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A B S T R A C T   

Background: Causal directed acyclic graphs (cDAGs) are frequently used to identify confounding and collider bias. 
We demonstrate how to use causal directed acyclic graphs to adjust for collider bias in the hospitalized Covid-19 
setting. 
Materials and methods: According to the cDAGs, three types of modeling have been performed. In model 1, only 
vaccination is entered as an independent variable. In model 2, in addition to vaccination, age is entered the 
model to adjust for collider bias due to the conditioning of hospitalization. In model 3, comorbidities are also 
included for adjustment of collider bias due to the conditioning of hospitalization in different biasing paths 
intercepting age and comorbidities. 
Results: There was no evidence of the effect of vaccination on preventing death due to Covid-19 in model 1. In the 
second model, where age was included as a covariate, a protective role for vaccination became evident. In model 
3, after including chronic diseases as other covariates, the protective effect was slightly strengthened. 
Conclusion: Studying hospitalized patients is subject to collider-stratification bias. Like confounding, this type of 
selection bias can be adjusted for by inclusion of the risk factors of the outcome which also affect hospitalization 
in the regression model.   

1. Background 

Causal directed acyclic graphs (cDAGs) are frequently used to facil
itate the study design, variable selection of statistical models for effect 
estimation, and creation of a graphical framework for classifying po
tential bias sources. cDAGs are graphical tools that posit the causal 
structure for the study population, in which the underlying causal re
lationships between exposure, outcome and other related variables are 
displayed using directed arrows [1–10]. 

cDAGs can be used to identify two sources of bias in the causal effect 
estimation: confounding and collider-stratification bias. Confounding 
arises from a common cause of the exposure and outcome; a confounder 
is any variable on this confounding path. In contrast, collider- 
stratification bias occurs due to conditioning on the collider which is a 
common effect of the exposure (or a cause of the exposure) and outcome 
(or a cause of the outcome) [11]. Both biases can be corrected by 
appropriate adjustment for a confounder and a non-collider variable on 

the collider-stratification biasing path, respectively. 
During the Covid-19 pandemic, large databases have been used in 

epidemiological studies in Iran to evaluate the impact of various factors 
on the outcomes of Covid-19 [12–16]. The effect of vaccination/drugs 
on death are often studied in the hospitalized Covid-19 patients. 
Selecting samples from hospital information systems is one of the 
possible sources of collider-stratification bias, known as Berksonian bias 
[17]. In this manuscript, we demonstrate how to adjust for collider bias 
in the assessment of the effect of vaccination on death in the hospitalized 
Covid-19 setting using cDAGs. 

2. Materials and methods 

2.1. Data accessing 

The design was cohort study restricted to Covid-19 patients hospi
talized in Shahid Sadoughi Hospital, Yazd in 2020. The research 
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question was the effect of vaccine status (two doses) on death in hos
pitalized Covid-19 patients. All patients referred to Covid-19 diagnostic 
centers were registered in medical care monitoring center (MCMC). 
Demographic data, underlying diseases such as heart diseases, kidney 
diseases, dementia, cancers, diabetes mellitus, and liver diseases regis
tered based on ICD-10 codes were collected. 

2.2. Causal directed acyclic graphs for the study structure 

Fig. 1 shows cDAGs for three scenarios in this study. cDAG 1 repre
sents relationship between Covid-19 vaccine status and death without 
considering any other measured variable. The variable U represents an 
unmeasured confounder such as personality type which affects both 

Fig. 1. Causal directed acyclic graphs outlining 3 scenarios under study (Chronic Diseases are Cancers, Diabetes Mellitus, Heart Diseases, Liver Diseases, and Kidney 
Diseases. U includes unmeasured factors that affect both vaccine status and death, e.g. personality type). 

Table 1 
Distribution of age and comorbidities in Covid-19 hospitalized by vaccine status.  

Variables Vaccine Status 

Vaccine (N = 4691) Non-vaccine (N = 16,619) 

Age (years); mean (SD) 
≥ 60 

58.6 (18.6) 
2440 (52%) 

46.3 (21.2) 
4495 (27%) 

Cancers comorbidity 87 (1.9%) 103 (0.62%) 
Liver diseases comorbidity 18 (0.38%) 11 (0.066%) 
Heart diseases comorbidity 563 (12%) 429 (2.6%) 
Diabetes mellitus comorbidity 1030 (22%) 1108 (6.7%) 
Kidney diseases comorbidity 127 (2.7%) 91 (0.55%) 

Data are No.(%) unless otherwise was specified. 
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vaccine status and death. In cDAG 2, we added an arrow from age to 
death, and hospitalization was added as a collider, i.e., a common effect 
of vaccine status and age. The square around the variable hospitalization 
indicates that the analysis was restricted to hospitalized patients. In this 
case, a biasing path is opened from vaccine status to death due to con
ditioning on the variable hospitalization, and age should be adjusted for 
in the analysis. In cDAG 3, some chronic diseases as comorbidities were 
added to the cDAG. In this cDAG, conditioning on the variable hospi
talization produces biasing paths from vaccine status to death, and so 
both variables age and chronic diseases should be adjusted for in the 
analysis. This is true even if age or chronic disease are not causal con
founders, reflected in no arrow from age or chronic disease to vaccine 
status in cDAGs 2–3 i.e., the analysis was performed when the vaccine 
was available to all persons in the population. 

2.3. Modeling and data analysis 

According to the cDAGs in Fig. 1, three types of logistic regression 
model have been performed. In model 1, vaccine status was entered as 
an independent variable. In model 2, vaccine status and age were 
entered. In model 3, vaccine status, age, and comorbidities were 
included. 

Model 1: logit(π) = β 0 + β1 × Vaccine status. 
Model 2: logit(π) = β 0 + β1 × Vaccine status + β2 Age. 
Model 3: logit(π) = β 0 + β1 × Vaccine status + β2 Age + β3 × Cancers 

comorbidity + β4 × Liver diseases comorbidity + β5 × Heart diseases 
comorbidity + β6 × Diabetes mellitus comorbidity + β7 × Kidney dis
eases comorbidity. 

where π is the probability of death during hospitalization. 

3. Results 

21,310 confirmed case of Covid-19 using RT-PCR with a mean age of 
49.0 ± 21.3 years were admitted from May 1 to November 1, 2020, of 
which, 4691 were fully vaccinated. Investigating their mean age showed 
that it was higher in those who died than in those who survived. Table 1 
presents distribution of age and comorbidities in Covid-19 hospitalized 
by vaccine status. 

Based on model 1, there was no evidence of the effect of vaccination 
on preventing death due to Covid-19: the results were compatible with 
both protective and risk effects (OR: 1.0, 95% CI: 0.85–1.2) [18,19]. In 
the second model, where age was included as a covariate, a protective 
role for vaccination became evident (aOR: 0.65, 95% CI: 0.54–0.77). At 
last, after including chronic diseases as other covariates, the protective 
effect was slightly strengthened (aOR: 0.54, 95% CI: 0.45–0.66). Table 2 
provides more details of these three models. The results suggest that 
collider bias due to hospitalization masked the protective effect of 
vaccine status on death in Covid-19 patients. 

4. Discussion 

There was no evidence of relationship between vaccination and 

death due to Covid-19 in the hospitalized patients (Model 1). However, 
this crude analysis is subject to selection bias due to restriction to hos
pitalized patients. In fact, age positively and vaccine status negatively 
affect hospitalization i.e., old and/or unvaccinated subjects are likely 
hospitalized (Fig. 1, cDAG 2), and so a positive association between age 
and vaccine status among hospitalized patients is expected (Table 1) 
[11]. 

The latter together with the positive effect of age on death produce a 
spurious positive association between vaccine status and death which 
seems to cancel the protective (negative) effect of vaccine status on 
death which was confirmed in an age-adjusted analysis (Model 2). This 
is an example of collider-stratification bias due to conditioning on the 
collider hospitalization which can be corrected using adjustment for the 
measured variable age which lies on the collider biasing path. 

A slightly strengthened protective effect estimate was obtained in 
Model 3 which further adjusted for comorbidities. Like age, comorbid
ities positively affects hospitalization and so using the arguments similar 
to those mentioned above, the bias due to no adjustment for comor
bidities should be towards the null value. However, this bias was not 
substantial conditional on age for two reasons. First, the effects of all 
comorbidities on hospitalization may not be as strong as the effect of 
age. Second, age and comorbidities are positively associated and age can 
be considered as a proxy for comorbidities, and so adjustment for 
comorbidities when age has been already adjusted for is not expected to 
substantially change the effect estimate. 

This study underscores the importance of collider-stratification bias 
when hospitalized patients are analyzed. Fortunately, like confounding, 
this type of selection bias can be adjusted for by inclusion of the risk 
factors of the outcome which also affect hospitalization in the regression 
model. It is important to note that unmeasured confounding may be still 
present (the variable U in Fig. 1). 
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