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Abstract

Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote
initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC
components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is
targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast
homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable
protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p
is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p
degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCFCDC4. We show
evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity
results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double
mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an
unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose
that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.
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Introduction

To constitute the pre-RC and initiate DNA replication, all six-

components of the Origin Recognition Complex (Orc1-6p) bind to

replication origins followed by Cdc6p, Cdt1p and the Mcm2-7p

complex [1]. Then the pre-RC has to be activated by the Dbf

kinase-Cdc7p complex, resulting in the formation of a bidirec-

tional replication fork in which the Mcm complex acts as a

replicative helicase [1]. Finally, DNA polymerase synthesizes new

strands of DNA. The cell cycle progression is driven by the

Cyclin/CDK complex. Of the nine cyclins in S. cerevisiae six are B-

type cyclins (Clb1-6) [2] and there is a single CDK (Cdc28).

Cdc28-Clb activity is required to initiate DNA replication [3–5].

Eukaryotes ensure that DNA is replicated once and only once

per cell cycle. There are multiple overlapping mechanisms to

prevent re-initiation of DNA replication. Pre-RC components

such as Cdc6, Mcm2–7, and the ORC complex are phosphor-

ylated by Cyclin/CDK to prevent a second round of DNA

replication from occurring before mitosis. Cdc6 is phosphorylated

by Cyclin/CDK complex at the N-terminal region and is targeted

for ubiquitin-mediated proteolysis in S. cerevisiae [6–8]. The MCM

complex is translocated to the cytoplasm after phosphorylation by

Cdk activity [9,10]. Orc2 and Orc6 are also phosphorylated in a

CDK-dependent manner [11,12]. In addition to these mecha-

nisms, a direct recruitment of the cyclin-CDK complex Clb5p-

Cdc28p to the origin of replication is an important component of

re-replication control [13]. The Clb5p recruitment to the origin is

accomplished by binding of the Clb5p hydrophobic patch

substrate-targeting domain [14–16] to an Arg-X-Leu (RXL) target

sequence in the Orc6p subunit of the ORC origin recognition

complex [13]. This Clb5 binding to Orc6 after origin licensing

serves as a local switch to inhibit DNA re-replication by preventing

Cdt1/Mcm2–7 loading onto the origin [17]. The ORC6-rxl

mutation strongly synergized with other mutations previously

implicated in re-replication control including: N-terminal deletions

in Cdc6 which stabilize the protein (CDC6DNT) [13], mutations

which force nuclear localization of the Mcm complex (MCM7-

NLS) [11], and mutations blocking Orc2 (ORC2-ps) and Orc6

phosphorylation (ORC6-ps) [18]. Such multiple mutant strains

strongly over-replicate DNA within a single cell cycle [13].

ORC6-rxl GAL-CDC6DNT cells are viable, but show moderate

DNA re-replication when incubated in galactose [19]. The cell

cycle in the ORC6-rxl GAL-CDC6DNT cells arrest at G2/M phase

due to DNA damage checkpoint activation [19]. Moderate cell

viability in the ORC6-rxl GAL-CDC6DNT cells was heavily

dependent on DNA damage checkpoint components such as

MRE11 gene. Cell viability was reduced and DNA re-replication

was enhanced in mre11 ORC6-rxl GAL-CDC6DNT cells [19]. It is

known that Rad53 is phosphorylated upon DNA damage

checkpoint activation. Rad53 was hyperphosphorylated in

ORC6-rxl GAL-CDC6DNT cells [19], suggesting that DNA damage

was induced. We concluded that DNA re-replication most likely
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causes double strand breaks which in turn activates the DNA

damage checkpoint response [19].

To identify a new component that inhibits DNA re-replication

in S. cerevisiae, synthetic genetic array (SGA analysis) [20] was

performed using an ORC6-rxl strain to eliminate Clb5-Orc6

binding. We found that mck1 deletion cells combined with the

ORC6-rxl mutation showed synthetic lethality. The MCK1 gene in

S. cerevisiae encodes a serine/threonine protein kinase homologous

to mammalian glycogen synthase kinase-3 (GSK-3) [21]. Mam-

malian GSK-3 was initially identified as an enzyme involved in the

control of glycogen metabolism [22]. GSK-3 kinase is highly

conserved through evolution and plays an important role in the

Wnt signaling pathway in the mammalian system (for a review, see

[23]). One of the interesting features of GSK-3 kinase is its role in

protein degradation. GSK-3 phosphorylates cyclin D1 to promote

its nuclear export and subsequent degradation in the mammalian

system [24]. Yeast Mck1p has diverse biological functions. Mck1p

stimulates calcineurin signaling [25–27] and binds stress-response

elements to activate transcription [27] therefore cells lacking

Mck1p are hot and cold sensitive [28]. Mck1 is also implicated in

mitosis and meiosis. Yeast MCK1 has been isolated as a dosage

suppressor of centromere (CEN) DNA mutation in CDEIII,

suggesting that Mck1 has a role in centromere/kinetochore

function [28]. The mck1 mutant exhibits poor sporulation [29],

and sensitivity to benomyl, a microtubule destabilizing drug [28].

Cdc6 levels are regulated by three distinct mechanisms:

transcription [30], ubiquitin-mediated proteolysis [7,8,31,32] and

nuclear localization [33]. Here we show that Mck1p has a novel

function in inhibition of DNA re-replication by Cdc6p degrada-

tion through the GSK-3 consensus site at T368.

Results

Deletion of MCK1 causes synthetic lethality in the orc
mutants

Synthetic genetic array (SGA analysis) [20] was performed using

ORC6-rxl, to eliminate Clb5-Orc6 binding, in order to identify a

new component in the regulation of DNA re-replication in S.

cerevisiae. We found that mck1 deletion cells showed synthetic

lethality in cells containing the ORC6-rxl mutation. It is interesting

that mck1 was the only deletion strain that caused synthetic

lethality in the ORC6-rxl cells among 4700 deletion strains tested,

and that we did not obtain other GSK-3 orthologs in this

screening. Tetrad analysis confirmed the genetic interaction

between ORC6-rxl and mck1 deletion strains (Figure 1A). Haploid

progenies, which contain both ORC6-rxl and Dmck1 mutations,

were not able to grow on YEPD plates whereas single mutants

grew fine. We also tested if the mck1 deletion genetically interacts

with the other orc mutants such as the Orc6 phosphorylation site

mutant (ORC6-ps) and the Orc2 phosphorylation site mutant

(ORC2-ps). Deletion of MCK1 reduced cell growth in the ORC6-ps

cells (Figure 1A). Furthermore, the mck1 deletion caused severe

growth defects in the ORC2-ps cells (Figure 1A). Thus, mck1

deletion caused synthetic lethality or semi-lethality with DNA re-

replication-prone orc mutants in general. This strongly suggests

that Mck1p has a function in DNA replication control. The mck1

deletion strain did not have genetic interactions with other pre-RC

mutants such as MCM7-NLS or CDC6DNT (data not shown).

Combination of mck1 deletion and ORC6-rxl mutation
induced DNA damage checkpoint activation

To investigate the molecular basis of the synthetic lethality

between Dmck1 and ORC6-rxl, we generated partial loss of function

mutants of mck1 by PCR mutagenesis. Among them, mck1-16 allele

exhibited semi-synthetic lethality at high temperature (36 degrees)

when combined with ORC6-rxl mutation (Figure 1B). Consistent

with this effect being due to the disruption of Clb5-Orc6 protein

interaction by the ORC6-rxl mutation, the clb5 mck1-16 cells were

also semi-lethal when incubated at 36 degrees (Figure 1B). To

analyze the terminal phenotype of the mck1-16 ORC6-rxl strain,

cells were incubated either at permissive or non-permissive

temperatures and cell cycle profiles were analyzed by flow

cytometry analysis. The mck1-16 ORC6-rxl cells showed G2/M

arrest after 4 hours incubation at 36 degrees (Figure 1C, top

right), with some cells showing a DNA content over 2C (Figure 1C,

arrow), suggesting re-replicated DNA. Cell morphologies of the

mck1-16 ORC6-rxl mutants were further analyzed. The mck1-16

ORC6-rxl cells incubated at 36 degrees for 4 hours showed large

budded cells with a single nuclei visualized by propidium iodide

staining of DNA (Figure 1D). This phenotype is reminiscent of

cells with DNA re-replication found in our previous report [19].

Nuclear division did not occur in the mck1-16 ORC6-rxl cells. Their

cell cycle is arrested during G2 or early mitosis, most likely due to

DNA damage checkpoint activated by DNA re-replication. This is

similar to our previous observation that mitotic arrest in the

ORC6-rxl CDC6DNT cells was due to DNA damage [19].

Previously we have shown that the ORC6-rxl mutant causes

semi-synthetic lethality with a CDC6DNT mutant. The ORC6-rxl

CDC6DNT cells are arrested during mitosis with moderate DNA

re-replication followed by DNA damage. Viability of the ORC6-rxl

CDC6DNT cells was heavily dependent on an intact DNA damage

checkpoint gene such as MRE11, a component of the MRX

complex [19]. Rad53, a transducer kinase required for DNA

damage checkpoint activation, was hyperphosphorylated in the

ORC6-rxl CDC6DNT cells. To directly test if DNA damage

checkpoint is activated in the mck-16 ORC6-rxl cells, Rad53

phosphorylation status was analyzed by Western blotting. Rad53

was only hyperphosphorylated in the mck-16 ORC6-rxl cells when

incubated at 37 degrees (Figure 2A). We tested if the viability of

the mck1-16 ORC6-rxl mutant also relies on DNA damage

checkpoint. We found that cell viability of the mck-16 ORC6-rxl

cells even at the permissive temperature (30 degrees) required

MRE11 (Figure 2B). Next, the cell cycle profile of the mre11 mck-16

ORC6-rxl cells was examined. DNA re-replication was greatly

enhanced in the mre11 mck-16 ORC6-rxl cells at the non-permissive

temperature, indicating that DNA damage checkpoint activation

limits DNA re-replication in the mck-16 ORC6-rxl cells (Figure 2C).

Above all, we conclude that an induction of DNA re-replication in

the mck-16 ORC6-rxl cells triggered DNA damage leading to cell

cycle arrest by DNA damage checkpoint activation.

Author Summary

DNA replication is a fundamental cellular process that
takes place in all living organisms. This cellular event has to
be tightly regulated to ensure an accurate genome
integrity such that DNA replication takes place only once
per cell cycle. Here we show a mechanism by which DNA
re-replication is controlled by Cyclin Dependent Kinase
(CDK) and a yeast GSK-3 kinase (Mck1p) in S. cerevisiae. We
found that Mck1p promoted Cdc6 protein degradation.
Mck1p targets Cdc6p through a GSK-3 consensus site
(T368), and Cdc6p protein degradation was also mediated
through the same T368 site. The GSK-3 kinase has diverse
cellular functions in higher eukaryotes including roles in
tumorigenesis. This finding is particularly important, since
this is the first evidence to show that a GSK-3 family kinase
regulates DNA replication.

Cdc6p Degradation by a Yeast GSK-3 Kinase
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Mck1 prevents DNA re-replication in parallel to ORC and
MCM complexes

Several parallel and partially overlapped molecular mechanisms

ensure that cells do not re-initiate DNA replication at origins that

have already fired. We have previously shown that ORC6-rxl

CDC6DNT cells are mitotic arrested without extensive DNA re-

replication [19]. However, multiple mutant strains such as ORC6-

rxl,ps CDC6DNT MCM7-NLS ORC2-ps strongly over-replicate

DNA within a single cell cycle [13]. We tested if mck1 deletion

also synergizes with other pre-RC mutations. An addition of either

MCM7-NLS or ORC2-ps mutation to the ORC6-rxl mck1-16 did not

enhance lethality (Figure 3A). However, cells containing ORC6-

rxl,ps mck1-16 MCM7-NLS and ORC2-ps mutations showed

stronger lethality (Figure 3A). Flow cytometry analysis showed

that DNA re-replication was enhanced in the ORC6-rxl,ps mck1-16

MCM7-NLS ORC2-ps mutant after 4 hours incubation at the non-

permissive temperature (Figure 3B, bottom right). ORC6-rxl,ps

MCM7-NLS ORC2-ps cells with wild type MCK1 grew normally

and did not induce significant re-replication (Figure 3A and 3B

bottom left). These results show that Mck1p contributes to the

Figure 1. Synthetic lethality and mitotic arrest was induced in the ORC6-rxl mck1-16 cells. (A) ORC-x::LEU2::HIS3/ORC6 mck1/MCK1-wt
diploid strains were sporulated, tetrads were dissected on YEPD plates, and the plates were incubated for 3 days at 30uC. ORC6 alleles and mck1
deletion were identified based on the markers. Inviable spores were genotyped by assuming a 2:2 segregation. The ORC6-rxl, ORC6-ps or ORC2-ps
alleles were indicated above each panel. The presence of ORC6 mutant allele was marked as (m) and ORC6 wild type as (+) on the left. The presence of
mck1 mutant allele (m) or MCK1-wt (+) was indicated on the right. (B) Strains with indicated genotypes were serially diluted 10 fold and plated on
YEPD plates to test viability at different temperatures. The plates were incubated at the indicated temperature for 1–2 days. (C) Asynchronus
populations of strains with indicated genotypes were grown at 26uC first. The temperature was shifted to 36uC and the samples were collected after
4 hours. The cells were fixed, stained with propidium iodide and analyzed by FACS. (D) Wild type, mck1-16 or ORC6-rxl mck1-16 cells were incubated
at 36uC for 4 hours, and observed under the fluorescent microscope. Red color indicates nuclei stained by propidium iodide.
doi:10.1371/journal.pgen.1003099.g001
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inhibition of DNA re-replication and suggest that the mechanism

involved is likely to be distinct from the known mechanisms acting

at the level of ORC and MCM proteins.

The mck1 deletion strain genetically interacted with S-
phase cyclins, but not mitotic cyclins

The semi-lethal phenotype of ORC6-rxl Dmck1 cells (Figure 1D)

was reminiscent of ORC6-rxl CDC6DNT cells [13]. Moreover, the

deletion of MCK1 interacted genetically with ORC6-rxl (Figure 1A)

but not CDC6DNT (data not shown). These observations led us to

hypothesize that Mck1p could function in DNA replication control

by regulating Cdc6. To further test this model, we examined if

mck1 deletion behaved similarly to CDC6DNT in its interactions

with mutations in the cyclin genes.

CDC6DNT genetically interacts with the clb5 deletion mutant,

but not with other B-type cyclins [34]. We also tested if mck1

deletion cells genetically interact with other cyclin mutants in a

similar way that CDC6DNT does. Table 1 summarizes the genetic

interaction between mck1 and cyclin mutants. The mck1 deletion

cells were semi-lethal in the ORC6-rxl mutant cells and also showed

synthetic lethality with clb5 deletion cells because ORC6-rxl is a

binding mutant for Clb5p. However, the mck1 deletion cells did

not cause synthetic lethality with other B-type cyclin mutants such

as clb1,2,3,4 or 6 (Table 1). Therefore, mck1 deletion genetically

interacts specifically with clb5 deletion. It has been shown that

Clb5p binds to Orc6p through the Clb5p hydrophobic patch

substrate-targeting domain [14]. We tested if clb5-hpm (Clb5

hydrophobic patch mutant) causes synthetic lethality with Dmck1

cells and found that there was a genetic interaction between clb5-

hpm and Dmck1 (Table 1). Moreover neither mck1 nor CDC6DNT

caused lethality in clb5pCLB2, a mutant in which Clb2 is controlled

under Clb5 promoter. Thus, we conclude that the Dmck1 cells

require Clb5p-Orc6p protein binding for their survival. We also

found that deletion of CLB6 rescues Dmck1 Dclb5 semi-lethality.

We have previously shown that lethality in clb5 CDC6DNT cells

can be rescued by the deletion of CLB6 [34] and proposed the idea

that the S-phase cyclin Clb6 initiates DNA replication, but fails to

inhibit DNA re-replication. Therefore, the DNA re-replication

phenotype is suppressed if CLB6 is deleted by the reduction of

initiation of DNA replication. Mitotic cyclins regulate DNA

replication in the clb5 clb6 ORC6-rxl cells. We speculate that

deletion of CLB6 rescues Dmck1 Dclb5 cells in the same manner.

From these results we conclude that the mck1 deletions

genetically interacted with cyclin mutants in a way similar to that

of stabilized CDC6DNT, reinforcing a model in which Mck1p acts

in the same pathway as Cdc6p.

Mck1p kinase is required for Cdc6p degradation in
mitosis

Because lack of Mck1p and stabilization of Cdc6p (Cdc6DNT)

exhibited similar genetic interaction with DNA re-replication

mutants, we speculated that Mck1p could control the stability of

Cdc6p. To test this possibility, the Cdc6 protein (Cdc6-HA)

expressed under inducible GAL1 promoter in mitotically arrested

cells was examined in wild type or Dmck1 backgrounds. We found

that the Cdc6 protein level was sustained at a higher level during

mitosis in the mck1 deletion cells than in wild type cells even after

Cdc6 expression was shut off by glucose (Figure 4A). It is

Figure 2. DNA damage was induced in ORC6-rxl mck1-16 cells. (A) ORC6-rxl mck1-16 cells were incubated either at 25 or 37uC and their protein
extract was subjected to western blot analysis to detect Rad53-FLAG. (B) Strains with indicated genotypes were serially diluted 10 fold and plated on
YEPD plates. The plates were incubated at the indicated temperature for 1–2 days. (C) Asynchronus populations of strains with indicated genotypes
were grown at 25uC first. The temperature was shifted to 37uC for 8 hours and samples were collected. The cells were fixed, stained with propidium
iodide and analyzed by FACS.
doi:10.1371/journal.pgen.1003099.g002
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important to mention that CDC6 was expressed under the GAL1

promoter, excluding possible involvement of CDC6 transcription

by Mck1 in this experiment. To test if Mck1 regulates Cdc6p post-

translational levels, endogenous Cdc6 synthesis was blocked by

cycloheximide. In the mitotically arrested wild type cells, Cdc6

protein was rapidly depleted by addition of cycloheximide (Figure

S1). In the mitotic mck1 deletion cells, the cdc6 protein level was

high and remained stable after cycloheximide, excluding the

possibility that Mck1p regulates Cdc6p by translation. These

results strongly suggest that Mck1p controls Cdc6 protein levels by

affecting degradation rates.

To further explore the possible involvement of Mck1p in Cdc6p

degradation, Protein A-tagged Cdc6 protein integrated at the

genome locus was examined in the wild type or mck1 deletion cells

by Western blotting throughout a single cell cycle progression. We

noticed a dramatic accumulation of Cdc6 protein in the mck1

deletion cells (Figure 4B). In wild type cells, Cdc6p was expressed

transiently during G1 phase, 10 minutes after alpha-factor release,

and suppressed throughout S-phase. Then Cdc6p was expressed

again for a short time during mitosis, 70 minutes after alpha-factor

release (Figure 4B, upper panel). This is consistent with a previous

report by Drury et al [32]. While in the mck1 deletion cells, Cdc6p

was not expressed during alpha-factor arrest but was expressed

10 min after alpha-factor release and continued to accumulate

during S-phase and mitosis (Figure 4B, lower panel). The increase

in Cdc6 protein level is unlikely to be due to an alteration in the

Figure 3. Mechanism of DNA re-replication control by Mck1 kinase is additive. (A) Cells with indicated genotypes were plated with a 10-
fold dilution on YEPD plates. The plates were incubated at indicated temperatures for 2 days. (B) Asynchronus population cells with indicated
genotypes (with wild type MCK1 or with mck1-16 mutation) were incubated at 26uC first and then shifted to 36uC for 4 hours. Cells were fixed, stained
by propidium iodide and analyzed by FACS. Percentage of the cell population over 2C DNA content is shown.
doi:10.1371/journal.pgen.1003099.g003
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cell cycle progression of Dmck1 cells because the kinetics of the cell

cycle progression was similar in these two strains as judged by

budding index (Figure 4B). To confirm that Cdc6p is stabilized

during mitosis in the mck1 deletion strain, CDC6-ProteinA or mck1

CDC6-ProteinA strains were arrested in mitosis by nocodazole and

were synchronously released into the cell cycle by washing. A small

amount of Cdc6p was detectable at time zero in nocodazole

arrested wild type cells (Figure 4D, left). This amount was

transiently increased 10–20 minutes after release. This is consis-

tent with a previous report that Cdc6 protein is expressed in late

mitosis and degraded after the G1/S transition [7]. In contrast,

Cdc6p was stabilized throughout mitotic progression in the mck1

deletion cells (Figure 4D, right).

To further confirm if Cdc6 is stabilized in the mck1 deletion

cells, we visualized Cdc6p localization in vivo. We introduced a

GFP-tag into the C-terminus of the chromosomal copy of the

CDC6 gene to allow endogenous expression. The CDC6-GFP

fusion appears to be fully functional as a CDC6-GFP strain and did

not show any growth defect in any of the conditions tested (data

not shown). Consistent with previously published localization

patterns of overexpression, Cdc6-GFP [33,35] protein localized

and accumulated in the nucleus in late mitotic cells (large budded

cells with divided nuclei) or in unbudded G1 cells (Figure 4C). The

Cdc6-GFP signal was undetectable in the cells with small to large

buds, confirming tight regulation of Cdc6 abundance by rapid

degradation after S-phase onset. In sharp contrast, Cdc6-GFP was

constitutively found in the nucleus throughout the cell cycle in

mck1 deletion cells (Figure 4C). This localization analysis was

consistent with Western blot results that Cdc6p is stabilized in mck1

deletion cells during S-phase and mitosis, as shown in Figure 4B

and 4D.

We also tested if overexpression of Mck1 promotes rapid Cdc6p

degradation. Exogenously expressed Mck1p under the GALL

promoter significantly reduced Cdc6p protein levels 10 minutes

after the addition of galactose (Figure 5A, top right). This result

supports the idea that Mck1p promotes Cdc6p degradation.

Mck1-mediated Cdc6 degradation was inhibited in cdc4-
1 mutant

We next examined if Mck1-mediated Cdc6 degradation is due

to SCFCDC4 ubiquitin ligase. When cdc4-1 CDC6-prA mck1 GALL-

MCK1 strain was incubated at 26 degrees, Cdc6p was rapidly

degraded followed by galactose addition (Figure 5B). This is

consistent with results in Figure 5A. When Cdc4 was inactivated at

36 degrees, Cdc6 became stable and was not degraded even after

Mck1 overexperssion (Figure 5B). This result suggests that Mck1p

phosphorylates Cdc6p to be subsequently recognized by SCFCDC4

complex for degradation.

Mck1p binds to Cdc6p through a GSK-3 consensus site in
the C-terminal region

GSK-3 kinases phosphorylate the first serine or threonine residues

in the consensus site followed by a phospho-serine or phospho-

threonine at the position +4 [S/T-XXX-pS/T] [36]. There are two

potential GSK-3 consensus phosphorylation sites in Cdc6p, TPESS

(39–43) and TPTTS (368–372) (Figure 6A). To test if Mck1p binds

Cdc6p at the GSK-3 consensus sites, we performed a yeast two-

hybrid assay. We examined whether Mck1p, fused with Gal4

activation domain (GAD), interacts with various truncated CDC6

mutants fused to the LexA DNA binding domain. Mck1p interacted

with the C-terminal region of Cdc6p (aa341–390) and not with the

N-terminus (aa 1–47) (Figure 6B). The mutation at T368M or

S372A abolished two-hybrid interaction between Mck1p-Cdc6p

indicating that Mck1p targets Cdc6p through the GSK consensus

site at 368–372 (Figure 6B). The physical interaction between Mck1p

and Cdc6p was also confirmed by co-immunoprecipitation (Co-IP)

assay using the MCK1-MYC GAL-CDC6DNT-HA strain. Mck1p

interacted with Cdc6DNTp, indicating that Mck1p interacts with

Cdc6p, and the protein interaction was mediated through the C-

terminal region in Cdc6p (Figure 6C). The protein binding between

Mck1p and Cdc6p was observed only in mitotic arrested cells

blocked by nocodazole and not in asynchronous culture or G1-

arrested cells (data not shown). Therefore the physical interaction

between Mck1p and Cdc6p is likely primed by mitotic CDK

phosphorylation of the S372 site (see next section). We also noticed

that Cdc6DNT migrates slower in the co-IP samples than the input,

consistent with the idea that only the phosphorylated form of Cdc6,

probably targeted by CDK, binds to Mck1 (Figure 6C).

CDC6 mutations that abrogate GSK-3 binding are lethal
with the orc mutants

A GSK-3 kinase usually requires priming [36]. In Cdc6, the

predicted priming site is located at S372 based on the amino acid

sequence. After priming, the GSK-3 kinase phosphorylates the

target site at the first serine or threonine that corresponds to T368

(see discussion). Next, we tested to see if mutations at the GSK-3

consensus phosphorylation site in CDC6 cause lethality in orc

mutants like the mck1 deletion does. To prove that the C-terminus

GSK-3 consensus site 368–372 in CDC6 was involved in the

inhibition of DNA re-replication, the potential phosphorylation

site (T368) and the priming phosphorylation site (S372) were

altered to alanine. The CDC6-T368A S372A in a 2 micron plasmid

was transformed into wild type, ORC6-rxl, ORC6-ps or ORC6-rxl,ps

mutants. Colonies formed when either CDC6 wild type or CDC6

T368A S372A plasmids were transformed into the ORC6-wild type

strain (Figure 7B, top left). In contrast, the CDC6 T368A S372A

plasmid (but not CDC6-wt) was toxic in the ORC6-rxl cells, as

Table 1. Genetic interaction between mck1 deletion and cyclin mutants.

Dmck1 CDC6DNT

ORC6-rxl sick sick

clb5 lethal lethal

clb5 clb6 clb6 rescued clb5 mck1 lethality clb6 rescued clb5 CDC6DNT lethality

clb2 clb4 viable viable

clb1 clb3 clb4 viable viable

clb5-hpm sick sick

clb5pCLB2 viable viable

doi:10.1371/journal.pgen.1003099.t001
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transformants gave very few visible colonies (Figure 7B, top right).

This effect was even more pronounced in ORC6-rxl,ps cells and, in

this case, even the CDC6-wt plasmid appeared somewhat toxic

(Figure 7B, bottom right). The CDC6-T368A S372A plasmid did

not induce toxicity in the ORC6-ps cells (Figure 7B, bottom left)

which confirmed the result that mck1 did not genetically interact

with ORC6-ps mutation (Figure 1). The plasmid harboring CDC6-

T368A or CDC6-S372A single mutation was also toxic in the

ORC6-rxl strain (Figure S2). These results suggest that the

interaction of Cdc6p with Mck1p and/or its phosphorylation by

Mck1p contributes to the down-regulation of Cdc6p levels.

Mck1p phosphorylates Cdc6 for its degradation
To confirm that Cdc6p is phosphorylated by Mck1 in vivo, we

analyzed the Mck1-dependent mobility shift of Cdc6p in the cdc4-1

mutant background by western blot. We used cdc4-1 mutant to

prevent degradation of phosphorylated Cdc6 and examined the

effect of Mck1 on the phosphorylation status of Cdc6p. Cdc6p in

Figure 4. Mck1p is required for Cdc6p degradation. (A) GAL-CDC6-HA (WT) or Dmck1 GAL-CDC6-HA (Dmck1) cells were incubated in raffinose
first, then transferred to galactose media for 2 hours. Nocodazole was added and the cells were incubated for 2 more hours. Cdc6 expression was
suppressed by adding glucose. Samples were collected every 5 minutes. Protein extracts were made and subjected to western blot analysis to
observe Cdc6-HA. Pgk1 was used as a loading control. (B) CDC6-prA or Dmck1 CDC6-prA cells were treated with alpha-factor to arrest the cell cycle
during G1 phase. The cells were released from G1 and collected every 10 minutes. Proteins were extracted from each sample and subjected to
Western blot analysis to detect Cdc6-prA. Budding index is shown using the same samples. (C) Localization of Cdc6-GFP was analyzed in living cells.
In wild type cells, nuclear accumulation of Cdc6-GFP was observed only in late mitotic cells (arrowhead) and not in small to medium budded cells
(arrows), whereas Cdc6-GFP was observed in the nucleus throughout the cell cycle (arrowheads) in mck1 deletion cells. (D) CDC6-prA or Dmck1 CDC6-
prA cells were blocked at metaphase by nocodazole. The mitotic arrest was released upon removal of the drug. Cells were then incubated in YEPD
and collected every 10 minutes. Proteins were extracted subjected to western blot analysis to detect CDC6-prA. Pgk1 was used as a loading control.
doi:10.1371/journal.pgen.1003099.g004
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the wild type cells migrated slower that that in the Dmck1 deletion

cells indicating that Cdc6p is hyper-phosphorylated in wild type

cells. (Figure 7C). In the mck1 deletion cells, the signal of the higher

molecular weight band was abrogated and the lower band was

abundant suggesting that Cdc6p is less phosphorylated and more

stable (Figure 7C right). To confirm that the slow migrating band

of Cdc6p in the wild type cells is due to phosphorylation, protein

extracts from wild type cells were treated with CIP (calf intestine

phosphatase). After the CIP treatment, the slower migrating band

of Cdc6p disappeared and the faster-migrating band was observed

at the same level as that in Dmck1 cells. It suggests that the band

shift between wild type and Dmck1 is due to phosphorylation

(Figure 7C and 7D).

Finally we tested if Mck1p dependent destabilization of the

Cdc6p is mediated by the T368 residue. The mck1 GALL-MCK1

CDC6-proteinA CDC6T368A strain contains both wild type Cdc6

(tagged with protein A) and Cdc6T368A (no tag). First the cells

were arrested in mitosis with nocodazole and then released into

galactose to overexpress Mck1p. Wild type Cdc6p was degraded

rapidly after Mck1p overexpression, which is consistent with

previous results in Figure 5A (Figure 7E, upper panel). In contrast,

Cdc6T368A protein was resistant to degradation and was stable

even after Mck1p overexpression (Figure 7E, lower panel). We also

observed faster migration of Cdc6T368A protein than the wild

type Cdc6p by western blot (Figure S3). We conclude that Cdc6p

is phosphorylated at T368 by Mck1p to induce its degradation.

Discussion

In this study, we show that a GSK-3-like kinase, Mck1p, is

involved in the inhibition of DNA re-replication through its role in

Cdc6p turnover in S. cerevisiae. There are 8 CDK consensus sites in

CDC6. The first 47 amino acids at the N-terminus of Cdc6 are

targeted by Cyclin/CDK and are critical for SCFcdc4 dependent

proteolysis [7]. Stabilization of Cdc6p in mck1 deletion cells

suggests that CDK-dependent phosphorylation at the N-terminus

of Cdc6 is not sufficient enough for CDC6p degradation in vivo,

that Mck1-dependent phosphorylation through T368 site is also

required. The Cdc6 T368A mutant was resistant to Mck1p-

dependent degradation (Figure 7E). Nocodazole was added to the

media throughout this experiment, therefore Cdc6 stabilization by

the T368A mutation, even after Mck1p overexpression, is not due

to a change in cell cycle progression. This is of particular interest

because activation of CDK promotes both DNA replication and

Cdc6p degradation at the same time. The requirement of Mck1

for Cdc6p degradation most likely ensures that degradation of

Cdc6p occurs only after origin firing has been initiated.

Three distinct Cdc6p degradation modes have been proposed

by Diffley’s group [32]. Mode1 degradation during G1 phase is

independent of Cdc6 CDK consensus sites and is mediated neither

by SCF nor APC. The Cdc6p degradation by Mode 2 and Mode 3

are triggered later during the cell cycle. Mode3 is required for

Cdc6 degradation during mitosis. The Cdc6p degradation by

Figure 5. Rapid degradation of Cdc6p by Mck1p overexpression was inhibited in cdc4 mutant. (A) First, the Dmck1 GALL-MCK1 CDC6-prA
cells were incubated in glucose plus nocodazole in order to arrest the cell cycle during mitosis. Then, the nocodazole was removed and the media
was switched to either glucose or galactose. Samples were taken every 10 minutes, proteins were extracted and subjected to western blotting as
described above. Control experiments were performed using Dmck1 CDC6-prA cells to show that galactose does not affect Cdc6 level. Pgk1 was used
as a loading control. (B) cdc4-1 CDC6-prA Dmck1 GALL-MCK1 strain was incubated in raffinose-containing media first. The cell cycle was blocked by
nocodazole and then the cells were further incubated either at 26uC or 36uC for 1.5 hours. Galactose was added to the media, samples were collected
every 10 minutes and the protein extracts were subjected to western blotting to detect Cdc6-prA. Pgk1 was used as a loading control.
doi:10.1371/journal.pgen.1003099.g005
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Mck1p accounts for the mode3 mechanism based on the Cdc6p

stabilization pattern during mitosis in mck1 deletion (Figure 4A).

Diffley’s group has reported that the Cdc6 T368M mutation leads

to Cdc6p stabilization during mitosis and the mutation is resistant

to mode 3 proteolysis by SCFcdc4 complex [6]. In this study, we

showed that Mck1-dependent Cdc6 phosphorylation is targeted by

SCFCDC4 complex for degradation (Figure 5B). Therefore, Mck1,

most likely, phosphorylates Cdc6 and the phosphorylation at T368

is recognized by Cdc4. It is not clear if mode 3 requires CDK

activity. Therefore Mck1p may promote complete Cdc6 degra-

dation during mitosis in addition to its degradation mechanism

through CDK phosphorylation. Further studies are required to

test if Mck1 could also promote Cdc6 degradation via Mode 1 or

Mode 2.

There are two potential GSK-3 sites S/TXXXpS/T in Cdc6,

at 39-43 and 368-372 amino acid residues. It has been reported

that these sites share sequence similarities and are targeted for

SCFCDC4 dependent proteolysis [6]. Our yeast-two hybrid assay

showed a specific interaction between Mck1p and Cdc6p through

the GSK-3 consensus site located at residues 368–372 (TPTTS).

This GSK-3 site in Cdc6p, amino acid 368–372, is also shared by

two potential CDK phosphorylation sites 368–371 (TPTT) and

372–275 (SPVK). The former partially matches with a minimal

consensus CDK phosphorylation site (S/T-P) whereas the latter

perfectly matches an optimal CDK site, with a basic residue at the

+3 position. It is important to note that Cdc6 is a very good

substrate of the B-type Cyclin/CDK complex [37]. The GSK-3

kinase and CDK could share substrate specificity [38]. GSK-3

kinases require ‘‘priming’’ phosphorylation by another kinase on

their substrates [36]. The priming site is usually located C-

terminally of the GSK-3 phosphorylation site, at the +4 position,

which corresponds to S372 in Cdc6. After priming, GSK-3

recognizes its target and can phosphorylate the first serine or

threonine residue, which corresponds to T368 in Cdc6. Thus, C-

Figure 6. Mck1p interacts with Cdc6p through the GSK-3 consensus site in the C-terminal region. (A) Cdc6 contains eight CDK consensus
sites, S/TP motif indicated by short lines (top). The Cdc6DNT mutant lacks the N-terminal region, from amino acid 2–49, thereby lacking the first four
CDK sites (bottom). The GSK-3 consensus sites located at 39–43 and 368–372 are indicated by short red lines. (B) Yeast two hybrid analysis was
performed to determine the binding site between Mck1p and Cdc6p. A full length MCK1 in pACT plasmid, containing the GAL4 activation domain
(GAD), was co-transformed into L40 yeast strains along with the various CDC6 mutants in the pBTM116 plasmid fused to LexA. Transformants were
assayed for b-galactosidase activity as visualized in blue. (C) Co-immunoprecipitation analysis was performed using MCK1-MYC CDC6DNT-HA, MCK1-
MYC or CDC6DNT-HA strain. Cells were incubated in raffinose to log phase and then switched to Galactose to induce GAL-CDC6DNT. After 2 hour
incubation, nocodazole was added to the media in order to block cell cycle during G2/M. The cells were incubated for two more hours and protein
was extracted. The protein lysate from each strain was incubated with agarose beads conjugated with anti-MYC to pull down the Mck1 complex. The
protein complex was subjected to western blotting to analyze Mck1-MYC or Cdc6DNT-HA using anti-MYC or anti-HA antibodies, respectively. 1/50 of
the original protein lysate was used as INPUT.
doi:10.1371/journal.pgen.1003099.g006
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terminal Cdc6p (aa 341–390), including the GSK-3 consensus

phosphorylation sequence, is sufficient for Mck1 binding and their

interaction likely depends on phosphorylation of S372 by CDK

(Figure 6B). We propose a model in which S372 is phosphorylated

by cyclin/CDK first in order to induce phosphorylation at T368

by Mck1p kinase. This priming model allows Cdc6 to create Cdc4

diphospho-degrons which is an efficient Cdc4 recognition site.

David Morgan’s group shows that Eco1 is primed by CDK and

DDK in order to be targeted by Mck1, which creates Cdc4

recognition site (personal communication). Mck1 is involved in the

degradation of SCFCDC4 substrates such as Rcn1and Hsl1

[25,26,39]. Therefore, the priming model to create Cdc4 dipho-

spho-degrons seems to be a universal mechanism to regulate

protein degradation.

Mck1p protein levels are not cell cycle-regulated (data not

shown) therefore Mck1 activation is not regulated by its own

expression level. This result supports the idea of the priming

hypothesis in which Mck1 can target its substrate, Cdc6p, only

after Cdc6 is phosphorylated by cyclin/CDK in a cell cycle-

dependent manner. Given the requirement of T368 for Mck1

dependent degradation of Cdc6, Mck1 most likely phosphorylates

this residue directly in vivo. However, it is formally possible that

Mck1 affects Cdc4 function other than Cdc6. We favor the model

that Mck1 directly phosphorylates Cdc6 to promote Cdc4-

dependent degradation based on our results in Figure 5B,

Figure 7C and 7D. Whether or not SCFCDC4 or other targets

such as Sic1 are also phosphorylated by Mck1 is an interesting

future study.

The glycogen synthase kinase-3 (GSK-3) was originally identi-

fied as a kinase that inactivates glycogen synthase [40]. In higher

eukaryotes, there are two isoforms, GSK-3a and GSK-3b, that

regulate various cellular processes including Wnt signaling [41]

Figure 7. Mutations at the GSK-3 consensus site in Cdc6 play a role in Cdc6p stability. (A) GSK-3 and CDK consensus sites in the Cdc6 C-
terminal region were shown as a red and blue line, respectively. (B) The pRS426 (control plasmid), CDC6 or CDC6T368A S372A in 2micron plasmids were
transformed into ORC6-WT, ORC6-rxl, ORC6-ps or ORC6-rxl,ps mutants and plated on SD-Ura plates. Transformation efficiency for each strain was
shown as CFU/mg DNA. (C) Dmck1 cdc4-1 CDC6-prA cells (labeled as Dmck1) or cdc4-1 CDC6-prA cells (labeled as WT) were arrested during metaphase
by nocodazole for 1 hour and then temperature shifted to 37uC for 1.5 hour. Proteins were extracted and subjected to western blotting to detect
Cdc6-prA. (D) Protein extracts in Figure 7C were treated with 10 units of CIP and incubated for 10 minutes at 4 degrees. 20 ml of protein sample from
Dmck1 cells or 60 ml of protein samples from WT cells were used in order to normalize the Cdc6 protein expression. (E) An extra copy of CDC6 or
CDC6T368A was integrated into a Dmck1 GALL-MCK1 CDC6-proteinA strain at the URA locus. The resulting Dmck1 GALL-MCK1 CDC6-proteinA
URA::CDC6T368A cells were treated with nocodazole. Next, the mitotic arrested cells were incubated in YEPG to overexpress Mck1p and
supplemented with nocodazole. Cells were collected every 15 minutes. Endogenous Cdc6-proteinA or exogenous Cdc6T368A was analyzed by
western blot.
doi:10.1371/journal.pgen.1003099.g007
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and insulin signaling [42,43]. The yeast homologue of GSK3,

Mck1p, also has diverse biological functions (see introduction).

This is the first evidence to show that Mck1p or any GSK-3 kinase

controls DNA replication. Whether GSK-3 kinases contribute to

the regulation of DNA replication at other targets should be

investigated further.

Materials and Methods

SGA analysis
SGA analysis was performed as previously described [19,20]. A

query strain, MATalpha ORC6-rxl::LEU2 mfa::MFA1pr-HIS3 trp1

ade2 can1 leu2 his3 lys2 ura3, was placed on YEPD in rectangle

plates. Then deletion mutant arrays (MATa geneX::KanMX TRP1

ADE2 met15 leu2 ura3 his3) were put on top of the query strains.

The resulting diploid cells were sporulated on the plates containing

2% agar, 1% potassium acetate, 0.1% yeast extracts, 0.05%

glucose, supplemented with uracil and histidine. After incubation

at 22 degrees for 5 days, the spores were pinned onto haploid

selection plates (SD-His/Leu/Arg plus canavanine) to select for

MATa mfa::MFA1pr-HIS3 ORC6-rxl::LEU2 progeny, followed by

pinning onto YEPD plates containing G418 to select out the

deletion array mutants. Finally, double mutants were placed on

SD-His/Leu/Arg plus canavanine plus G418 for 2 days. The

proliferation of those that contained haploid cells was scored

visually. The deletion sets used in this study were obtained from

EuroScarf and are derivatives of BY4741 [44].

Cell cycle blocks
First, GAL-CDC6-HA or mck1 GAL-CDC6-HA strains were grown

in raffinose-containing media and then galactose was added to

express Cdc6-HA for 2 hours. The cell cycle was blocked during

mitosis by nocodazole at the concentration of 15 mg/ml for

2 hours. Next, glucose was added to the media to shut off the GAL

expression (Figure 4A). CDC6-PRA or mck1 CDC6-PRA strains were

grown in liquid YEPD to log-phase at 30 degrees and then treated

with alpha-factor at the concentration of 100 nM for 2 hours. The

cells were washed with YEPD three times to release the cell cycle

from G1. Samples were collected every 10 minutes for 80 minutes

for Figure 4B. To block the cell cycle during mitosis, CDC6-PRA or

mck1 CDC6-PRA strains were treated with nocodazole at the

concentration of 15 mg/ml for 2.5 hours at 30 degrees. The

mitotic block was released by washing cells with YEPD twice.

Samples were collected every 10 minutes for 60 minutes for

Figure 4D. For Figure 5 and 7D, cells were treated with

nocodazole for 2 hours and then switched to YEPD or YEPG

containing nocodazole at 15 mg/ml.

Plasmids and strains
All strains used, except for SGA analysis, are derivatives of

W303 (strain list in Table S1). Standard methods were used for

mating and tetrad analysis. DNA transformation was performed

by the lithium acetate method [45]. To generate mck1 or mre11

deletion in the W303 background, genes disrupted by a KanMX

cassette in BY4741 haploid deletion libraries (EuroScarf) were

amplified by PCR. The PCR product containg the KanMX cassette

with MCK1 flanking region was transformed into the wild type

W303 strain. The resulting mck1 deletion cells in W303 were

confirmed by PCR. The MCK1-MYC strain was generated by

PCR genomic integration of a PCR product containing a MYC tag

and a TRP gene [46]. GAL-CDC6DNT-HA strain and plasmid were

kindly provided by Dr. Stephen Bell. The ORC6-rxl, ORC6-ps,

ORC2-ps and MCM7-NLS mutations were described previously

[11,13,34]. CDC6-proteinA strain was generated as previously

described [47]. Rad53-FLAG strain was obtained from Dr. Petrini

[48]. To generate GALL-MCK1, MCK1 gene was cloned into

GALL-pRS405 plasmid at BamHI and SpeI sites using MCK1

plasmid provided by Dr. P. Hieter [28]. The resulting GALL-

MCK1/pRS405 plasmid was cut with BstEII, and the linearized

plasmid was transformed into bar1 mck1::KanMX CDC6-prA::HIS3

strain to integrate GALL-MCK1 at LEU locus. Cdc6-GFP strain

was made by direct transformation of a GFP cassette [49] in

BY4741 and subsequently back crossed to W303-1B three times

for Figure 4C. CDC6 plasmid was generated by PCR method using

W303 wild type genomic DNA. The resulting PCR product was

cloned into pYES2.1 Topo TA plasmid (Invitrogen) for Figure 7B.

The CDC6/pYES2.1 plasmid was subjected to site-directed

mutagenesis using QuickChange Site-directed mutagenesis kit

(Agilent Technologies, CA) to introduce T368A S372A mutation

for Figure 7B. CDC6/pRS406 plasmid was generated by PCR

cloning. CDC6 gene including the endogeneous promoter (300 bp

upstream from the start codon) was amplified by PCR using

primers that contain BamHI and XhoI, and cloned into pRS406 at

BamH1and XhoI sites. The CDC6/pRS406 plasmid was used as a

temperate to generate CDC6-T368A/pRS406. Site-directed muta-

genesis was performed as described above. The resulting plasmids

were cut with NcoI to integrate the mutated CDC6 at URA3 locus

in mck1 GALL-MCK1 CDC6-proteinA strain for Figure 7E.

Making a temperature-sensitive mutant of mck1
A temperature sensitive mutant of MCK1 was generated using a

previously described method [34]. MCK1 gene was cloned into

pRS414 at BamHI and SpeI sites from MCK1 plasmid provided by

Dr. P. Hieter [28]. The MCK1/pRS414 plasmid was mutagenized

by PCR mutagenesis to introduce random mutations in the MCK1

gene as previously described [50]. The mutagenized mck1/pRS414

plasmid was transformed into mck1 orc6-rxl strain containing

MCK1/pRS416 plasmid. The mck1 orc6-rxl cells containing

mutagenized mck1 plasmid were tested for its viability at

37 degrees. The mutagenized mck1/pRS414 plasmid (mck1-16

mutation) was isolated from the strain and was inserted into the

pRS406 plasmid at BamHI SpeI sites. The resulting mck1-16/

pRS406 plasmid was cut with BstEII restriction enzyme and was

integrated at the URA3 genome locus. Sequence analysis identified

two mutations in the temperature sensitive mck1-16 allele, resulting

in P275L and E357G.

Co-IP and Western blotting
A 50-ml culture of each strain was grown to log-phase an

OD595 of 0.5 was reached. The cell pellets were washed in cold

TE buffer, and resuspended with 400 ml of protein extraction

buffer [20 mM HEPES, pH 7.4, 110 mM potassium acetate,

2 mM MgCl2, 0.1% Tween 20, 1 mM DTT, 2 mg/ml DNaseI,

protease inhibitor cocktail (Sigma-Aldrich, MO) and phosphatase

inhibitor (Sigma-Aldrich, MO)]. Acid-washed glass beads (0.15 g)

were added, and cells were disrupted by FastPrep (MP Biomed-

icals, OH) for 20 seconds, twice, at speed 6. Samples were

centrifuged and 10 ml of supernatants were kept for Western

blotting as ‘‘INPUT’’. The remaining protein extracts were

subjected to co-immunoprecipitation (Co-IP). Agarose beads

conjugated with anti-MYC antibody (A7470) (Sigma-Aldrich,

MO) were pre-incubated with 5% BSA in protein extraction

buffer for 1 hour at 4 degrees to reduce non-specific binding first.

Then the beads were mixed with the protein extract supernatants

and rotated for 2 hours at 4 degrees. Beads were washed with

protein extraction buffer five times. After the final wash, 30 ml of

26 sample buffer was added to the beads, and the protein was

denatured at 95 degrees for 5 minutes. Proteins were separated by
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SDS-PAGE with Novex 4–20% Tris-Glycine polyacrylamide gel

(Invitrogen, CA) except Figure 7C with 7% acrylamide large gel.

The proteins on the gels were transferred to PVDF membrane

(Millipore, MA). Western blot analysis was performed using anti-

MYC antibody 9E10 (M4439) (Sigma-Aldrich, MO) at 1:4000

dilution, anti-HA antibody 3F10 (Roche, IN) at 1:4000 dilution

and anti-FLAG antibody (A8592) (Sigma-Aldrich, MO) at 1:4000

dilution. Cdc6-proteinA was visualized using anti-peroxidase

soluble complex antibody produced in rabbit (P1291) (Sigma-

Aldrich, MO) at 1:4000 dilution. Cdc6 was detected using anti-

Cdc6 antibody (9H8/5) (Abcam, MA) at 1:500 dilution.

Fluorescence microscopy
Log phase cultures of Cdc6-GFP expressing cells in SC medium

supplemented with 20 mg/L adenine were imaged live with an

Eclipse E600 fluorescence microscope (Nikon) equipped with a

DC350F CCD camera (Andor) and 1006, NA 1.45, or 606, NA

1.4, oil objectives. The images were captured with NIS-Elements

software (Nikon) and prepared using Photoshop software.

Flow cytometry
DNA content analysis by FACScanto (BD Biosciences, NJ) was

performed as described previously [51].

Yeast two-hybrid assay
The pBTM116 constructs containing various Cdc6 mutants

were obtained from Dr. J. Diffley’s lab [6]. Full length MCK1 was

cloned into pACT at BamHI and XhoI sites by PCR method. The

MCK1/pACT and each of the various CDC6/pBMT116 plasmids

were co-transformed into L40 strain and plated on SD-Leu/Trp

plates [52]. The colonies were transferred to nitrocellulose

membrane and kept at 280 degrees overnight. The membrane

was placed on whatman paper soaked with 3 ml of Z buffer,

[60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM

MgSO4] with 300 mg/ml X-gal and 0.044 M 2-mercaptoethanol.

The membrane was incubated at 30 degree overnight to visualize

the blue colonies.

Supporting Information

Figure S1 CDC6-prA or Dmck1 CDC6-prA strains were incubated

in YEPD and cell cycle arrested during mitosis using nocodazole.

CHX at the concentration of 100 ug/ml was added to the media

and samples were collected every 20 minutes. Cdc6-prA levels

were quantified and shown as a bar graph.

(TIF)

Figure S2 Genetic interactions between various CDC6 mutants

and ORC6-rxl. CDC6T368A, P369A, S372A, P373A or T368A

S372A in 2m plasmids were transformed into either wild type or

ORC6-rxl strains, and plated on YEPD plates.

(TIF)

Figure S3 Cells were treated with nocodazole first, and the

temperature was shifted to 36 degrees in order to inactivate Cdc4

function. Proteins were extracted and subjected to western blot

using direct antibody against Cdc6.

(PPT)

Table S1 Genotype of all strains used in the study. All strains

have W303 genetic background.

(PDF)
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