parker Laboratories, Inc.) was applied to the tumor and
Frontiers in Oncology | www.frontiersin.org 4
surrounding region to allow for effective acoustic transmission
between the transducer and the tissue. Each frame in the
acquisition is composed of approximately 20 images acquired
at 750/850-nm wavelengths. These images, together, produced a
cross-sectional US-PAI B-scan image of the tumor. A three-
dimensional (3D) scan of the tumor was performed with 0.15
mm step size. As the lateral resolution of the transducer array
was approximately 300 µm, a step size of 150 µm was chosen to
satisfy Nyquist criterion. After image acquisition, the mice were
returned to clean cages for safe recovery post-imaging. The mice
were imaged three times per week beginning on D5 post-tumor
implantation and continued through approximately D40
(Figure 1). After the first day of treatment (D11), the mice
were imaged 24 h after and then frequently afterward (Figure 1).
Mice were euthanized if the tumor length reached 20 mm in any
direction or if the tumor developed ulcerations of length 5 mm
or greater.

To evaluate the impact on StO2 measurements due to depth-
dependent optical attenuation of light, we conducted a phantom
experiment in which oxygenated (100% StO2) and deoxygenated
(0% StO2) blood inside a 2-mm diameter polyethylene tube was
imaged (with the same settings as tumor images) at depths
ranging from 5 to 18 mm from the transducer. The tube was
placed in a tank filled with water (no optical scattering) and in
0.5% intralipid solution to mimic tissue scattering (42, 43). Three
separate experiments were conducted. The blood solution was
prepared with 2.5 mM bovine hemoglobin (Sigma Aldrich) in
phosphate buffer solution, and the partial pressure of oxygen
(pO2) of the solution was measured consistently throughout the
imaging session using an Oxylite electrode sensor
(Oxford Optronix).

Image and Data Processing
The VevoLab software (VisualSonics, Toronto, ON, Canada) was
used to render 3D images of the tumors at various time points to
qualitatively compare changes in StO2 values. Tumor regions
were also segmented, and custom written MATLAB scripts were
developed to extract the volume, StO2 and HbT values from each
imaging data set obtained from VevoLab. Tumor volume
obtained on various days was fit using the a ∗ e(

b
K) ∗ (1−e

−K ∗ t )

where a is the initial tumor volume, b is the initial specific
growth rate, k is the retardation parameter, i.e., it is the rate of
exponential decay of initial specific growth rate, and t is time
(44). The Gompertz function is widely used and has been shown
to provide a good fit for numerous tumor models undergoing
therapy, where the tumor growth is slowest at the end of a time
period (44). Specifically, here we are interested to evaluate if
pretreatment tumor growth influences the tumor’s ability to
respond to cabozantinib treatment. The area under the tumor
growth curve for D5, D7, and D10 is termed AUCEarly, for D10–
D21 during the treatment is termed AUCTreat, and for D21–D40
is termed AUCLate as depicted in Figure 2. The exponential fits of
the tumor volume data were also used to calculate the time taken
for the tumor to double in size, increase 5-fold and 10-fold in
volume (Figure 2).
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Statistical Analysis
We used GraphPad Prism (La Jolla, CA, USA) to complete the
statistical analyses including the correlation matrix and multiple
logistic regression analysis. Multiple linear regression analysis
with 5-fold cross-validation method and repeated random
subsampling validation method (100 repeats) were performed
on MATLAB. Multiple unpaired t-tests were used to compare
the control and cabozantinib groups on each day post-
implantation, and a p-value <0.05 considered statistically
significant unless specifically stated.
RESULTS AND DISCUSSION

Effect of Suboptimal Cabozantinib
Treatment on Tumor Growth Rate
The tumor volumes of mice in the control group and the 100-
mg/kg cabozantinib-treated group are shown in Figure 3 black
and red lines, respectively. The control (no-treatment) tumors
grew at a faster rate than the tumors that received cabozantinib
as expected. Performing multiple two-tailed unpaired t-tests
between the two groups, volumes on D21, D24, D28, D31,
D33, D35, and D40 show statistical significance (Figure 3A)
(Table S1). We observed that the tumor volume measured with
digital calipers also demonstrated statistically significant
differences between the treated and the control group on the
same days above (Figure 3B) and (Table S2). The B-scan images
of the tumors (center frame) from representative mice in the two
groups are provided in Figure S4. Qualitative change in tumor
size cannot be discerned on the 2D images, and the effect of the
suboptimal treatment is only apparent when the entire tumor
volume is considered. Gompertz growth parameters b and k
representing initial growth rate and retardation parameter are
displayed in Figure 3C. Clearly, a 4- and 8-fold decrease in the
respective growth rate parameters can be observed between the
two groups. A two-tailed unpaired t-test demonstrated that there
Frontiers in Oncology | www.frontiersin.org 5
is a strong statistically significant difference between the tumor
growth rates (p < 0.006) of the two groups due to the effect of
cabozantinib (Figure 3C).

Examining the AUCs of the tumor volume vs. treatment days
curve (schematic representation in Figure 2) of the control and
treated groups during the experiment, no statistical significance
was observed between the AUCEarly and AUCTreat days.
However, AUCLate values between the groups showed
statistically significant differences through a two-tailed
unpaired t-test (p = 0.026) (Figure S1), indicating that the
administration of the drug, even in suboptimal doses, has had
a measurable effect at later days posttreatment. No statistically
significant difference in mouse weight was observed in this study
(Figure S2). The effect of cabozantinib is also clearly
demonstrated through the Kaplan–Meier survival curves.
Median survival time in mice was 47.5 and 54.5 days for
control and treated groups, respectively (Figure 3D).
Approximately around D40 is where the survival curve of each
group diverges with the control group at risk of death sooner
compared to those tumors that received cabozantinib. Clearly,
cabozantinib reduced the tumor volume; however, we do not
observe complete tumor remission due to suboptimal treatment.

Oxygen Saturation Values at Early Time
Points Are Significant Biomarkers of
Treatment Efficacy
To determine the variability in the StO2 and HbT value
measurements due to laser energy fluctuations, a repeatability
experiment was conducted in which the same mouse (n = 3 mice)
was imaged three separate times 2 h apart. To approximately
coregister the same frames from the separate time points, the
center frame of each tumor was found and 20 frames before and
after the center frame were compared to the corresponding
frames at the other time points. The variance of the StO2

average and StO2 total parameters was found to be 4.8% ±
1.78% and 7.40% ± 2.27%, respectively, while the average
FIGURE 1 | Schematic of the experiment timeline. The mice were imaged frequently before and during chemotherapy treatment. Weekly imaging ensued 40 days
after tumor implantation through the end of the experiment (EOE). Created with Biorender.com.
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FIGURE 2 | A flowchart depicting the steps involved in collecting and analyzing relevant data in our experiment. Inputs consist of StO2, HbT (from photoacoustic
images), and tumor volume (extracted from ultrasound images). Tumor volume gathered from ultrasound images was plotted for various days post-implantation. The
data were fitted with the Gompertz growth model. Shown in the bottom left schematic representation is the area under the curve (AUC) for different time periods
during the study. AUCEarly (orange shaded area) is area under the volume vs. time plot during the pretreatment days (D5–D10). AUCTreat (green shaded region)
represented the AUC for time period D11–D26 when the mice were treated with cabozantinib. AUCLate (blue shaded region) is the AUC for time period D26–D40.
AUC parameters units are mm3 * day. The bottom right image is a schematic representation of the tumor volume vs. days post-implantation curve utilized to
determine the 2×, 5×, and 10× growth parameters. 2× is the number of days it takes for a tumor’s pretreatment (D5) volume to double in size. Green (5×) and blue
(10×) show the number of days it takes for pretreatment volume to increase by factors of 5 and 10, respectively. X-fold increase parameters are measured in terms
of days post-implantation. PA and US represent photoacoustic and ultrasound, respectively. Created with Biorender.com.
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variance of HbT average and HbT total was found to be 3,006 ±
1,106 (au) and 3.96 × 107 ± 1.96 × 107 (au), respectively (Table
S3). These results enable us to attribute significant differences in
StO2 values between the treated and control groups to treatment
effects if they are greater than the variance mentioned above.

Figure 4 shows the average and total StO2 change in the
tumor over time for the control (black line) and cabozantinib
group (red line). Multiple two-tailed unpaired t-tests were
performed between the two groups. As expected, pretreatment
StO2 values (both average and total) showed no significant
differences between the groups on D5, D7, and D10 post-
implantation. Therefore, any differences seen posttreatment
can be attributed to the administration of the drug. Within 72
h post-drug administration, statistically significant differences in
StO2 average were observed on D14 post-implantation (p =
0.009, Table S4). These differences were significantly larger
than the variance observed in the repeatability experiment. The
StO2 total values of the groups were different on both D12 and
D14 post-implantation (p = 0.008 and p = 0.0003, respectively,
Frontiers in Oncology | www.frontiersin.org 7
Table S5). The changes in StO2 values do not correspond to
changes in HbT values, i.e., no significant differences between the
groups were observed in HbT posttreatment (Figure S3; Tables
S6, S7). Using a variety of immunofluorescence assays and
histology biomarkers, cabozantinib was shown to inhibit MET
and VEGFR phosphorylation and disrupt tumor vasculature in
digitally captured histology images (18, 45, 46). As a result,
previously present functional blood vessels had been cut off,
leading to further hypoxia and an overall decrease in oxygenation
of the tumor posttreatment. Furthermore, mimicking a clinical
scenario, cabozantinib was not administered on the weekends
during the study. During this downtime, the StO2 values
recovered back to their pretreatment stage, and beyond D17,
no statistical significance for the StO2 average values was
observed. StO2 total, on the other hand, had statistical
significance on D28 and D31 posttreatment (p = 0.004 and p =
0.029, respectively). Given that the tumors were significantly
larger at these time points and no depth-dependent fluence
compensation was performed on our StO2 measurements, the
A B

C D

FIGURE 3 | (A) Plot of tumor volume obtained from ultrasound images vs. the time post-tumor implantation. The treatment days are indicated with a bar labeled
“Tx.” (B) Plot of tumor volume measured with digital calipers vs. days post-tumor implantation. Error bars represent the SEM for each of the groups on a particular
day. (C) Bar plot of the spread of each group’s Gompertz growth rates. Error bars represent SEM, where n = 8 for each group. (D) Kaplan–Meier survival curve of
the two groups over the period of the study. Median survival time for control and treated groups was 47.5 and 54.5 days, respectively. * p < 0.05, ** p < 0.01,
# p < 0.001, ## p < 0.0001.
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differences observed at D25 and beyond might not accurately
represent the tumor oxygenation status.

Figure 5 depicts the 2D US-PAI B-scans and 3D images of
representative tumors (outlined in white ROI) at immediately
pretreatment and posttreatment time points (D10, D12, and
D14) along with respective photographs of the tumors. These
images serve as qualitative benchmarks to confirm the
quantitative trends observed in Figure 4. The images clearly
depict that for the treated tumor (Figures 5D–F, J–L), the first
initial dose decreases the oxygenation in the tumor region. The
tumor StO2 then continues to decrease as the regimen continues,
behavior consistent with how TKI therapy has been
demonstrated to work in previous studies (18). Tumors that
were not treated (Figures 5A–C, G–I) did not exhibit a
significant change in their oxygenation status during this time.
Moving forward, being able to identify and characterize this type
of behavior early during the treatment regimen will be critical to
predict response and plan subsequent therapies.

Changes in Oxygen Saturation Can Predict
the Treatment Response
To investigate whether any StO2 measurements or change in
StO2 measurements due to therapy could predict a suboptimal
treatment response or correlate with various growth parameters,
we performed a correlation analysis on multiple parameters as
shown in Figure 6. The “treatment” parameter had a value of “0”
for control mice and “1” for mice treated with cabozantinib. The
matrix is organized by growth rate values and tumor volume
measurements, then average StO2 values at early time points and
their relative differences. Specifically, pretreatment volume on
D10, Gompertz function parameters (a, b, and k), area under the
growth curve obtained at pretreatment (AUCEarly), during
treatment (AUCTreat), posttreatment (AUCLate), and time taken
for the tumors to reach twice (2×), 5 times (5×), and 10 times
(10×) their pretreatment volume (parameters represented in
Figure 2) were correlated with StO2 values. The abbreviations
Frontiers in Oncology | www.frontiersin.org 8
D7, D10, D12, and D14 in the matrix represent the StO2 average
values on Days 7, 10, 12, and 14 post-tumor implantation,
respectively. Positive correlations are represented in red to
green hues, while negative correlations are represented in blue
to purple hues, and the correlation coefficient is displayed on the
matrix for each parameter pair. Although StO2 total and average
values were both analyzed as shown in Figure 4, StO2 total was
not considered in the correlation matrix, as it could be over or
underestimated based on differences in tumor volume. The StO2

total calculations include zero-pixel values that could lead to
increased error as the tumor size or hypoxia increases, in
addition to effect on StO2 measurements in larger tumors due
to light penetration. Hence, for the treatment prediction model,
we used StO2 average values and time points early in the
treatment regimen where tumor depth differences between D7
and D10 or Day 10 and Day 14 are on the order of ~600 mm. In
addition, the correlation coefficients between StO2 total and the
growth parameters were poor compared to StO2 average (Table
S8) and hence were not used in further analysis.

We used Spearman correlation in our analysis contrary to the
standard Pearson correlation values, as we wanted to evaluate
the monotonic relationship between the variables, where the
variables tend to change together but not necessarily at a
constant rate. Using the ranked system in Spearman
correlation analysis is more effective for our dataset, as it
allows for the evaluation of nonlinear trends and correlation of
data from various observations or analyses. The correlation
matrix format allowed us to identify the parameter
relationships that are most revealing about responsiveness to
treatment at the earliest time. As expected, treatment condition
highly correlated with Gompertz growth parameters b (r2 =
-0.87, p = 3.12e-4) and k (r2 = -0.80, p = 0.001). The treatment
condition also has a high negative correlation with number of
days for increase in volume [r2 = 0.73 (p = 0.005), r2 = 0.59 (p =
0.025) for 2× and 5×, respectively]. These results agree well with
previous studies that have shown that cabozantinib therapy
A B

FIGURE 4 | (A) Plot of 3D average StO2 in the tumors on different days post-implantation. Three days after treatment initiation, there is a statistically relevant
difference between treated and non-treated tumors with a p-value of 0.0091. Error bars represent standard error of the mean (SEM) for each day post-implantation.
(B) Plot of 3D total StO2 on different days post-implantation. By performing multiple two-tailed unpaired t-tests, both 24 and 72 h posttreatment have significant
differences between the values, with p-values of 0.0083 and 0.0003, respectively. Error bars represent SEM. * p < 0.05, ** p < 0.01, # p < 0.001.
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decreases the tumor growth rate (18). Gompertz a parameter,
which represents the initial value of the growth curve fit,
correlated with pretreatment volume (r2 = 0.614, p = 0.02) and
AUCEarly (r

2 = 0.76, p = 0.001) as expected, as they theoretically
represent the same parameter. It also correlates well with the
Frontiers in Oncology | www.frontiersin.org 9
number of days taken for tumor volume to increase, as larger
tumors take less time to reach a certain volume [r2 = 0.6 (p =
0.020), r2 = 0.6 (p = 0.020), r2 = 0.57 (p = 0.028) for 2×, 5×, and
10×, respectively]. Despite AUCEarly and AUCTreat both
displaying strong correlations with several growth parameters,
FIGURE 5 | 2D cross-sectional photoacoustic images (A–F) and corresponding 3D rendered images (G–L) of tumor regions from the day before the first
administration of treatment (D10) immediately through the first 72 h after the start of treatment (D14). Post-administration of cabozantinib, we observe a decrease in
StO2 from D12 to D14, while the Control (no-treatment) group had relatively similar StO2. Insets shown in the lower left corner of 3D images are photographs of
tumors taken immediately before the corresponding PAI acquisition. The tumor volume change at these time points is not statistically significant, indicated also by the
no obvious changes seen in the photographs of the tumors. In upper 2D cross-sectional images, scale bars = 2 mm. In lower 3D rendered images, both black and
white, scale bars = 5 mm. Green, blue, and red arrows indicate the x-, y-, and z-direction, respectively.
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AUCLate did not display a high correlation with any of the growth
parameters. This could be due to several factors, as larger late-
stage tumors are susceptible to stalled growth, necrosis, and
hemorrhage formation, which can impact the correlation with
other parameters. Overall, given the high correlation of the
Gompertz growth parameters with the treatment condition, we
Frontiers in Oncology | www.frontiersin.org 10
isolated these relationships and performed further analysis to
predict these parameters utilizing the StO2 values.

The StO2 values on D7, D10, D12, and D14 were chosen to
represent the immediate pretreatment and posttreatment values.
The Spearman correlation coefficient between the treatment
condition and 3D StO2 on D14 was -0.62 (p = 0.021).
FIGURE 6 | Spearman correlation matrix comparing the tumor growth characteristics and tumor StO2 parameters. Tumor growth parameters include pretreatment
volume, Gompertz function parameters (a, b, and k), area under the growth curve obtained pretreatment (AUCEarly), during treatment (AUCTreat), posttreatment
(AUCLate), and time taken for the tumors to reach twice (2×), 5 times (5×), and 10 times (10×) their pretreatment volume. The StO2 parameters include the 3D StO2

average values on Days 7, 10, 12, and 14 post-implantation (D7, D10, D12, and D14, respectively) and parameters describing the change in StO2 from Day 7 to Day
10 (D7–D10), Day 10 to Day 12 (D10–D12), and Day 10 to Day 14 (D10–D14). Color gradient assists in identifying the most prominent parameter relationships, with
red representing a positive correlation coefficient and violet representing a negative correlation coefficient.
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Furthermore, Figure 3 clearly shows that the differences in StO2

between control and cabozantinib-treated groups are statistically
significant on D14. The D14 StO2 values also have a high
correlation with the Gompertz growth parameters [r2 = -0.66
(p = 0.009), r2 = 0.71 (p = 0.004), r2 = 0.60 (p = 0.020) for a, b,
and k, respectively] and the number of days for fold increase
[r2 = -0.68 (p = 0.001), r2 = -0.67 (p = 0.008), r2 = -0.59
(p = 0.022) for 2×, 5×, and 10×, respectively].

Pretreatment tumor volume was a significant predictor for
tumor growth rate and treatment response in several clinical
studies, i.e., larger tumors are less likely to respond to therapy
(47, 48). This is also displayed in our results as AUCTreat

negatively correlated with pretreatment volume (r2 = -0.82, p-
value = 0.0003). This indicates that AUCTreat will be larger for
smaller tumors and vice versa. However, we do not observe a
significant correlation between the size of the tumor
(pretreatment volume) and StO2 values on various days. This
observation is supported by the fact that tumors are
heterogeneous by nature. Previously, Mallidi et al. (41)
demonstrated that the change in StO2 post-therapy is
predictive of photodynamic therapy response where the
therapy specifically targeted blood vessels and 70% of the
tumors had complete remission. Pre-therapy changes in StO2

values were not correlated to treatment response. Furthermore, a
study by Ueda et al. (49) demonstrated that baseline
pretreatment StO2 can predict a pathologic complete response
in breast cancer patients. Here, we test our hypothesis that the
change in StO2 values immediately pretreatment and
posttreatment can predict tumor growth rate parameters, as
complete remission rarely occurs in suboptimal therapy.

Pretreatment change in StO2 values (D7–D10) had a weak
negative correlation with pretreatment tumor volume (r2 =
-0.504, p-value = 0.037). This indicates that rate of tumor
growth and vessel development can be heterogeneous, but
generally larger tumors had higher D10 StO2 values than at
D7. On the other hand, in smaller tumors, StO2 values had
minimal changes between D7 and D10. The data indicated large
tumors have more blood vessels delivering oxygen to the tumor
in order to sustain the growth, and hence we see an increased
StO2 value between the two days. The changes in StO2 24 h (D12)
and 72 h (D14) after therapy were also correlated with various
treatment growth parameters. The D10–D14 StO2 had overall
good correlation with alpha, beta, AUCEarly, 2×, 5×, and 10× (r2 =
0.7, r2 = -0.53, r2 = 0.65, r2 = 0.74, and r2 = 0.82 with respective p-
values of 0.0003, 0.032, 0.045, 0.019, and 0.004). D10–D12 had
moderate correlation with 2×, 5×, and AUCEarly [r

2 = 0.47 (p =
0.269), r2 = 0.45 (p = 0.0574), and r2 = 0.56 (p = 0.0231),
respectively] but not with other parameters. A good statistical
correlation was probably not observed for StO2 D10–D12 value
because initiation of therapy had only minimal impact at 24 h
posttreatment. A scatter bubble plot of changes in StO2 values
between D10 and D14 vs. tumor growth rate b (day-1) is shown
in Figure 7. The changes in StO2 from D7 to D10 are indicated
by pseudo color where a decrease in oxygenation is represented
by red, while an increase in oxygenation on D10 is represented by
blue. The size of the bubbles is representative of the pretreatment
Frontiers in Oncology | www.frontiersin.org 11
volume of the tumors on D10. The label “0” indicates tumors in
the control group, while 1 indicates the treated group. The
treated and the control groups formed distinct clusters with
minimal overlap, although the cluster did not show any
significant trends with respect to pretreatment tumor volume.
Within the treated cluster in Figure 7, we clearly notice that if
tumors became hypoxic between D7 and D10 (purple-red color),
they had a significantly lower change in oxygenation between
D10 and D14. Tumors that became more oxygenated from D7 to
D10 (dark purple-blue color) had a greater change in D10–D14
StO2 values posttreatment and also lower growth rate. The
observation supports previous studies that showed that
cabozantinib is efficacious in highly angiogenic tumors, as
these tumors have a high expression of VEGFR, a target
receptor suppressed by cabozantinib (50, 51). Reliable trends
on pretreatment tumor volume and change in StO2 between D7
and D10 are not observed, as also indicated in the correlation
matrix (r2 = -0.504 and p = 0.058).

We utilized the relevant parameters with good correlation
coefficient with Gompertz fit parameter b value, namely,
pretreatment tumor volume and change in StO2 pretreatment
(D7–D10) and immediately following treatment initiation (D10–
D14) to develop our multivariate linear regression model, where
Growth rate b = b0+ b1∗ pretreatment volume b2 ∗ StO2(D7
−D10) +b3∗StO2(D10−D14) and StO2 (D7–D10) and StO2

(D10–D14) represent the change in StO2 between Days 7 and
10 and immediately following treatment initiation on Days 10–
14, respectively. The AUCEarly parameter had a better correlation
with Gompertz growth rate and StO2 parameters compared to
the “pretreatment” tumor volume. However, obtaining AUCEarly

clinically with several days prior to initiation of treatment is not
possible, as treatment is given immediately post-tumor detection.
Hence, immediately prior to treatment tumor volume on D10
was considered in the prediction model. To enhance the
FIGURE 7 | Scatter bubble plot of change in StO2 values between D10 and
D14 vs. tumor growth rate b values. The change in StO2 from D7 to D10 is
indicated by the color bar where a decrease in oxygenation is represented by
red, while an increase in oxygenation is represented by blue. The size of the
bubbles is representative of the pretreatment volume of the tumors on D10. The
label 0 indicates tumors in the control group, while 1 corresponds to treated.
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performance of the model, mice that were treated with different
cabozantinib doses were added to the data. Gompertz b
parameter was the dependent (output) variable. A total of 29
mice were used to train and validate the model, with three
predictors (independent variable) allowing ~10 cases per
predictor in the multivariate regression model, satisfying the
minimum required observations per predictor to avoid
overfitting (52, 53). A forward selection method without cross-
validation was used to determine the three best predictors based
on the R2, adjusted R2 value, and the coefficient for regression p-
value <0.05. Multicollinearity was assessed using Variance
Inflation Factor with a cutoff of 3. The process yielded that a
linear combination of pretreatment tumor volume, D7–D10, and
D10–D14 had the highest R2 value. A table of R2 values for
different combinations of predictors (3 predictors or less) is
provided in the Supplementary Material (Table S9). The k-fold
cross-validation method (k = 5 samples) and the random
subsampling method (80% training data and 20% validation
data; 100 repeats) yielded similar regression coefficients
(Table 1). Figure 8 shows the representative data from the k-
fold cross-validation on the training data set (green square data
points), the representative regression line, and the validation data
set (blue round data points). The low R2 values with low p-values
in this regression analysis indicate that the data are noisy;
however, there is a significant trend between growth rate and
the parameters pretreatment volume and StO2 changes
pretreatment and posttreatment.

We used multiple logistic regression analysis, a popular and
widely used analysis similar to linear regression analysis, to
evaluate the performance of the three parameters, namely,
pretreatment tumor volume and StO2 D7–D10 and D10–D14
in predicting the treatment response. The outcome in logistic
regression analysis is dichotomous, i.e., responders (1) or non-
responders (0). As mice with various treatment doses are
included in the analysis, we allocated a value of “1” for tumors
that had a Gompertz growth rate lower than the 25th percentile
of the no-treatment group, i.e., this group was identified as
responders and other tumors were non-responders. Goodness-
of-fit of the logistic regression model was performed with the
Hosmer–Lemeshow (HL) test where the hypothesis is that
predictions agree well with observed outcomes and a p-value
greater than 0.05 indicated good agreement. In all of the logistic
regression analyses shown in Figure 9, p-values greater than 0.05
Frontiers in Oncology | www.frontiersin.org 12
were obtained. All of the 29 mice were included in the analysis,
and a receiver operating characteristic (ROC) curve was utilized
to assess the predictive efficacy of the three parameters. The area
under the ROC curve (AUC) is a measure of how well the fit
model correctly classified non-responding and responding
tumors. The classification cutoff threshold point was
determined to be 0.8 by maximizing the Youden function,
which is the difference between true positive rate and false-
positive rate over all possible cutoff values. As expected, the AUC
of the ROC curves for a single variable did not have a high AUC
(pretreatment volume, StO2 D7–D10, or StO2 D10–14), although
the change in StO2 values had better predictive capability than
pretreatment tumor volume. Figure 9 showcases the ROC curves
indicative of the performance of combination parameters (either
two or all three parameters). The combination of pretreatment
conditions (tumor volume and D7–D10 change in StO2,
Figure 9, blue line) had the least predictive capability with
AUC 0.580 (standard error of 0.108, 95% confidence interval
0.370–0.791, and p-value of 0.454). Combining pretreatment
tumor volume with change in StO2 posttreatment D10–D14 had
an AUC of 0.72 (standard error of 0.095, 95% confidence interval
of 0.533–0.905, and p-value of 0.042). The combination of StO2

changes pretherapy and post-therapy (D7–D10 and D10–D14)
had an AUC of 0.82 (standard error of 0.077, 95% confidence
interval of 0.670–0.973, and p-value of 0.0028). The combination
of all three parameters had the best AUC of 0.85 (standard error
of 0.06903, 95% confidence interval of 0.713–0.984, p = 0.0012),
however, was not statistically different from the D7–D10 to D10–
D14 ROC curve. Although pretreatment tumor volume has
previously been shown clinically and preclinically as a
predictor of response, in this data set, the parameter is
insignificant probably due to the limited range of tumor
volumes used in the study. Furthermore, the model built with
the three predictors had a 100% positive predictive power,
58.33% negative predictive power, 100% specificity, and 30%
sensitivity. The high positive predictive power indicates the
probability that people with a positive prediction result indeed
do have responded to the treatment and have a lower growth
rate. The model can correctly identify from among the sample
which tumor might or might not have responded to the
treatment. The low sensitivity indicates that the model can
identify solely from among tumors that are known to have a
good response to the treatment (i.e., identifying true positives).
TABLE 1 | Summary of parameter estimates for b0, b1, b2, and b3 obtained from multiple linear regression along with corresponding R2 and p-values.

Multiple linear regressionparameter estimates (standard error)

b0

Intercept
b1

Pretreatment volume
b2

StO2 D7–D10
b3

StO2 D10–D14
R2 p-value

No-treatment and high-dose 0.27 (0.076) -0.002 (0.0013) -0.0074 (0.0026) -0.0042 (0.0018) 0.58 0.02
All groups 0.16 (0.056) -0.00033 (0.00086) -0.0052 (0.0021) -0.0041 (0.0014) 0.34 0.014
k-fold cross-validation 0.1535 (0.0216) -0.0002 (0.003) -0.0052 (0.006) -0.0042 (0.002) 0.37 0.011
Random subsampling cross-validation 0.1580 (0.039) -0.0003 (0.0012) -0.0053 (0.0001) -0.0042 (0.0001) 0.37 0.0065
July 2022 | Volume
 12 | Article
Size groups used were n = 15 and 29 for no-treatment and cabozantinib and all mice respectively.
For the k-fold cross-validation, k = 5 was used to represent the number of groups all mice were split into. Lastly, random subsampling cross-validation (N = 100 repeats) consisted of 80%
training data and 20% validation data.
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However, our model will err on the side of caution and may not
identify a responsive tumor if the data are perhaps borderline.
The high specificity would indicate that our model can correctly
identify tumors that are not responsive to treatment.
CONCLUSIONS AND FUTURE WORK

In the current study, we have demonstrated the effectiveness of
US-PAI to monitor vascular biomarkers to detect changes in
tumor responsiveness to oral TKI therapy early in the treatment
regimen. US-PAI does not require any exogenous contrast
agents, can be performed by trained technicians, and in real
Frontiers in Oncology | www.frontiersin.org 13
time provide data feedback on the tumor structure and vascular
elements. By acquiring both pretreatment and posttreatment
data, we characterized and distinguished between treated and
non-treated tumors. We then developed a prediction model for
tumor growth rate based on the pretreatment tumor volume,
pretreatment change in StO2, and posttreatment change in StO2

parameters. Personalizing a patient’s treatment regimen and
gauging will be invaluable in the clinical setting, and US-PAI
has tremendous potential to noninvasively track daily changes in
hemodynamics to predict treatment response.

PAI offers unprecedented 3D information on tumor vascular
function, especially information on StO2, that can aid in gauging
heterogeneity in the TME (54, 55). However, the StO2 estimation
is dependent on the photoacoustic signal strength that is in turn
wavelength-dependent on the fluence at a particular depth (56–
58). The estimated StO2 values can become erroneous for larger
tumors due to significant differences in the fluence at deeper
tissues due to wavelength-dependent scattering and absorption
of light by tissue. These values can also be further influenced by
the light delivery system, i.e., focused beam vs. large beam
diameter can lead to different fluencies at various depths (59).
In the current setup, the laser light was focused at around 10 mm
from the transducer surface, and we clearly showcase that StO2

measurements in water (no scattering) are influenced by the
position of the tube filled with oxygenated hemoglobin. For
shallower depths where sufficient light is not reaching the tube,
very low StO2 values were recorded for tube filled with
oxygenated hemoglobin (Figure S5). When the tube is placed
in a scattering medium, there was no statistically significant
difference in the StO2 measured from the tube at various depths
between 5 and 18 mm (Figure S5). In our experiments, we
ensured that the placement of the tumors was between 8 and 10
mm from the transducer to avoid situations of the tumor ROI
being placed beyond the light focus.

Recent simulations by Yoon et al. (60), Hochuli et al. (58, 61),
and Perekatova et al. (62) demonstrate that wavelengths around
680–1,000-nm range can be used for measuring StO2 values at
various depths; however, further experiments need to be
FIGURE 9 | Receiver operating characteristic curve showcasing the predictive capability of various parameters used in the multiple logistic regression analysis. The model
created with Pretreatment volume and change in StO2 between D7–D10 and D10–D14 had the highest AUC. The line of identity is shown as a gray dotted line.
FIGURE 8 | Representative data from the k-fold cross-validation of the
multivariate linear regression model given by the Equation: Growth rate b = b0
+ b1∗ pretreatment volume b2 ∗ StO2(D7−D10) +b3∗StO2(D10−D14) . The
training data set is represented by green squares (n = 24), the representative
regression line in black, and the validation data set is represented by blue
circles (n = 5).
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conducted prior to deciding the optimal wavelength combination
for a particular application. Here, we used the dual-wavelength
imaging at 750 and 850 nm, as they straddle around the
isosbestic point of oxygenated and deoxygenated hemoglobin
optical absorption curves, and these settings are currently
unchangeable within the “Oxy-Hemo” imaging mode of the
Vevo LAZR-X system. While the differences in wavelength-
dependent laser energy are compensated within the system,
depth-dependent fluence compensation is not available. Several
groups utilized the dual-wavelength “Oxy-Hemo” mode for
applications ranging from monitoring treatment response (37,
41) to measuring ischemia–reperfusion in humans (63) and
oxygen gradients in the retina (64). Rich and Seshadri (65)
have also demonstrated good correlation of photoacoustic StO2

values measured with Vevo LAZR-X imaging system with
BOLD-MRI. Light-emitting diode-based PAI systems have also
utilized the wavelength combination of 750 and 850 nm to
measure StO2 changes in mice and humans (66). Kim et al.
(39) performed a study analyzing StO2 values obtained from
various combinations of wavelengths and their predictive
capability for discerning benign and malignant thyroid lesions.
StO2 measurements calculated using five wavelengths (700, 756,
796, 866, and 900 nm) had higher specificity than utilizing a
combination of 2, 3, or 4 wavelengths, respectively. It is to be
noted that 3D images of the tumor were not acquired in the Kim
et al. study but rather 2D cross-sections were utilized to
differentiate benign and malignant lesions. While the dual-
wavelength 750 and 850 nm combination might not yield
accurate StO2 measurements compared to multiple
wavelengths, methods using more than two wavelengths to
discern StO2 will also significantly increase the scan time.
Indeed, the trade-off between StO2 measurement accuracy and
scan speed to obtain a 3D image is yet to be studied in detail and
could be resolved with the availability of lasers with a higher
pulse repetition frequency.

The accuracy of our StO2 measurements can be improved
with depth-dependent changes in fluence estimated using Monte
Carlo simulations (67, 68), by obtaining wavelength-dependent
optical attenuation measured using photoacoustic spectra of 25-
µm-thick black film (69), using ultrasonic tagging of light (70),
utilizing radiofrequency photoacoustic spectra (71), or using
signal-to-noise ratio-regularized local fluence correction (72).
More recently, deep learning methodologies for spectral
unmixing of photoacoustic signals have also been proposed for
accurate StO2 measurements (73, 74). Hochuli et al. also
demonstrated that spectral coloring introduces significant
inaccuracies in the StO2 estimation. High density of blood
vessels in the top layers of the tumor can also impact StO2

measurements in deeper tissues due to significant absorption of
light by the blood vessels in the top layers of the tumor. Methods
to compensate for fluence in such heterogeneous environments
and large tumors are not straightforward and require further
investigation. This can be further exacerbated in cases such as
skin tumors where the presence of melanin can also impact StO2

measurements, as recently demonstrated by Mantri and Jokerst
(75). The above-stated caveats for accurately estimating StO2
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including the number of wavelengths required for spectal
unmixing, depth-dependent fluence compensation, and
heterogeneous TME leading to heterogeneous optical
absorption within the tumor need to be addressed prior to
clinical translation. Nevertheless, the prediction model
presented in this article was developed with tumor volumes in
the range of ~45–85 mm3 and is a promising step toward
utilizing noninvasive label-free imaging biomarkers to predict
treatment response. Such methods can be integrated into
preclinical cancer research to comprehensively evaluate the
variations in therapy response.

Future work will include incorporating orthotopic models
with treatment-resistant pancreatic cancer cell lines and studying
other forms of TKI therapies at effective and suboptimal therapy
doses to develop a robust prediction model. Our work
demonstrated the possibility to monitor minute vascular
changes in oxygenation via oral administration of the TKI
while tracking volume changes through our treatment regimen.
We believe that these changes may become even more
pronounced through intravenous delivery of the therapies, as
oral delivery may not produce as drastic volumetric reductions as
anticipated and seen in previous studies (76). Furthermore,
recent developments in clinical translation of PAI (77–79)
including portable real-time LED-based PAI systems for cancer
applications (80) and endoscopic PAI systems (81–83) show
promise toward employing photoacoustic monitoring of tumor
response to treatment not only for pancreatic tumors but also for
other solid tumors undergoing neoadjuvant treatment. Overall,
given the exponential rise in the technical advances and
biological applications of PAI over the past decade, the results
presented in this study further support its utility as a useful tool
to monitor cancer treatment response, especially in imaging
response of suboptimal therapies.
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