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Abstract 
Doublets are prevalent in single-cell sequencing data and can lead to 
artifactual findings. A number of strategies have therefore been 
proposed to detect them. Building on the strengths of existing 
approaches, we developed scDblFinder, a fast, flexible and accurate 
Bioconductor-based doublet detection method. Here we present the 
method, justify its design choices, demonstrate its performance on 
both single-cell RNA and accessibility (ATAC) sequencing data, and 
provide some observations on doublet formation, detection, and 
enrichment analysis. Even in complex datasets, scDblFinder can 
accurately identify most heterotypic doublets, and was already found 
by an independent benchmark to outcompete alternatives.
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Introduction
High-throughput single-cell sequencing, in particular single-cell/nucleus RNA-sequencing (scRNAseq), has provided
an unprecedented resolution on biological phenomena. A particularly popular approach uses oil droplets or wells to
isolate single cells along with barcoded beads. Depending on the cell density loaded, a proportion of reaction volumes
(i.e. droplets or wells) will capture more than one cell, forming ‘doublets’ (or ‘multiplets’), i.e. two or more cells captured
by a single reaction volume and thus sequenced as a single-cell artifact. The proportion of doublets has been shown to be
proportional to the number of cells captured (Bloom 2018; Kang et al. 2018). It is therefore at present common in single-
cell experiments to have 10-20% doublets, making accurate doublet detection critical.

To avoid confusion, we will denote as ‘droplet’ the reads that are assigned to one barcode (either doublet or singlet), and
reserve the term ‘cells’ to talk about original (singlet) cells. ‘Homotypic’ doublets, which are formed by cells of the same
type (i.e. similar transcriptional state), are very difficult to identify on the basis of their transcriptome alone (McGinnis,
Murrow, and Gartner 2019). They are also, however, relatively innocuous for most purposes, as they appear highly
similar to singlets. ‘Heterotypic’ doublets (formed by cells of distinct transcriptional states), instead, can appear as an
artifactual novel cell type and disrupt downstream analyses (Germain, Sonrel, and Robinson 2020).

Experimental methods have been devised for detecting doublets in multiplexed samples, using barcodes (Stoeckius et al.
2018) or genotypes (e.g. single-nucleotide polymorphisms) to identify droplets containing material from more than one
sample (Kang et al. 2018). While evidently useful, these often incur additional costs or limitations. Furthermore, they
identify only a fraction of the doublets, and fail to detect doublets formed by cells from the same sample, including
heterotypic doublets. The proportion of doublets missed will decrease with the degree of multiplexing, but even mixing
10 samples would result in 10% of the doublets missed; moreover, these approaches are not always applicable.

A number of computational approaches have therefore been developed to identify doublets on the basis of their
transcriptional profile (McGinnis, Murrow, and Gartner 2019; DePasquale et al. 2019; Wolock, Lopez, and Klein
2019; Bais and Kostka 2020; Bernstein et al. 2020). Most of these approaches rely on the generation of artificial doublets
by summing or averaging reads from real droplets, and score the similarity between them and the real droplets. For
example, DoubletFinder generates a k-nearest neighbor (kNN) graph on the union of real droplets and artificial doublets,
and estimates the density of artificial doublets in the neighborhood of each droplet (McGinnis, Murrow, and Gartner
2019). In a similar fashion, one of the methods proposed by Bais and Kostka (2020), bcds, generates artificial doublets
and trains a classifier to distinguish them from real cells. Real cells that are classified with artificial doublets are then
called as doublets. Finally, another strategy proposed by Bais and Kostka (2020) is a coexpression score, cxds, which
flags droplets that co-express a number of genes that otherwise tend to be mutually exclusive across droplets.

Xi and Li (2021a) recently reported a benchmark of computational doublet detection methods, using both simulations
and real datasets with annotated true doublets. Interestingly, despite several new publications, the initial benchmark
found the oldest method, DoubletFinder (McGinnis, Murrow, and Gartner 2019), to outperform others. However,
another important observation from the benchmark was that no single method was systematically the best across all
datasets, highlighting the necessity to test and benchmark methods across a variety of datasets, and suggesting that some
strategies might have advantages and disadvantages across situations.

Here, we present the scDblFinder package, building on the extensive single-cell Bioconductor methods and infrastruc-
tures (Amezquita et al. 2019) and implementing a number of doublet detection approaches. In particular, the scDblFinder
method integrates insights from previous approaches and novel improvements to generate fast, flexible and robust
doublet prediction. scDblFinder was independently tested by Xi and Li in the protocol extension to their initial
benchmark and was found to have the best overall performance (Xi and Li 2021b).

REVISED Amendments from Version 1

Weworked tomake all the improvements suggested by the reviewers, as well as clarifying the text (especially themethods)
and figures.
Major changes to the manuscript are especially to the sections on artificial doublet generation, on thresholding, and
on scATAC. Regarding scATAC, we increased the number of benchmark datasets and compared to AMULET and variations
of the approach.

Any further responses from the reviewers can be found at the end of the article
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Results
Simulation of artificial doublets
As most approaches rely on some comparison of real droplets to artificial doublets, it is crucial to appropriately simulate
doublets. To this end, we first characterized real doublets using a dataset of genetically distinct cell lines (Tian et al. 2018).
Because each cell line represents a distinct and more or less homogeneous transcriptional state, it is possible, using
genotypes, to identify the ‘cell types’ composing each doublet (Figure 1). Although often larger, the median library sizes
of doublets were systematically smaller than the sum of the median library sizes of composing cell types (Figure 1A).

We next investigated the relative contributions of the composing cell types using non-negative least square regression,
expecting the larger cell types to contribute more to the doublet’s transcriptome.

Although differences in median library size across cell types were small (less than two-fold) compared to other datasets,
we observed an association of the relative contributions with the relative sizes of the composing cell types (Figure 1B,
p = 2e-10). However, this effect was very weak - considerably smaller than the variation within doublet type. This

Figure 1. Characterization of real doublets in a mixture of three human lung adenocarcinoma cell lines. A:
Observed median (and +/- one median absolute deviation in) library sizes per cell type against additive expectation
for single cell and doublet types in a real dataset. The dashed line indicates the diagonal. B: Relative contribution of
composing cell types in real doublets (each point represents a doublet) plotted against the expected relative
contributions (based on the ratio between the median library sizes of the composing cell types). Values indicate
the relative contribution of one of the two cell types to the doublet’s transcriptome. The dashed line indicates the
diagonal, and the thick line indicates the weighted mean per doublet type. The annotation of cell types and their
combinations comes from the original Demuxlet analysis by Tian et al., excluding ambiguous calls.
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suggests that there are i) large variations in real cell size within a given cell type, and/or ii) large variations in the mRNA
sampling efficiency that are independent for the two composing cells. In any case, for many doublets, the two composing
cell types contribute very unequally. This also explains why, while doublets sometimes form their own clusters, they
often appear at the periphery of the singlet cluster they most resemble.

In light of these ambiguities, we opted for a mixed strategy to simulate artificial doublets, generating them in
a combination of three different ways (see Methods): a proportion is generated by summing the libraries of individual
droplets, another by performing a Poisson resampling of the obtained counts, and a third by re-weighting the
contributions of cells depending on the relative median sizes of the composing cell types (in case the observed library
size is a poor indicator of RNA content). This strategy did not lead to a clear overall improvement across the datasets
(Extended data – Figure 1A) over the simple sum (both of whichwere clearly superior to averaging), suggesting that most
of the difference is anyway within the wide variability in library sizes, and/or that the normalization and dimensionality
reduction steps are sufficient to remove remaining differences between real and artificial doublets. Another possible
interpretation is that doublets can be approximated as the sum of the counts of the composing cells, but that doublets
composed of larger cells are less likely to form. Either way, since it was not deleterious and might prove more robust to
variations in protocols, we nevertheless maintained the mixed strategy, generating the majority of doublets (75%) using
the simple sum, and the rest using the mixed strategy.

scDblFinder consistently outperforms alternative methods
Figure 2 gives an overview of the scDblFinder method (see Methods for details). Briefly, after some initial processing,
artificial doublets (either random or between-cluster, depending on the settings) are generated, then a nearest neighbor
(kNN) network is generated. Rather than selecting a single neighborhood size, as most kNN-based methods do,
scDblFinder gathers statistics at various neighborhood sizes, thereby enabling the downstream classifier to select the
most informative size(s), which might also differ across the expression space. Various characteristics from each cell/
doublet and its neighborhood (such as the density of artificial doublets in the neighborhood) are then gathered to build a
cell-level predictors matrix. On the basis of these predictors, a classifier is trained to distinguish artificial doublets from
droplets. A key problemwith classifier-based approaches is that some of the droplets are mislabeled, in the sense that they
are in fact doublets labeled as singlets. These can mislead the classifier. For this reason, classification is performed in an
iterative fashion: at each round, the droplets confidently identified as doublets are removed from the training data for the
next round. Similarly, when using randomly-generated (as opposed to between-cluster) artificial doublets, those deemed

Figure 2. Overview of the scDblFinder method.
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unidentifiable are removed for the training. We found that 2-3 iterations provided the best performance (Extended data –
Figure 1B).

A previous version of scDblFinder was already evaluated in an independent benchmark by Xi and Li (2021a), where it
was found superior to existing alternatives across a variety of metrics. Here we reproduced this benchmark using themost
recent versions of the packages, and including variant methods from the scDblFinder package (amongwhich the updated
version of scran’s original method, and now available in the scDblFinder package as computeDoubletDensity).
In addition, we included the new method Chord (Xiong et al. 2021), which also combines different strategies.

Figure 3 compares the performance of scDblFinder to alternatives across the real benchmark datasets, as measured by the
area under the precision-recall (PR) curve (AUPRC) in classifying annotated doublets. scDblFinder is the top performer,
except for very simple datasets where most methods perform very well, and one dataset where they all perform badly (and
which we suspect not to have enough data for training). Calculating the mean AUPRC across the datasets, the top two
methods are the two scDblFinder variants (Extended data – Figure 1C). In addition, scDblFinder runs at a fraction of the
time required by the next best methods (Figure 3, left).

kNN summarization improves upon direct classification
scDblFinder and the bcds method (Bais and Kostka 2020) are both based on a boosted classifier trained on artificial
doublets, however scDblFinder performs considerably better. We hypothesized that this improvement would come from
twomain sources. First, an improvement of scDblFinder is the iterative training, which prevents doublets among the real
droplets (which are wrongly annotated as singlets) from misleading the classifier. The observed impact of the iterative
procedure (Extended data - Figure 1B) however suggests that it explains only part of the difference in performance.
Another important difference is that while bcds trains directly on the expression matrix, scDblFinder works chiefly on
features of the kNN network. Since artificial doublet creation can only approximate real doublets, we hypothesized that
these differences aremore likely to be apparent in the expressionmatrix than in the highly summarized set of features used
by scDblFinder, and that this could lead to overfitting on the artificial problem. Indeed, a risk of classifier-based
approaches is that the problem on which the classifier is trained, namely distinguishing artificial doublets from real
droplets, slightly differs from the real problem on which they are expected to function (distinguishing real doublets from

Figure3. Benchmark.Accuracy (areaunder theprecision and recall curve) of doublet identificationusingalternative
methods across 16 benchmark datasets. The colour of the dots indicates the relative ranking for the dataset, while
the size and numbers indicate the actual area under the (PR) curve. For each dataset, the top method is circled in
black.Methodswith names in black are provided in the scDblFinder package. Running times are indicated on the left.
On top the number of cells in each dataset is shown, and colored by the proportion of variance explained by the first
two components (relative to that explained by the first 100), as a rough guide to dataset simplicity.
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real singlets). To investigate this hypothesis of overfitting, we implemented a version of scDblFinder without the
dimensionality reduction and kNN steps, and training the classifier directly on the expression of the selected genes (see
Direct classification). This resulted in a reduction in area under the precision and recall curve (AUPRC) in real datasets
(see also Figure 3 and Extended data – Figure 2). We therefore conclude that, while dimensionality reduction and kNN
summarization arguably involve a loss of information, it nevertheless increases accuracy (in addition to considerably
reducing computing time), presumably by preventing overfitting.

scDblFinder identifies most heterotypic doublets
Several of the benchmark datasets have known doublets flagged by mixing of single-nucleotide polymorphisms from
multiple individuals (Kang et al. 2018). In most of these cases, however, such annotation is an imperfect ground truth, for
two reasons (Figure 4A, see also McGinnis, Murrow and Gartner 2019). First, the doublets include also between-
individual homotypic doublets, i.e. doublets formed by cells of the same type from different individuals. These are
difficult to detect from gene expression, and are arguably of lower priority since they resemble real cells more closely.
More importantly, SNPs-based labels do not include heterotypic doublets that are the result of the combination of
different cell types from the same individual. It is therefore likely that the accuracy reported in the benchmark is below the
actual one in detecting heterotypic doublets, and indeed datasets where there is a full correspondence between cell
type and individual (such as the human-mouse mixtures hm-6k and hm-12k) typically have a much higher area under
the Receiver-operator characteristic (ROC) and precision-recall (PR) curves (Figure 3). Based on the frequency of the
different individuals and cell types in a dataset, it is possible to infer the expected rate of between-individual homotypic
doublets and within-individual heterotypic doublets. This, in turn, enabled us to estimate the performance in identifying
heterotypic doublets, as opposed to inter-individual but homotypic doublets. Figure 4B shows such an analysis for a
complex dataset from Kang et al. (2018). The inflection point of the PR curve roughly coincides with the expected
proportion of heterotypic doublets among those flagged as true doublets.

Adjusting for both types of ‘misannotation’ (i.e. homotypic doublet and missed within-individual doublets), the area
under the PR curve is considerably better (0.82 instead of 0.64), and at the automatic threshold we estimate that 87% of
heterotypic doublets can be identified with a real FDR of 17% (a similar analysis for a different sample is shown in
Extended data – Figure 3).

Flexible thresholding for doublet calling
Most doublet detection methods provide a ‘doublet score’ that is higher on average in doublets than in singlets, and users
are left to decide on a threshold above which droplets will be excluded as doublets. Different methods have been
suggested to this end. Building on the fairly tight relationship (especially in 10x-based datasets) between the number of

Figure 4. Doublet types and real accuracy of heterotypic doublet identification. A: Cartoon representing
the different types of doublets. Within-individual heterotypic doublets will wrongly be labeled as false positives,
and between-individual homotypic will be labeled as false negatives. B: Adjusted PR curve for an example sample
(GSM2560248). The two shaded areas represent the expected proportion of within-individual heterotypic doublets
(i.e. wrongly labeled as singlets in the annotationused as ground truth) andbetween-individual homotypic doublets,
respectively. The red dotted line indicates the random expectation, and the black dot indicates the threshold set by
scDblFinder.
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cells captured and the rate of doublets generated (Kang et al. 2018), some have set thresholds based on the number of
doublets (or heterotypic doublets) one expects to find in the data (McGinnis, Murrow, and Gartner 2019). Others have
used the best tradeoff in misclassifying artificial doublets from real droplets (Wolock, Lopez, and Klein 2019). Because
scDblFinder’s scores come from a classifier, they are analogous to this tradeoff, and can directly be interpreted as a
probability (not adjusting, however, for the base rate of doublets).

With true labels available, the benchmark datasets can again be used to evaluate thresholds. In most cases, we found the
scDblFinder scores to change rapidly from high to low very close to the inflection point of the ROC curve (Figure 5A),
indicating that a fixed threshold (e.g. 0.5) can often be used. In some cases, the scores are much more gradual, requiring a
non-arbitrary way to set the thresholds. scDblFinder therefore includes a thresholding method that combines both of the
aforementioned rationales, and attempts to minimize both the proportion of artificial doublets being misclassified and the
deviation from the expected doublet rate (see Thresholding and Extended data – Figure 4A).

Ideal thresholds defined by the ROC and PR curves, while not normally available in practice, can be used here to compare
the different thresholding procedures. The optimum represented by the elbow of the ROC curve gives equal weight to the
rate of both types of errors; however, due to the lower frequency of doublets, in absolute terms this amounts to
considering a missed doublet worse that a wrongly excluded singlet. Another ideal threshold can be defined from the PR
curve, as the shortest distance to the corner defined by a perfect precision and recall. This second optimum gives a more
balanced weight to cells misclassified in one fashion or the other. Figure 5B compares the different thresholding
procedure with respect to their deviation from both of these ideals. The fixed score threshold and the scDblFinder

Figure 5. Thresholding. A: ROC curves (with square-root transformation on the x axis) of the different benchmark
datasets, colored by scDblFinder doublet scores, showing a rapid flip of the scores around the inflexion point. The
crosses indicate the scDblFinder thresholds. B: Deviation from two ideals of thresholds based on different methods.
In the PR curve, the ideal is defined as theminimal distance from the corner indicating a perfect precision and recall.
In the ROC curve, the ideal is defined as themaximal distance from the diagonal. The y-axis indicates the difference
between the distance at the threshold and the respective optimal distance. C: Tradeoff between True Positive Rate
(TPR/sensitivity/recall) and False Discovery Rate (FDR/1-precision) using different thresholds.
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combined threshold provide similar results, and are both clearly superior (with respect to both ideals) to thresholds based
solely on the expected doublet rate. Figure 5C shows the TPR and FDR at each of the computed thresholds across
datasets.

Doublet detection across multiple samples/captures
Multiple samples are often profiled and analyzed together, with the very common risk of batch effects (either technical or
biological) across samples (Lütge et al. 2021). Therefore, while the droplets from all samples might in principle provide
more information for doublet detection than a single sample can afford on its own, this must be weighted against the risk
of bias due to technical differences. To investigate this, we implemented different multi-sample approaches and tested
them on two real multi-sample datasets with demuxlet-based true doublets, as well as a sub-sampling of them (Figure 6).

The differentmulti-sample strategies had only aminor impact on the accuracy of the identification. Based on these results,
one could take the best overall strategy to be to process all samples as if they were one, however in our experience this can
lead to biases against some samples when there are very large variations (e.g. in number of cells or coverage) across
samples (not shown). This approach also greatly increases running time. In contrast, running the samples fully separately
is computationally highly efficient, and is often equally accurate. This being said, more multi-sample datasets with
ground truth will be needed to establish the optimal procedure.

Feature aggregation enables the use of scDblFinder on scATACseq
We next investigated whether scDblFinder could be applied to other types of single-cell data prone to doublets, such as
single-cell Assay for Transposase-Accessible Chromatin sequencing (ATACseq). We compared scDblFinder to two
methods specifically designed to scATACseq: the ArchR package (Granja et al. 2021), which implements a doublet
detection method that is also based on the comparison to artificial doublets, and the AMULET method (Thibodeau et al.
2021). AMULET is based on the assumption that, in a diploid cell, any given genomic region should be captured at most
twice, and therefore interprets a larger number of loci with more than two reads as indicative of the droplet being a
doublet. Since it was only available in the form of a mixture of java and python scripts, we re-implemented the method in
the scDblFinder package, leading to highly comparable results (Figure 7). Of note, the AMULET method has the
advantage of capturing homotypic doublets, which tend to be missed by other methods.

The methods were compared across three datasets where a genotype-based annotation was available as ground truth: two
obtained from Granja et al. (2021; GSM4957261 and GSM4957262), which by design do not have homotypic doublets,
and the dataset published along AMULET (GSM5457171; Thibodeau et al. 2021). The latter contains homotypic
doublets, but its doublet annotation is highly incomplete: due to the low number of individuals multiplexed, we expected
to have approximately 35% of the doublets within-individual, and hence mislabeled as singlets.

Figure 6. Comparison of four multi-sample strategies. B1 and B2 the two batches from dataset GSE96583, and
contain 3 and 2 captures, respectively. The datasets with the suffix ‘s’ are versions downsampled to 30%. Using
doublet detection on each capture separately (full split) was generally comparable to treating the captures as one
(and adjusting the doublet rate).
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With default parameters, scDblFinder performed very poorly (Figure 7). This is chiefly because scDblFinder follows the
common scRNAseq strategy of selecting an informative subset of the features, while ATACseq reads are typically
sparsely distributed across the genome. However, working with all features (i.e. peaks) is computationally very
expensive. An alternative to both approaches is to begin by reducing the size of the dataset by aggregating correlated
features into a relatively small set, thereby using information from all. These aggregated features can then directly be used
as the space in which to calculate distances. This method yielded comparable performance to specialized single-cell
ATACseq software (Figure 7).

While of an elegant simplicity, the AMULET approach performed well only on one dataset (Figure 7). However, the
authors indicate that larger library sizes are needed for the approach to perform well, which is not the case for most
droplets in these datasets. Another problem is that the number of loci with more than two reads is strongly dependent on
library size (Extended data - Figure 5), however this dependency cannot easily be taken into account because ATAC
doublets also tend to have a larger library size, making the two variables confounded.

Since none of the methods appeared clearly superior across all datasets, we next investigated two ways of combining the
logics of scDblFinder (aggregation) and AMULET. First, we developed the clamulet method (for classifier-powered
Amulet), whichmimics the scDblFinderworkflow but creates artificial doublets from coverages, enabling the use, as part
of the predictions, the number of loci covered bymore than two reads.We also tried running both methods separately and
aggregating the resulting p-values using Fisher’s method (which proved better than averages or rank-based aggregation).
This proved to be the most satisfactory approach, providing result that are more robust across datasets (Figure 7). This
being said, more complex ways of aggregating calls from different methods could be explored (Xiong et al. 2021; Neavin
et al. 2022), and more work, and especially on a broader set of benchmark datasets, will be necessary to establish optimal
methods.

Doublet origins and enrichment analysis
When artificial doublets are generated between clusters, we know which clusters constitute them, and we reasoned that
this information could be used to infer the clusters composing real doublets (hereafter referred to as ‘doublet origin’).
Using a simulation as well as the aforementioned real dataset with doublets of known origins (mixture of five cell lines
fromTian et al. (2018)), we first assessed the accuracy of doublet origin prediction based on the nearest artificial doublets
in the kNN. These proved inaccurate, both in real and simulated data (see Extended data – Figure 6A-B). Even training a
classifier directly on this problem failed (see Extended data – Figure 6C-D). The problem appears to be that, due to the
very large variations in library sizes (and related variations in relative contributions of the composing cells – see
Figure 1B), doublets often contain a large fraction of reads from one cell type, and conversely a small fraction from the
other cell type. As a consequence, we can typically call at least one of the two originating cell types, but seldom both. In

Figure 7. Doublet identification in three single-nucleus ATAC-seq datasets. ‘amulet.py’ and ‘amulet. R’ respec-
tively stand for the original and R reimplementation of the method. ‘scDblFinder.agg’ stands for the feature
aggregation approach. ‘combination’ indicates a Fisher combination of the amulet. R p-value and the 1 minus the
scDblFinder.agg score. For ‘ArchR,’ the DoubletEnrichment output was used.
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the real dataset, at least one of the two originating cell types is correctly identified in 73% of doublets (random
expectation: 36%), but both are correct in only 20% of cases.

While the identification of doublet origins remains a challenge, for the sake of completeness we nevertheless developed
strategies to investigate whether certain doublet types were found more often than expected. Such enrichment could, for
instance, indicate cell-to-cell interactions. We defined two forms of doublet enrichment (Figure 8A-B), and specified
models to test each possibility: i) enrichment in doublets formed by a specific combination of celltypes, or ii) enrichment
in doublets involving a given cell type, denoted ‘sticky.’

The ‘stickiness’ of each cluster (as proxy for cell types) can be evaluated by fitting a single generalized linearmodel on the
observed abundance of doublets of each origin (see Methods). We tested the performance of this test under different
underlying distributions using simulated doublet counts. The number of doublets of each type is generated from random
expectation with or without added stickiness (as factors of 1 to 3 on the probability) using negative binomial distributions
with different over-dispersion parameters (Figure 8C and Extended data – Figure 7). The quasi-binomial showed the best
performance, followed by the negative binomial, but in all cases the p-values were not well calibrated and many false
positives were reported at a nominal FDR<0.05. This was robust across different over-dispersion values (see Extended
data – Figure 7).

We next sought to establish a test for the enrichment of specific combinations. Here, we simply computed the probability
of the observed counts for each combination using different models (seeMethods).We again tested this approach relying
on different underlying distributions, on simulations with varying over-dispersion. The negative binomial performed
best, however all variants suffered a high false discovery rate (Figure 8C).

Figure 8. Doublet enrichment analysis. A, B: Doublet enrichment in a toy example. A: Proportion of different
doublet types from random expectations based on the cell type abundances. B: The fold-enrichment over this
expectation in two different doublet enrichment scenarios. C, D: Performance of the cluster stickiness tests (C) and
tests for enrichment of specific combinations (D) using different underlying distributions.
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Conclusions
The scDblFinder package includes a set of efficient methods for doublet detection in both single-cell RNA and ATAC
sequencing. In particular, the main scDblFinder approach uses integrates insights from previous approaches into a
comprehensive doublet detection method that provides robustly accurate detection across a number of benchmark
datasets, at a considerably greater speed and scalability than the best alternatives. Even in complex datasets, most
heterotypic doublets can be accurately identified. Although the doublet scores given by scDblFinder can be directly
interpreted as probabilities, simplifying their interpretation, the method also includes a trade-off thresholding procedure
incorporating doublet rate expectations with classification optimization, thereby facilitating its usage.

scDblFinder additionally provides utilities for identifying the origins of doublets (in terms of composing cell types) and
testing for different forms of doublet enrichment. At present, however, the value of such tests is limited by the difficulty of
accurately identifying doublet origins. Further research will be needed to assess to what extent this can be improved.

In conclusion, we believe that scDblFinder, with its flexibility, accuracy and scalability, represents a key resource for
doublet detection in high-throughput single-cell sequencing data.

Methods
scDblFinder implementation
As a first step, the dataset is reduced to its top most expressed features (1000 by default); if the cluster-based approach is
used, the top features per cluster are instead selected.

The generation of artificial doublets then depends on whether the clustered or random mode is used. If using the cluster-
based approach (and not manually specifying the clusters), a fast clustering is performed (see Fast clustering). Artificial
doublets are then created by combining random droplets of different clusters, proportionally to the cluster sizes. In
explicitly concentrating on between-cluster doublets, we do not attempt to identify homotypic doublets, which are
anyway virtually unidentifiable and relatively innocuous. In doing so, we reduce the necessary number of artificial
doublets (since no artificial doublet is ‘lost’modeling homotypic doublets), and prevent the classifier from being trained
to recognize doublets that are indistinguishable from singlets, which would lead to calling singlets as doublets.

An alternative strategy also available in scDblFinder is to generate fully random artificial doublets, and use the iterative
procedure (see below) to exclude unidentifiable artificial doublets from the training. In practice, the two approaches have
comparable performances (Figure 3), and they can also be combined.

Dimension reduction is then performed on the union of real and artificial droplets, and a nearest neighbor network is
generated. The network is then used to estimate a number of characteristics for each cell, in particular the proportion of
artificial doublets among the nearest neighbors. Rather than selecting a specific neighborhood size, the ratio is calculated
at different values of k, creating multiple predictors that will be used by the classifier. A distance-weighted ratio is also
included. Further cell-level predictors are added, including: projections on principal components; library size; number of
detected features; and co-expression scores (based on a variation of Bais and Kostka 2020). scDblFinder then trains
gradient boosted trees to distinguish, based on these features, artificial doublets from real droplets. Finally, a thresholding
procedure decides the score at which to call a droplet by simultaneously minimizing the misclassification rate and the
expected doublet rate (see Thresholding).

Artificial doublet generation

For artificial doublet generation, only droplets with library sizes with the 5-95 percentiles are used. Doublets are then
created using random pairs of droplets (or random between-cluster pairs, if clusters are used). The majority (75% by
default) are generated by summing the counts of the two droplets. For the remaining the sum is divided by two and used as
mean for Poisson sampling to yield counts. If clusters are used, for half of these last doublets the contributions of the two
droplets are also re-weighted using the clusters’ median library size: rather than the two droplets contributing to the
doublet based on the ratio of their actual library size, this is averaged with the ratio of the median library size of their
respective cluster.

Parameter optimization

Using the benchmark datasets from Xi and Li (2021a), we next optimized a number of parameters in the procedure,
notably regarding features to include and hyperparameters, so as to provide robust default parameters (see Extended
data – Figures 8-11). Some features, such as the distance to the nearest doublet or whether the nearest neighbor is an
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artificial doublet, had a negative impact on performance (see Extended data – Figure 8), presumably because it led to
over-fitting. Finally, in line with a discrepancy between the trained and real problems, we observed that the variable
importance calculated during training (see Extended data – Figure 9) did not necessarily match that of the variable drop
experiments (see Extended data – Figure 8).

We finally optimized learning hyperparameters (see Extended data – Figure 10) and further input parameters (see
Extended data – Figure 11).

Fast clustering

Irlba-based singular value decomposition is first run using the BiocSingular package, and a kNN network is generated
using the Annoy approximation implemented in BiocNeighbors. Louvain clustering is then used on the graph. If the
dataset is sufficiently large (>1000 cells), a first rapid k-means clustering (using the mbkmeans package) is used to
generate a large number of meta-cells, which are then clustered using the graph-based approach, propagating clusters
back to the cells themselves.

Thresholding

Unless manually given, the expected number of doublets (e) is specified by e = n2/10�5 (where n is the number of cells
captured). This is then restricted to heterotypic doublets using random expectation from cluster sizes or, if not using the
cluster-based approach, using the proportion of artificial doublets misidentified. The doublet rate is accompanied by an
uncertainty interval (dbr.sd parameter), and the deviation from the expected doublet number for threshold t is then
calculated as

deviationt ¼
0 if ot ≥ elow ∧ ot ≤ ehigh

� �

2 � min ot� elowj j, ot� ehigh
�� ��� �

elowþ ehigh
otherwise

8><
>:

where ot represents the number of real cells classified as doublets at threshold t, and elow and ehigh represent, respectively,
the lower and higher bounds of the expected number of heterotypic doublets in the dataset (based on the given or
estimated doublet rate the dbr.sd parameter). The default value of the dbr.sd parameter was roughly estimated from the
variability of observed doublet rates (Extended data – Figure 4B). The cost function beingminimized is then simply given
by costt = FNRt + FPRt + deviationt

2, where the false negative rate (FNRt) represents the proportion of artificial doublets
misclassified as singlets at threshold t, and the false positive rate (FPRt) represents the proportion of real droplets
classified as doublets. This is illustrated in Extended data (Figure 4A).

Since this is performed in an iterative fashion, the FPR is calculated ignoring droplets whichwere called as doublets in the
previous round.

Doublet enrichment analysis
Cluster stickiness

Cluster ‘stickiness’ can be evaluated by fitting a single generalized linear model on the observed abundance of doublets of
each origin, in the following way:

log observediþ0:1ð Þ¼ log eið Þþβz � log difficultyið Þþβaaiþβbbiþβcciþ…þ ϵi,

where observedi and ei represent the numbers of doublets formed by specific combination i of clusters which are
respectively observed or expected from random combinations, and ai, bi and ci (etc) indicate whether or not (0/1) the
doublet involves each cluster.

Because some doublets are easier to identify than others, some deviation from their expected abundance is typically
observed. For this reason, a difficultyi term is optionally included, indicating the difficulty in identifying doublets of origin
i, which is the rate ofmisclassification of scDblFinder’s artificial doublets of that origin (by default, the term is included if
at least 7 clusters are present). A βa significantly different from zero, then, indicates that cluster a forms more or less
doublets than expected – if positive, it indicates cluster ‘stickiness.’
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For the (quasi-)binomial distributions, logit was used instead of log transformation, and the mean of observed and
expected counts was used as observational weights.

Enrichment for specific combinations

To account for the different identification difficulty across doublet types, we first fit the following global negative
binomial model:

log observedið Þ¼ αþ log eið Þþβ � log difficultyið Þ,

where observedi and expectedi are respectively the observed and theoretically expected number of doublets of type i, and
the difficultyi term is the same as for the stickiness problem above. Then, the fitted values are then considered the expected
abundance, and a p-value for each doublet type is given by the probability of the observed count under this adjusted
expected value, using either distribution (for the negative binomial, the global over-dispersion parameter calculated in the
first step is used).

Direct classification
The direct classification approach is implemented in the directDblClassification function of the package. It uses the same
doublet generation, thresholding and iterative learning procedures as scDblFinder, but trains directly on the normalized
expressionmatrix of real and artificial cells instead of kNN-based features. The hyperparameters were the same except for
the maximum tree depth, which was increased to six to account for the increased complexity of the predictors.

Feature aggregation
For feature aggregation (used for scATACseq), scDblFinder first normalizes the counts using the Term Frequency -
Inverse Document Frequency (TF-IDF) normalization, as implemented in Stuart et al. (2019). PCA is then performed and
the features are clustered into the desired number of meta-features using mini-batch k-means (Hicks et al. 2021) or, if not
available, simple k-means. The counts are then summed per meta-feature.

Benchmark
Datasets

We used the scRNAseq benchmark datasets prepared by Xi and Li (2021a), which were originally published by Kang
et al. (2018), Stoeckius et al. (2018), McGinnis, Murrow, and Gartner (2019), McGinnis et al. (2019), and Wolock,
Lopez, and Klein (2019).

Metrics

The area under the PR or ROC curves were calculated using integral method, implemented in the PRROC package (Grau,
Grosse, and Keilwagen, 2015). The adjusted AUPRC, meant to capture the AUPRC accounting for homotypic and
within-individual doublets, was calculated as the proportion of the unshaded area in Figure 4. Specifically, values were
linearly scaled values so that an observed FDR of corresponding to the expected proportion of within-individual doublets
is set to 0, and that an observed TPR corresponding to one minus the expected proportion of homotypic doublets as an
adjusted TPR of 1. Values were capped to be within a 0-1 range, and the area under the curve was calculated using
trapezoid approximation. The expected proportion of homotypic doublets was estimated using the clusters from the fast
clustering method described above (see Fast clustering).

The reported metrics are an average of the results of two runs using different random seeds.

scDblFinder operation
scDblFinder is provided as a bioconductor package. The input data for scDblFinder (denoted x below) can be
either i) a count matrix (full or sparse), with genes/features as rows and cells/droplets as columns; or ii) an object of
class SingleCellExperiment. In either case, the object should not contain empty drops, but should not otherwise have
undergone very stringent filtering (which would bias the estimate of the doublet rate). The doublet detection can then be
launched with:

library (scDblFinder)

sce <- scDblFinder(x)
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The output is a SingleCellExperiment object including all of the input data, as well as a number of columns to the colData
slot, the most important of which are:

• sce$scDblFinder.score: the final doublet score (the higher the more likely that the cell is a doublet)

• sce$scDblFinder.class: the binary classification (doublet or singlet)

scDblFinder can run on any system running R >= 4.0 and Bioconductor >= 3.12.

For more details, see the package’s vignettes.

Software availability
scDblFinder is available from Bioconductor: http://www.bioconductor.org/packages/release/bioc/html/scDblFinder.
html.

The source code is available from: https://github.com/plger/scDblFinder.

Archived source code at time of publication: https://doi.org/10.6084/m9.figshare.16543518 (Germain 2021a).

The software is released under the GNU Public License (GPL-3).

Data availability
Underlying data
figshare: scDblFinder. https://doi.org/10.6084/m9.figshare.16543518 (Germain 2021a).

This repository contains the following underlying data:

• scDblFinder 1.9.12 (archived software version used in the paper).

• scDblFinder_paper (code to reproduce the analyses and figures).

The code to reproduce the analyses and figures is additionally available at https://github.com/plger/scDblFinder_paper.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Extended data
figshare: Supplementary Figures for the scDblFinder paper.

https://doi.org/10.6084/m9.figshare.16617571 (Germain, 2021b)

This repository contains the following extended data:

• Supplementary Figures 1-10

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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Summary 
 
The authors describe scDblFinder, a computational tool for doublet/multiplet annotation in single-
cell RNA sequencing and single-cell ATAC sequencing data. They explain and motivate method 
design and parameter choices, reproduce a benchmark on scRNA-seq data (originally performed 
by Xi and Li  2021) and demonstrate scDblFinder’s performance; this includes inferring cell-types of 
origin for doublets, deriving binarized doublet calls, and annotating doublets scATAC-seq data. 
 
General Comments 
 
The reviewers note that they have not considered other reviews for the same manuscript prior to 
or during the writing of this report. 
 
scDblFinder is probably the most competitive method for computational doublet annotation, so 
this manuscript, describing the method in detail, is an important contribution and valuable for the 
community.  We have the following general comments:

Positive points of the manuscript that stand out are the authors’ discussion of their results 
on annotating cell-types of origin for doublets (and the conclusion that it remains a 
challenge), scDblFinder’s good performance on scATAC-seq data, and its thresholding 
approach for generating binarized doublet calls. 
 

○

While the quality of the manuscript is generally high, we still feel that clarity can be 
improved, especially in describing methods (see specific comments). 
 

○

Further on, as the authors describe, parameters of scDblFinder have been tuned to 
maximize performance on 16 benchmark data sets used for evaluation. As a consequence, 
performance comparison with methods that did not perform parameter optimization on the 
benchmark data is biased in favor of scDblFinder; this should be mentioned in the 
manuscript’s discussion section.

○

Specific Comments
Terminology: It would be good to consistently use a term (like “droplet”, for example) for 
sequenced units of RNA that can contain more than one cell, whereas the term “cell” could 
be reserved to indicate a single cell. 
 

○

In the introduction, the authors comment on drawbacks of multiplexing technologies and 
that they only identify a fraction of doublets. It would be good to (a) include that these 
experimental methods incur additional drawbacks, like increased cost and decreased yield 
and (b) that there are definite benefits of sample multiplexing in the context of 
experimental design. 
 

○
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Methods, page 3: It would be helpful to streamline the description of  scDblFinder's 
approach/procedure. Specifically, a verbal description would help. In the current version, for 
example, the authors talk about "the cluster-based approach", but it is not at all clear what 
they mean at that point in the manuscript. 
 

○

Methods, page 4: The authors state that mislabeled cells can mislead the classifier and use 
this to motivate their iterative approach (in paragraph 2). It would be helpful to reference 
Supplemental figure 5 here, which shows the positive effect of removing doublet-classified 
but singlet-annotated droplets. 
 

○

Formula on page 5: It is not discussed how the dbr.sd parameter that is used for e_low and 
e_high is estimated for a given dataset. Is there a motivation for choosing this specific 
functional form for deviation? 
 

○

Figure 2: It looks like the dashed line is not at the minimum of the cost function (black line). 
 

○

Formulae on page 6 and 8: It is not described how difficulty is estimated from 
misclassification of simulated doublets. In general, it would be good to present a consistent 
discussion for both models, including motivation, definition of all quantities, and error 
terms. 
 

○

For the dataset used in Figure 3, it would be helpful to give a more in detailed description of 
the cell lines (organism, type, etc). 
 

○

Methods page 9. In paragraph 1, how is the desired number of features determined (is it a 
method parameter)? 
 

○

Results page 10. It would be helpful to briefly describe cell lines in the Tian et al. 2018 
dataset (see previous comment about Figure 3). 
 

○

Results page 11. It would be helpful to add details about how artificial doublets were 
generated in paragraph 2. How were contributions "re-weighted based on the relative 
median sizes of the composing cell-types”? 
 

○

Results page 11. In paragraph 4 and Figure 5 panel B: How was the expected rate of 
homotypic / heterotypic doublets estimated? In the legend of Figure 5, maybe change 
“truth” to “annotation” (also in the short paragraph 5 on page 11). Further on, a description 
on how the adjusted AUPRC is calculated should be included. Since doublet prediction is 
imbalanced, has a non-zero minimum AUPRC 
(https://dl.acm.org/doi/10.5555/3042573.30427801) been taken into account as well? Finally, 
does the black dot in Figure 5 B denote a cutoff such that the number of doublets 
scDblFinder would call corresponds to the expected number of heterotypic doublets? 
 

○

Results page 11. In paragraph 5 (3 lines), it would be helpful to make explicit what two types 
errors are accounted for. Further on, it appears the adjustment is based on estimated 
doublet rates, and it would be good to discuss how reliable these are, and how that, in turn, 
impacts the adjusted areas under the curve. Finally, the reference should be to 
supplemental figure 8 (not 9). 

○
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Figure 6: It is not clear what the dots in panel A denote. In addition, it is really hard to 
compare the different points across panels B and C; perhaps sub-panels (one per curve) 
with both points on each curve would be clearer. 
 

○

Results page 11. For the last paragraph, it would be good to provide metrics that compare 
the two approaches in a qualitative way. One possibility would be a table showing for each 
benchmark dataset the number of annotated doublets, called doublets, false positives and 
false negatives together with a performance metric (e.g., Matthews correlation coefficient). 
 

○

Results, page 12. The authors conclude from Figure 7 that “as one” is the “best overall 
strategy”. Performance seems really close (and the conclusion only holds for AUPRC, not 
really for AUROC), so it is not clear if (a) the advantage is significant and (b) is expected to 
generalize to other data sets. This could be discussed. 
 

○

Figure 8 is very large. 
 

○

Figure 9: Some colors are different between panels C and D, which makes interpretation of 
the legend confusing.

○

Supplemental Figure 1: It would be helpful to better explain the setup in the legend, so it is 
clear what TRUE/FALSE mean and how differences in AUPRC are defined (e.g., high = better 
performance without variable, low = worse performance without variable). If the violins are 
summarizing 16 points, it might be informative to show the points themselves. Does the dot 
indicate the median or the mean, what interval is denoted? 
 

○

Supplemental Figure 2: In panel B, maybe show log of elapsed time. 
 

○

Supplemental Figure 3: Consider using the same type of violin plot as before.○

Typo on page 5: “based on the given or estimated doublet rate the dbr.sd parameter” 
should be “based on the given or estimated doublet rate and the dbr.sd parameter”. 
 

○

Typo on page 8: “probability of each double type” should be “ probability of each doublet 
type 
 

○

Type on page 11: “This, in turns, allows” should be “This, in turn, allows”○
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Is the rationale for developing the new software tool clearly explained?
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Is the description of the software tool technically sound?
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational genomics, evolutionary genomics, statistical phylogenetics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 23 Apr 2022
Pierre-Luc Germain,  

We thank the reviewers for their thorough reading and useful comments, and have tried to 
address all of them in the revised version. A detailed point-by-point version will be made 
available along with the new version, but here are the main points of response:

Bias due to parameter optimization based on the benchmark datasets: The 
reviewers were absolutely right to raise this important point, we now state it clearly in 
the discussion, with the note however that a previous version of scDblFinder 
(developed with only 5 of the datasets) was also found to outperform alternatives in 
the addendum to Xi and Li’s (2020) original benchmark.

1. 

Terminology and clarifications: We thank the reviewers for their excellent 
suggestions regarding terminology and clarifications, which we adopted in the 
revised version (see the full point-by-point response for details). We also tried to 
provide a simpler 'verbal' overview of the method in the Results section, as 
suggested, and to clarify the methods section.

2. 

AUPRC: We thanks the reviewer for the suggested paper on AUPRC. While it was 
quite an interesting read, we do not think that either the random or the minimal 
AUPRC affects any of the claims being made, as it is certainly well below any of those 
observed, and our main point in this section is that the performance in estimating 
heterotypic doublets is underestimated in most of the benchmark datasets. This 
being said, we now added the random expectation in Figure 4B.

3. 

Finally we also addressed the minor comments.4. 
 

Competing Interests: No competing interests were disclosed.
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Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 
CA, USA 
Chris McGinnis  
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Summary 
 
The authors describe scDblFinder — a doublet detection algorithm that uses gradient boosted 
trees to classify doublets as cells with elevated proportions of artificial nearest neighbors, library 
sizes, and co-expression scores. The authors describe parameter selection and hyperparameter 
optimization workflows before benchmark their method against the Xi & Li datasets. These efforts 
effectively demonstrate that scDblFinder performs very strongly relative to other doublet 
detection methods. Moreover, building on the existing doublet detection literature, the authors 
also make the following improvements/alterations to existing workflows and reaffirmations of 
previous observations:  
 

Authors simulate doublets using a ‘mixed strategy’ including summing counts, Poisson 
resampling of counts, and weighted-averaging of counts based on cell-type-specific library 
sizes. This approach is distinct from current methods which simulate doublets by 
summing/averaging counts or averaging PC coordinates — Perhaps an improvement but 
needs more analysis (Major comment #1).

○

 
Authors demonstrate that scDblFinder is predominantly sensitive to heterotypic doublets 
and that removing homotypic doublets from ground-truth data improves doublet prediction 
performance metrics — Affirming previous observations in the DoubletFinder and other 
manuscripts. 

○

 
Authors threshold doublet classification probability distributions (i.e., likelihood scores 
generated from gradient boosting) using a combination of two known approaches: (i) 
Threshold based on artificial doublet misclassification rate (from Scrublet) or (ii) Threshold 
based on expected number of doublets inferred from droplet microfluidics Poisson loading 
statistics (from DoubletFinder) — Perhaps an improvement (Major comment #2).

○

 
Authors show that scDblFinder (and other classifiers) should be run on individual scRNA-seq 
samples in instances when those samples are not multiplexed using Cell Hashing, MULTI-
seq, etc. — This is an ‘unwritten’ rule for doublet detection workflows but hadn’t been 
definitively demonstrated. 

○
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Authors show that scDblFinder performs as well as ArchR for predicting doublets in snATAC-
seq data after aggregating features — This is good to know, but authors need to include the 
current gold-standard for snATAC-seq doublet detection in their analysis, AMULET, such that 
readers are correctly informed about their analytical options for snATAC-seq doublet 
detection (Major Comment #3).

○

 
Authors present a strategy for inferring doublet origins which could be useful for identifying 
instances of biological doublets formed due to cell-cell interactions or ‘stickiness’ — Could 
be useful theoretically, but the approach is not sufficiently developed to be useful (although 
we commend the authors for including this analysis) 

○

 
On balance, we believe that scDblFinder is a great method (likely the new gold standard for the 
field) and strongly recommend its indexing, assuming that our Major Comments are addressed.  
 
Major Comments 
 

The authors do a good job at justifying the theoretical utility of the proposed ‘mixing 
strategy’ for doublet simulation in Figure 3. However, while the authors compare 
scDblFinder performance before/after dimensionality reduction and kNN and using cluster-
limited vs random doublet simulation, they do not do analogous analyses for comparing the 
‘mixing strategy’ to more standard methods (e.g., summing, averaging, etc.). As such, it is 
unclear whether the proposed strategy improves performance. 
 

1. 

In Figure 6, the authors plot ROC curves annotated by the thresholds defined by their 
proposed cost-minimization framework (Fig. 6B) or by the expected number of doublets 
(Fig. 6C). Since the cost-minimization framework also aims to minimize artificial doublet 
misclassification rate (as implemented by Scrublet), we would also like to see the same ROC 
plots with thresholds defined by this strategy (i.e., instead of just the expected doublet 
strategy implemented by DoubletFinder). We would also like the authors to provide 
summary statistics for the comparisons (see Minor Comment #1) Without this, it is unclear 
whether the cost-minimization framework is actually an improvement over existing 
approaches.   
 

2. 

The application of scDblFinder to snATAC-seq data is not satisfactory as it only involves 
benchmarking against ArchR, which was recently shown in the AMULET paper (Thibodeau, 
Eroglu, et al. Genome Biology, 2021) to perform sub-optimally on snATAC-seq data. The 
authors need to include reference to AMULET in this section and benchmark the 
performance of AMULET, ArchR, and scDblFinder. 
 

3. 

We believe that the manuscript in its current form suffers from poor readability – we really 
had to parse every sentence in the Methods section to understand what the authors were 
intending to convey. For one tangible example, when discussing the overfitting hypothesis 
on page 4 (which itself was conveyed quite clearly), the authors could include a clear 
rationale for why comparing scDblFinder performance before and after dimensionality 
reduction and kNN addresses the hypothesis. Notably, we believe that this manuscript was 
very well-executed and that scDblFinder is a great method. We also recognize that the 
authors write very accessibly in the Results section. However, many in the single-cell 
genomics community who may want to use scDblFinder are not machine learning experts 

4. 

 
Page 23 of 26

F1000Research 2022, 10:979 Last updated: 16 JUN 2022



will likely have a hard time appreciating the quality of this work, especially in its current 
structure (i.e., Methods section before Results). As such, we strongly recommend that the 
authors add more ‘plain English’ explanations to the Methods section (or put the Results 
before the Methods section, if the journal will allow that) to improve readability for a 
broader audience. 
 

Minor Comments
Should provide quantitative analysis of distance of scDblFinder vs heterotypic doublet 
thresholding strategies to the real inflection point (related to Figure 6). 
 

1. 

Authors should cite papers related to the benchmarking datasets used in Xi & Li.1   
 

2. 

Authors should cite Chord from Xiong and colleagues, which also uses boosting to improve 
doublet detection.2 
 

3. 

On page 3, the authors state that multiplexing approaches “identify only a fraction of the 
doublets” — this is technically true, but a bit misleading. The fraction of doublets detected in 
multiplexing experiments scales with the number of multiplexed samples. In instances 
where only a handful of samples are multiplexed, it is fair to say that ‘only a fraction' are 
identified. However, any modestly large experiment will result in the vast majority of 
doublets being detected. And even in the lowly multiplexed contexts, it is straightforward to 
remove heterotypic at the cluster-level by identifying clusters enriched for empirically-
defined doublets. Authors should clarify (or remove) this statement as it suggests that 
scDblFinder is a ‘competitor’ with multiplexing approaches for doublet detection 
performance. Computational prediction will very rarely out-compete empirical 
measurements — instead, scDblFinder has the key advantage of being applicable to any 
past or future scRNA-seq data, which is not the case for Cell Hashing, MULTI-seq, etc.

4. 
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Is the rationale for developing the new software tool clearly explained?
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Is the description of the software tool technically sound?
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
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Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Tissue engineering and single cell analysis method development

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 23 Apr 2022
Pierre-Luc Germain,  

We thank the reviewers for their thorough reading and useful comments, and have tried to 
address all of them in the revised version. A detailed point-by-point version will be made 
available along with the new version, but here are the main points of response:

Artificial doublet generation: The reviewers are right that we simply assumed, 
because the doublets showed lower library size than expected from summation, that 
the mixed strategy would be superior. We now tested this, along with averaging. 
While averaging expectedly resulted in poorer performance, we in fact did not see a 
clear overall improvement of the mixed strategy. We now discuss this explicitly.

1. 

Thresholding: Following the reviewers' suggestions, we also rewrote much of this 
section in a more open fashion, reflecting the choices that ultimately enter any 
thresholding decision (i.e. the lack of an objective optimal threshold), and changed 
the figure to provide clearer readouts that compare more alternative procedures.

2. 

scATACseq: Thanks for the suggestions, at the time of submission we were not aware 
of the AMULET method. We now included it in the comparison, along with the dataset 
with ground truth with which it was published. We also reimplemented the method in 
our package, for the convenience of R users.

3. 

Text structure and clarity: With permission from f1000, we now moved the Methods 
section to the end (as it was originally conceived), tried to offer a simpler overview of 
the method in the Results section, and to clarify the methods.

4. 

Finally we also addressed the minor comments.5. 
 

Competing Interests: No competing interests were disclosed.
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