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ABSTRACT

Sequence-derived structural and physicochemical
features have frequently been used in the develop-
ment of statistical learningmodels for predicting pro-
teins and peptides of different structural, functional
and interaction profiles. PROFEAT (Protein Features)
is a web server for computing commonly-used struc-
tural and physicochemical features of proteins and
peptides from amino acid sequence. It computes six
feature groups composed of ten features that include
51 descriptors and 1447 descriptor values. The com-
puted features include amino acid composition,
dipeptide composition, normalized Moreau–Broto
autocorrelation, Moran autocorrelation, Geary auto-
correlation, sequence-order-coupling number, quasi-
sequence-order descriptors and the composition,
transition and distribution of various structural and
physicochemical properties. In addition, it can also
compute previous autocorrelations descriptors
based on user-defined properties. Our computational
algorithmswere extensively tested and the computed
protein features have been used in a number of pub-
lished works for predicting proteins of functional
classes, protein–protein interactions and MHC-
binding peptides. PROFEAT is accessible at http://
jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi

INTRODUCTION

Sequence-derived structural and physicochemical features
have frequently been used for predicting protein structural
and functional classes (1–5), protein–protein interactions
(6–8), subcellular locations (9,10) and peptides of specific

properties (11) (J. Cui, L. Y. Han, H. H. Lin, H. L. Zhang,
Z. Q. Tang, C. J. Zheng, Z. W. Cao and Y. Z. Chen, manu-
script submitted) from their sequence. These features are
highly useful for representing and distinguishing proteins or
peptides of different structural, functional and interaction
profiles, which is essential for the successful application
of statistical learning methods in predicting the structural,
functional and interaction profiles of proteins and peptides
irrespective of sequence similarity (12). While several pro-
grams for computing protein structural and physicochemical
features have been developed (1,2,6,9–11,13), these are not
freely and easily accessible. We introduce PROFEAT,
Protein Features, as a freely accessible web-based server
for computing the commonly-used structural and physico-
chemical features of proteins and peptides from amino acid
sequence.

WEB SERVER ACCESS

PROFEAT is available at http://jing.cz3.nus.edu.sg/cgi-bin/
prof/prof.cgi. The sequence of a protein or a peptide, in
single-letter code and RAW format, as well as FASTA for-
mat, can be input in a window provided. The RAW format
is similar to the plain text format except that it removes
any white-space and TAB characters, accepts only alphabetic
characters and rejects anything else. Multiple sequence ent-
ries, in FASTA format, can also be input to facilitate the con-
venient export of the generated protein features to machine
learning methods servers. Illustrative examples for submitting
single sequence entry and multiple sequence files to POFEAT
and for sending the generated feature vector files to a
machine learning server GIST (14) are provided in the on-line
manual at the PROFEAT homepage.

An input sequence with less than eight amino acids is not
accepted, because functional peptides typically contain more
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than eight amino acids and protein chains are much longer. If
an input sequence contains an invalid character, or a non-
amino acid letter, or abnormal composition, such as long
stretch of the same amino acid covering an entire protein
sequence, then a message of ‘invalid character . . .’ or ‘your
input sequence is invalid’ is displayed. The computed fea-
tures are divided into six groups each of which has been sep-
arately used for protein or peptide studies. Upon submitting a
sequence, users are directed to a window shown in Figure 1
for selecting the feature groups to be displayed and the output
file format. Three types of file format are provided to support
printer-friendly view and the export of the computed features
to computational software or servers, such as GIST (14). An
index Fi.j.k.l is used to represent the lth descriptor value of
the kth descriptor of the jth feature in the ith feature group,
which serves as an easy reference to the PROFEAT manual
provided in the server homepage.

MATERIALS AND METHODS

As shown in Table 1, 10 sets of commonly-used structural and
physicochemical features, including 51 descriptors and 1447
descriptor values, are computed by PROFEAT. These features
can be divided into six groups each of which has been used as
an independent set of features for predicting proteins and pep-
tides of various profiles by using statistical learning methods.
The first group includes two features, amino acid composition
and dipeptide composition, with 2 descriptors and 420
descriptor values (15–20). Each of the second, third and fourth

group contains a different autocorrelation feature: normalized
Moreau–Broto autocorrelation (21,22), Moran autocorrelation
(23) and Geary autocorrelation (24). Each of these features has
8 descriptors and 240 descriptor values. The fifth group con-
sists of three feature sets: composition, transition and distribu-
tion with a total of 21 descriptors and 147 descriptor values
(2–6,8,25,26) (J. Cui, L. Y. Han, H. H. Lin, H. L. Zhang, Z.
Q. Tang, C. J. Zheng, Z. W. Cao and Y. Z. Chen, manuscript
submitted). The sixth group contains two sequence-order
feature sets (9–11,27), one is sequence-order-coupling number
with 2 descriptors and 60 descriptor values, and the other is
quasi-sequence-order with 2 descriptors and 100 descriptor
values. Apart from these descriptors, it can also compute pre-
vious autocorrelation descriptors based on user-defined prop-
erties. The references of the studies that used which of these
features are provided in the subsequent discussions.

Amino acid and dipeptide composition are simplistic
descriptors of protein sequence features (15), which have
been used for predicting protein fold and structural classes
(19,20), functional classes (16) and subcellular locations
(17,18) at accuracy levels of 72–95%, 83–97% and
79–91%, respectively. Amino acid composition is the fraction
of each amino acid type in a sequence: f ðrÞ ¼ Nr=N, where r
¼ 1, 2, 3, . . . , 20, Nr is the number of amino acid of type r,
and N is the length of the sequence. A total of 20 descriptor
values are computed for the 20 types of amino acids. Dipept-
ide composition is defined as: f rðr‚sÞ ¼ Nrs=ðN � 1Þ, where
r,s ¼ 1, 2, 3, . . . , 20, and Nrs is the number of dipeptides of
amino acid type r and s (16). A total of 400 descriptor values
are computed for the 20 · 20 amino acid combinations.

Figure 1. PROFEAT feature-display options window
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Autocorrelation features describe the level of correlation
between two objects (protein or peptide sequences) in terms
of their specific structural or physicochemical property (28),
which are defined based on the distribution of amino acid
properties along the sequence (29). There are eight amino
acid properties used for deriving these autocorrelation
descriptors. The first is hydrophobicity scale derived from
the bulk hydrophobic character for the 20 types of amino
acids in 60 protein structures (30). The second is the average
flexibility index derived from the statistical average of the
B-factors of each type of amino acids in the available protein
X-ray crystallographic structures (31). The third is the polar-
izability parameter computed from the group molar refractiv-
ity values originally provided by Hansch et al. (32). The
fourth is the free energy of amino acid solution in water
measured by Hutchins (32). The fifth is the residue accessible
surface areas taken from average values from folded proteins
(33). The sixth is the amino acid residue volumes measured
by Fisher (34). The seventh is the steric parameters derived
from the van der Waals raddi of amino acid side-chain
atoms (35). The eighth is the relative mutability obtained
by multiplying the number of observed mutations by the fre-
quency of occurrence of the individual amino acids (36).
Each of these properties is centralized and standardized
such that P

0

r ¼ ðPr � �PPÞ=s, where �PP is the average of the
property of the 20 amino acids, �PP and s are given by:

�PP ¼
P20

r¼1 Pr

20
1

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðPr��PPÞ2
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Three different autocorrelation features are computed, each
having 8 descriptors and 240 descriptor values. The first
is Moreau–Broto autocorrelation ACðdÞ ¼

PN�d
i¼1 PiPiþd

(28,37), which has been used for predicting transmembrane
protein types (21) and protein secondary structural contents
(22) at accuracy levels of 82–94% and 91–94%, respectively.
Here d is the lag of the autocorrelation, Pi and Pi+d are the
amino acid property at position i and i+d, respectively. The
normalized Moreau–Broto autocorrelation is defined as:
ATSðdÞ ¼ ACðdÞ=ðN � dÞ where d ¼ 1, 2, 3, . . . , 30. The
second is Moran autocorrelation (38), which has been applied
for predicting protein helix contents at an accuracy level of
85% (23), and it is defined as:

IðdÞ ¼
1

N � d

PN�d
i¼1 ðPi � �PPÞðPiþd � �PPÞ
1
N

PN
i¼1 ðPi��PPÞ2

d ¼ 1‚2‚3‚ . . . ‚30

3

where d and Pi and Pi+d are defined above, �PP is the average of
Pi, i.e. �PP ¼ ð

PN
i¼1 PiÞ=N. This algorithm differs from that of

Moreau–Broto autocorrelation in the use of property devi-
ations from the average values instead of the property values
themselves as the basis for measuring correlations. The third
feature is Geary autocorrelation (39), which has been used for
analyzing allele frequencies and population structures (24),
and it is defined as:

CðdÞ ¼
1

2ðN � dÞ
PN�d

i¼1 ðPi�PiþdÞ2

1
N � 1

PN
i¼1 ðPi��PPÞ2

d ¼ 1‚2‚3‚ . . . ‚30 4

where d, �PP, Pi and Pi+d are defined above. This algorithm dif-
fers from the other two algorithms in the use of square-
difference of property values instead of vector-product of
property values or deviations as the basis for measuring cor-
relations.

Composition, transition and distribution features represent
the amino acid distribution patterns of a specific structural or
physicochemical property along a protein or peptide sequence
(5,25), which have been used for recognition of protein folds
(5) and prediction of protein–protein interactions (6,8), pro-
tein functional families (2–4,26) and MHC-binding peptides
(J. Cui, L. Y. Han, H. H. Lin, H. L. Zhang, Z. Q. Tang, C.
J. Zheng, Z. W. Cao and Y. Z. Chen, manuscript submitted)
at accuracy levels of 74–100%, 77–81%, 67–99%, 97–99%,
respectively. Seven types of physicochemical properties
have been used for computing these features. These are
hydrophobicity, normalized Van der Waals volume, polarity,
polarizibility, charge, secondary structures and solvent
accessibility (2,5,25).

These descriptors are computed by the following proced-
ure: the sequence of the amino acids is transformed into a
sequence of certain structural or physicochemical properties
(attributes) of residues. Twenty amino acids are divided
into three groups for each of the seven different attributes
based on the main clusters of the amino acid indices of
Tomii and Kanehisa (5,40). The reason for dividing amino
acids into three groups instead of two or four groups is
that, while amino acids can be divided into a minimum of
both two and three groups for most attributes, they can
only be divided into a minimum of three groups for such
attributes as charge (positive, negative and neutral) and sec-
ondary structure (helix, strand and coil). Therefore, dividing
amino acids into three groups appears to be a more rational
choice as have been used by a number of studies (2–6,8).

Table 1. List of structural and physicochemical features of proteins and pep-

tides commonly-used for predicting proteins and peptides of specific properties

by using statistical learning methods

Feature
group

Feature Feature
index

No. of
descriptors

No. of
descriptor
values

Amino acid,
dipeptide
composition

Amino acid composition F1.1 1 20

Dipeptide composition F1.2 1 400
Autocorrelation 1 Normalized

Moreau–Broto
autocorrelation

F2.1 8 240

Autocorrelation 2 Moran autocorrelation F3.1 8 240
Autocorrelation 3 Geary autocorrelation F4.1 8 240
Composition,

transition,
distribution

Composition F5.1 7 21

Transition F5.2 7 21
Distribution F5.3 7 105

Sequence-order Sequence-order-
coupling number

F6.1 2 60

Quasi-sequence-order
descriptors

F6.2 2 100
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The ranges of these numerical values and the amino acids
belonging to each group are shown in Table 1. Three descrip-
tors, composition (C), transition (T) and distribution (D), are
then computed for a given attribute to describe the global per-
cent composition of each of the three groups of amino acids
in a protein, the percent frequencies with which the attribute
changes its index along the entire length of the protein, and
the distribution pattern of the attribute along the sequence,
respectively.

Computation of these features can be illustrated by using
hydrophobicity attribute as an example. All amino acids are
divided into three groups: polar, neutral and hydrophobic.
The composition descriptor C consists of three values: the
global percent compositions of polar, neutral and hydro-
phobic residues in the protein. The transition descriptor T
also consists of three values: the percent frequency with
which a polar residue is followed by a neutral residue or a
neutral residue by a polar residue, a polar residue is followed
by a hydrophobic residue or a hydrophobic residue by a polar
residue, and a neutral residue is followed by a hydrophobic
residue or a hydrophobic residue by a neutral residue. The
distribution descriptor D consists of five values for each of
the three groups: the fractions of the entire sequence, where
the first residue of a given group is located, and where 25,
50, 75 and 100% of those are contained. There are 3 descrip-
tors and 3(C) + 3(T) + 5 · 3(D) ¼ 21 descriptor values for the
hydrophobicity attribute. Consequently, the seven different
amino acid attributes produce a total of 7 · 3 ¼ 21 descriptors
and 7 · 21 ¼ 147 descriptor values (Table 2).

The sequence-order features can also be used for represent-
ing amino acid distribution patterns of a specific physico-
chemical property along a protein or peptide sequence
(11,27), which have been used for predicting protein subcel-
lular locations at accuracy levels of 72.5–88.9% (9,10). These
descriptors are derived from both the Schneider–Wrede
physicochemical distance matrix (9–11) and the Grantham
chemical distance matrix (27) between each pair of the 20
amino acids. The dth rank sequence-order-coupling number
is defined as:

td ¼
XN�d

i¼1

ðdi‚ iþdÞ2 d ¼ 1‚2‚ . . . ‚30 5

where di,i+d is the distance between the two amino acids at
position i and i+d.

For each amino acid type, the type-1 quasi-sequence-order
descriptor can be defined as:

Xr ¼ f rP20
r¼1 f r þ w

P30
d¼1 td

r ¼ 1‚2‚3‚ . . . ‚20 6

where fr is the normalized occurrence of amino acid type i
and w is a weighting factor(w ¼ 0.1). The type-2 quasi-
sequence-order is defined as:

Xd ¼ wtd�20P20
r¼1 f r þ w

P30
d¼1 td

d ¼ 21‚22‚23‚ . . . 50 7

The PROFEAT implementation of each of these algorithms
was extensively tested by using a number of test sequences,
such as homopolymers and copolymers of different types of
amino acids. The computed descriptor values were compared
to the known values for these sequences to ensure that they
match with each other.

DISCUSSION

The usefulness of the features covered by PROFEAT for
computing the structural and physicochemical features of
proteins and peptides has been tested by a number of pub-
lished studies of the development of support vector machine
(SVM) classification systems for predicting protein functional
classes (4,26), protein–protein interactions (8) and
MHC-binding peptides (J. Cui, L. Y. Han, H. H. Lin,
H. L. Zhang, Z. Q. Tang, C. J. Zheng, Z. W. Cao and
Y. Z. Chen, manuscript submitted). These SVM classification
systems have been found to give prediction performance with
sensitivity and specificity in the range of 53.0–99.3% and
82.1–99.9%, respectively. Because of the use of these struc-
tural and physicochemical features, these SVM classification
systems do not rely on sequence similarity, clustering or
profiles for predicting protein functional classes, and they
have been found to be particularly useful for facilitating the
prediction of novel proteins (13,41,42).

Moreover, the predicted descriptors important for specific
classes of proteins have been found to correlate with the

Table 2. Amino acid attributes and the division of the amino acids into three groups for each attribute

Attribute Divisions

Hydrophobicity Polar Neutral Hydrophobicity
R,K,E,D,Q,N G, A, S,T,P,H,Y C,L,V,I,M,F,W

Normalized van der Waals volume Volume range 0–2.78 Volume range 2.95–94.0 Volume range 4.03–8.08
G,A,S,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W

Polarity Polarity value 4.9–6.2 Polarity value 8.0–9.2 Polarity value 10.4–13.0
L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Polarizability Polarizability value 0–1.08 Polarizability value 0.128–120.186 Polarizability value 0.219–0.409
G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Charge Positive Neutral Negative
KR ANCQGHILMFPSTWYV DE

Secondary structure Helix Strand Coil
EALMQKRH VIYCWFT GNPSD

Solvent accessibility Buried Exposed Intermediate
ALFCGIVW PKQEND MPSTHY

The division is based on the clusters of the amino acid indices of Tomii and Kanehisa (5,40) for each of the seven attributes. For such attributes as secondary structure
and solvent accessibility, the division is based on statistical appearance of each amino acid in a specific state.
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experimentally estimated interactions and forces that define
the distinguished activities of these proteins (4,26,43). For
instance, an analysis the SVM prediction of transporters
have shown that, in order of prominence, hydrophobicity,
amino acid composition, polarity and charge play prominent
roles for identifying transporters (26). Amino acid composi-
tion and hydrophobicity are important factors for the inter-
action of a protein with other biomolecules. Studies of
structure-activity relationships of transporter-substrate bind-
ing has shown that hydrophobic contact, hydrogen bonding
(which arises primarily from polar interaction) and charged
center play important roles in substrate binding (44,45).
Molecular modeling have also shown that hydrophobic con-
tact and hydrogen bonding plays important role in
transporter-substrate binding (46). A new SVM prediction
system was developed for predicting members and non-
members of three separate transporter families TC1.C,
TC3.E and TC9.A by using this reduced set of descriptors
and the same protein datasets as those of the earlier study
of SVM prediction of transporters that used a full set of
group 5 descriptors (46), which gives a similar prediction per-
formance, suggesting that the selected descriptors are highly
useful for distinguishing members and non-members of these
transporter families.

So far, individual group of features has been separately
used for computing structural, functional and interaction pro-
files of proteins and peptides. For instance, a protein func-
tional class prediction server SVMProt has been developed
by using descriptors of the fifth feature group (2). It is of
interest to examine how the use of additional features affects
the performance of this and other prediction systems. For
such a purpose, two new SVM systems were developed for
predicting members and non-members of the enzyme
EC1.15 family and transporter TC2.C family, respectively
by using descriptors of all six feature groups and the same
datasets as those used for developing the corresponding
SVMProt prediction systems (3,26). Comparison of the res-
ults of these new SVM systems with those of the correspond-
ing SVMProt systems shows that the sensitivity (percentage
of correctly predicted family members) is increased from
92.5 to 94.4% for the EC1.15 and from 76.5 to 83.2% for
the TC2.C family, respectively, while the specificity (percent-
age of correctly predicted non-family members) remains
unchanged at 99.8% for both families. This seems to suggest
that at least for some protein families the use of additional
features can moderately improve the performance of SVM-
Prot. The contribution of each of these features can be estim-
ated by separately conducting SVM classification using each
feature (47,48). By using the same method, the order of con-
tribution from each of the feature groups was found to be:
5th-group (composition, transition and distribution) >
1st-group (amino acid and dipeptide composition) > 6th
group (sequence-order) > autocorrelation 1 > autocorrelation
3 > autocorrelation 2. Investigation of other prediction sys-
tems and on more extensive range of protein structural, func-
tional and interaction profiles is warranted.

The commonly-used structural and physicochemical fea-
tures appear to be useful in the development of statistical
learning systems for predicting protein structural classes
(19,20), functional families (2–5,16,26), protein–protein inter-
actions (6,8), subcellular locations (9,10,17,18) and peptides

of specific properties (J. Cui, L. Y. Han, H. H. Lin, H. L.
Zhang, Z. Q. Tang, C. J. Zheng, Z. W. Cao and Y. Z.
Chen, manuscript submitted). Various proteins are known
to form covalent bonding with their substrates and inhibitors.
These types of properties are unlikely to be sufficiently cov-
ered by the existing set of features. Some of the molecular
descriptors widely used in describing the structural and physi-
cochemical properties of chemical compounds (49–52) may
be extended for representing these features. PROFEAT can
be further improved by allowing the input of new structural
and physicochemical properties, expanding the program for
computing additional descriptors, and providing user-friendly
facilities to feed computed features into the general and spe-
cialized SVM-based servers such as GIST and SVMProt.
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