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A B S T R A C T

Lesion-deficit mapping remains the most powerful method for localising function in the human brain. As the
highest court of appeal where competing theories of cerebral function conflict, it ought to be held to the most
stringent inferential standards. Though at first sight elegantly transferable, the mass-univariate statistical fra-
mework popularized by functional imaging is demonstrably ill-suited to the task, both theoretically and em-
pirically. The critical difficulty lies with the handling of the data's intrinsically high dimensionality. Conceptual
opacity and computational complexity lead lesion-deficit mappers to neglect two distinct sets of anatomical
interactions: those between areas unified by function, and those between areas unified by the natural pattern of
pathological damage. Though both are soluble through high-dimensional multivariate analysis, the con-
sequences of ignoring them are radically different. The former will bleach and coarsen a picture of the functional
anatomy that is nonetheless broadly faithful to reality; the latter may alter it beyond all recognition. That the
field continues to cling to mass-univariate methods suggests the latter problem is misidentified with the former,
and that their distinction is in need of elaboration. We further argue that the vicious effects of lesion-driven
interactions are not limited to anatomical localisation but will inevitably degrade purely predictive models of
function such as those conceived for clinical prognostic use. Finally, we suggest there is a great deal to be learnt
about lesion-mapping by simulation-based modelling of lesion data, for the fundamental problems lie upstream
of the experimental data themselves.

1. Introduction

In common with all scientific inference, the fidelity of lesion-deficit
mapping depends on the quality of the source data and the validity of
the models applied to it. Though equally important, the two aspects are
sharply distinct: a deficit in neither is remediable by an excess of the
other. Whereas a good model may be improved by better data, a de-
fective model is often irredeemably so. The validity of a model is judged
by hard, logico-mathematical criteria, the quality of data by softer,
empirical opinion. Inferential failure resulting from poor data tends to
be graceful, proportionate with the degree of data corruption; by con-
trast, model errors may have catastrophic consequences even when
seemingly minor. Worse, failure from a defective model is often silent,
cloaked in superficially attractive significance values that conceal fatal
biases in the inference repetition can only entrench. Where no other
inferential technique is stronger, such systematic errors may easily
persist indefinitely.

Why do we need reminding of these statistical platitudes? The ha-
zards of modelling are greatest where the complexity of the system
under study is highest, as is archetypally true of the brain. For our

purposes it suffices to define complexity as the minimum number of
dimensions required to predict one state of a system from another: its
intrinsic dimensionality. If our models cannot be commensurately com-
plex—for reasons of intellectual opacity or computational tractabil-
ity—it is tempting aggressively to simplify them, for then the un-
modelled signal superficially resembles noise. But if the residual
variance retains appreciable structure, the inference will be distorted in
ways the simplicity of the model merely conceals from view. The in-
evitable inferential distortion aside, the more non-stochastic variability
the model does not explain, the weaker its explanatory power, and—of
course—its practical, clinical utility.

So how do we determine the correct dimensionality? A perfect an-
swer is impossible, for it assumes precisely the knowledge our models
are deployed to acquire. But we can examine the grounds for an in-
formed supposition, and we can also explicitly test the consequences of
adopting one solution over another. Here we give the empirical and
conceptual grounds for our view on the necessary dimensionality, and
go on to outline the explicit tests one ought to conduct to confirm or
infirm it. Although this is certainly not the only important methodo-
logical concern in lesion-deficit mapping, we dwell on it at length here
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because it has received so little of the attention it requires.

2. The dimensionality of anatomical inference in the brain

Let us first clarify how the dimensionality of an inferential model is
determined. Formal lesion-deficit mapping began with taking the
overlap of a set of lesions and contrasting the peak with that derived
from another, control set of patients (e.g. (Robertson et al., 1988)).
Such a comparison is produced by a simple voxel-wise operation that
ignores any anatomical relationship but that between homologous
voxels across the two groups. This is mass-univariate inference, even if
it was not called so at the time, for the contribution of each voxel is
independently quantified by its own, univariate test, whether implicit
or explicit. By replacing simple subtraction with a formal statistical test,
voxel-wise lesion-symptom mapping (VLSM) and kindred techniques
add a measure of confidence to the inference at each voxel, leaving the
independence assumption untouched, and the inference univariate
(Bates et al., 2003; Chen and Herskovits, 2010; Damasio et al., 1996;
Karnath et al., 2004; Rorden et al., 2007). Additional variables may be
added to the voxel-wise statistical test—various behavioural covariates,
for example—making it multivariate, but not from the critical per-
spective of the anatomy, for that is still modelled as a set of independent
locations, evaluated over multiple statistical tests run at each voxel in
isolation from every other. So this is still mass-univariate anatomical
inference, even if its behavioural dimensionality may be expanded.

Now two manoeuvres here commonly escalate the anatomical di-
mensionality. The most common is the addition of lesion volume as a
covariate, a crude index of damage at other voxels (Karnath et al.,
2004). This attempts to capture the effect on behaviour of the global
change in available brain substrate, independently of anatomical loca-
tion, reasoning that parcelling out such anatomically non-specific ef-
fects will increase sensitivity for the anatomically specific effects of
interest. Less common is the use of Gaussian smoothing, which changes
the value of a voxel on the assumption is relation to its neighbours is
adequately described by a random Gaussian field (Kimberg et al.,
2007). Since neither is capable of conveying any substantial anatomical
detail, most would still regard such models as mass-univariate. More-
over, we still have one model per voxel, and therefore as many models
as there are estimated voxels in the brain.

An analysis becomes anatomically multivariate where the statistical
model incorporates many anatomical variables, indexing the presence
or absence of damage to different parts of the brain together (Chen et al.,
2008; Chen and Herskovits, 2015; Keinan et al., 2004; Mah et al., 2014;
Rondina et al., 2016; Smith et al., 2013; Toba et al., 2017; Yourganov
et al., 2016; Zhang et al., 2014). The dimensionality of such models
depends on the number of such variables and their properties. Where
the variables are correlated, the intrinsic dimensionality will be less
than their number, but this is usually something to be established by the
analysis itself, implicitly in the inferential model, or explicitly in a
preceding dimensionality reduction step. Either way, each inferential
model now covers all or a substantial part of the brain, leaving us with
one or few models per brain where a multiplicity of voxels describe a
large number of dimensions per model.

Naturally, the dimensions of behaviour and anatomy are bound to
interact, and a model may be critically deficient in either or both. Our
focus here is on the anatomical not because the others should be ne-
glected but because the anatomical near-universally have.

3. Two determinants of dimensionality: brain and lesions

It is natural to think of anatomical factors as pertaining only to the
functional architecture of the brain. But in lesion-deficit mapping this is
only one side of the coin: there is a second anatomical dimensionality to
consider, that arising from the lesion architecture. We need to examine
each in turn.

3.1. Brain dimensionality

That Lego® is not helpfully metaphorical of the brain's functional
architecture is increasingly recognized in the emphasis on highly dis-
tributed operations subserved by complex, dynamic functional net-
works (Sporns et al., 2005). Both disruptive and correlative data un-
equivocally point to an underlying neural organisation in which
complex interactions between areas determine the observed behaviour
(Young et al., 2000). Such interactions may be non-monotonic, re-
flective of neural relations that could just as easily be competitive as
collaborative. They are—moreover—bound to be adaptive, varying
across both time and individuals. An entire field of clinical neu-
roscience—functional neurosurgery—richly illustrates these truths in
each and every patient, where disruption of one area of the brai-
n—optimised both within and across patients—is used to improve the
function of the brain as a whole (Jha and Brown, 2011; Johnson et al.,
2008).

A satisfactory model of a lesioned brain must therefore not only
model the individual functions of the affected areas but their—poten-
tially highly complex—interactions. The syndrome of visuospatial ne-
glect offers a striking example of this: neglect caused by damage to
inferior parietal areas may not only not be exacerbated by damage to
the contralateral frontal eye field but wholly reversed by it (Vuilleumier
et al., 1996). It is obvious that in evaluating the lesion-deficit re-
lationship in a patient we must here model the presence and absence of
damage at both loci, together, and if this is true of this particular pair it
may be true of any combination of areas, across the entire brain (Price
and Friston, 2002; Zavaglia and Hilgetag, 2016).

The optimal lesion-deficit model, then, is one in which the integrity
of each functionally homogeneous location in the brain is a separate
variable. Since no wholly convincing definition of functional homo-
geneity is currently available (pace (Glasser et al., 2016)), our limit
becomes practical: such anatomical parcellation of the brain as our
tools can provide, minimally the voxel size of the imaging acquisition.
Anything short of this will miss interactions at a finer level of anato-
mical organisation. Even with voxel sizes of remarkable coarse-
ness—8 mm isotropic—this leaves us with several thousand variables
per brain: a high-dimensional model, certainly in proportion to the
number of patients included in the typical lesion-deficit study.

3.2. Lesion dimensionality

The variable expansion we are discussing here is driven by the di-
mensionality of the functional architecture. But in lesion-deficit map-
ping there is a second, independent dimensionality to consider: that of
the lesion architecture (Mah et al., 2014, 2015). Where lesions over-
lap—and are generally larger than the minimal size of functionally
homogeneous areas—the lesion-deficit relation will be influenced by
both the functional and the lesion architecture. This is overwhelmingly
true of the lesions described in the current literature, a reflection of the
natural characteristics of the underlying pathology, especially the
commonest: vascular injury.

Let us consider carefully why the lesion architecture matters here. In
functional imaging, the physiological cause of the change in the BOLD
signal operates at sub-voxel granularity, for it is driven by the micro-
vasculature (Logothetis et al., 2001). Such anatomical structure as
emerges at the voxel level is then plausibly related to the underlying
neural anatomy, even if there may well be non-linearities in the relation
between BOLD and neural activity across the brain (Birn et al., 2001;
Heeger and Ress, 2002). If two voxels are co-activated it will not be
because an idiosyncrasy of the microvasculature makes it so, for the
vascular causal mechanisms do not operate at that anatomical scale.
Consider, by contrast, lesion-deficit mapping, where the effective
equivalent of BOLD activation is a lesion, almost invariably extending
across multiple voxels as an outcome not of the underlying functional
anatomy but of the causal pathological process. The anatomy of the
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lesion is highly unlikely to be random, for the underlying pathological
process rarely is: if two voxels are damaged together, it is because a
pathological process—exhibiting its own structured characteristic-
s—has caused it.

These characteristics will vary from one pathological process to
another. In the case of the commonest macroscopic focal brain patho-
logy—ischaemic injury—they will inevitably reflect the complexity of
the macrovascular architecture of the brain. Without a satisfactory
means of registering vascular trees and modelling their interaction with
the various forms of pathological stenosis and occlusion, we cannot
easily arrive at a sharp estimate, but it is wildly implausible the char-
acteristics of the resultant lesions will be either simple or perfectly
random. Other common pathologies—neoplasms and traumatic in-
juries—will similarly produce lesions no simpler than the complex
processes that cause them. Unlike functional imagining, then, in lesion-
deficit mapping we must also take into account the patterns of covar-
iance across voxels resulting from the underlying pathology: what we
have termed parasitic voxel-voxel associations. This problem is also
likely to be intrinsically high-dimensional, for the pathological pro-
cesses are irreducibly complex.

There are then two, independent, a priori reasons for adopting a
high-dimensional approach: the complexity of the functional archi-
tecture of the brain, and the complexity of the anatomical structure of
lesions. Since the inferential consequences of neglecting each kind of
complexity are radically different, it is crucial we understand the dif-
ferences between them. Most researchers are justifiably relaxed about
the former, and alarmingly unaware of the dangers of the latter.

4. The consequences of neglecting dimensionality

Let us imagine a new disease—something resembling neurocysti-
cercosis (Garcia and Del Brutto, 2005)—that inactivates discrete vo-
lumes of tissue exactly the size of a single voxel randomly drawn from a
uniform spatial distribution. Here the lesion architecture is definition-
ally random, and so cannot be expected to introduce a significant bias
in any inference. The dimensionality we need to be concerned about
therefore reduces to that of the functional architecture itself. What
happens if we ignore it, following conventional mass-univariate func-
tional imaging and the lesion-deficit mapping inspired by it?

Functions dependent on single, contiguous, anatomically-invariant
areas, will be mapped with spatial precision that will monotonically
increase with sample size, in exact analogy with functional imaging.
The greater the variability of the critical anatomical location the less
precise will be the resultant map—and consequently its individual
predictive performance—but the limit is here merely the inter-subject
variance on which the very conception of a population map is premised.

Functions dependent on multiple, discrete areas, will be mapped
with spatial precision that will also monotonically increase with sample
size, but will be modulated by the nature of their functional interac-
tions. Where this is adequately described by an OR operator—e.g. a
syndrome results from damage to area X or area Y—identifying each
area will naturally be harder, for a model of one critical area will in-
correctly "see" instances of damage to another as false negatives. Where
the operator is an AND, the problem will be the converse: the model of
each area will see instances of damage local to it as false positives. But
in both cases, although a map may take more samples to define, its
precision will also be bounded merely by the inter-subject variability in
the anatomical locations of the critical areas, exactly as with functional
imaging. And having identified multiple, spatially discrete areas, a re-
searcher would naturally be subsequently drawn into exploring their
interactions, implicitly escalating the dimensionality of the model as
functional imagers do when they model psychophysiological interac-
tions. Of course, if having identified just one area from an inadequate
sample the researcher stops collecting data and goes to print, a spatial
bias may nonetheless emerge, but as a consequence less of the in-
ferential framework than of the infelicities of wider scientific practice.

In short, neglecting interactions between functional areas makes
lesion-deficit mapping harder, but not necessarily less accurate.
Dimensional poverty is here acceptable, and though greater wealth is
desirable it would be nouveau riche to insist on it.

Now consider the converse of the preceding imagined example: an
organisation of the brain where a given function depends on a single
voxel—disabled when it is hit, normal when it is intact—but where the
lesions used to map it exhibit the complex architecture seen in clinical
reality. Here the functional architecture is definitionally simple, and so
cannot be expected to introduce a significant bias in any inference. The
dimensionality of concern becomes only that of the lesion architecture.
What happens if we ignore this dimensionality, as conventional mass-
univariate inference does?

Whenever a target voxel is hit, other voxels will be collaterally hit
with it, as shaped by the covariances naturally introduced by the pa-
thological process. Though irrelevant, these voxels will be parasitically
associated with the function, in a manner dictated by the lesion—not
the functional—architecture. The estimated cluster of significantly as-
sociated voxels will then contain not just the target voxel but poten-
tially many others, following a pattern that need neither centre on the
voxel nor exhibit any functionally-determined relation other than en-
closing it. Crucially, this relation will not be random, for the pathological
process determining it is not random. Within the frequentist framework
in commonest use, there are no grounds for favouring one voxel
crossing the significance threshold over another, but even within a
Bayesian framework voxels with perfect collaterality will be indissoci-
able. The centroid of that cluster may therefore be far from the critical
voxel. The resultant mislocalisation will only be entrenched with re-
petition, for the effect arises not from noise but from an unmodelled
source of spatial bias in the lesion data. So even a model of the brain of
utterly implausible simplicity—invariant single-voxel dependence—-
will consistently mislocalise when the complexity of the lesion archi-
tecture is neglected (Fig. 1) (Mah et al., 2014).

If we complicate our model of functional anatomy to the re-
gional—rather than single-voxel—dependence closer to reality, the re-
sultant mislocalisation can only be worse, for now distinguishing be-
tween critical and parasitic voxels becomes much harder. Moreover, a
set of irrelevant, collaterally damaged voxels will be more strongly as-
sociated with the deficit if damage to no part of a larger set of actually
critical voxels shows comparable or lesser variability. The most sig-
nificant cluster here need not include any part of the critical region at
all, let alone its totality. And if we now complicate our model even
further to include interacting networks of remote areas—the only bio-
logically plausible organisation of the brain—it should be obvious the
biasing effects can only be massively amplified. Given the known
complexity and range of white matter connectivity, such remote in-
teractions could never be modelled simply, and certainly not merely by
proximity (Herbet et al., 2015; Mah et al., 2015). And the more dis-
tributed the anatomy, the more of the inferred lesion-deficit structure
will be driven by the lesion architecture, for its biasing influences are
then given even freer reign.

In short, ignoring the complexity of the lesion architecture does not
make lesion-deficit mapping harder, it invalidates it completely.
Dimensional poverty is here is simply not acceptable, for all we can say
of low-dimensional models is that they are certain to be misleading.
This is the principal reason for insisting on a high-dimensional approach
in lesion-deficit mapping, not the distributed nature of the functional
architecture of the brain (Table 1).

5. Evaluating lesion-deficit models with synthetic ground truths

Were switching to high-dimensional modelling simply a matter of
adding another toolbox to one's MATLAB path, we need do no more
than draw attention to the foregoing. But one cannot easily escalate the
dimensionality of a model without increasing the minimal size of the
datasets needed satisfactorily to estimate it. High-dimensional methods
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often require machine learning based on exotic mathematics outside the
comfort zone of many statisticians, let alone biologists, and may con-
stitutionally lack easy interpretability anyway (Angermueller et al.,
2016). In a field where securing even modest cohorts of patients is a
challenge, and where the focus of intellectual attention is generally far
from novel computational methods, it is easy to perceive insisting on
such a change as destructive, nihilistic even.

So however inevitable conceptually, we need to demonstrate the
need for change empirically. What form should such a demonstration
take? We must use real lesion data, for we are concerned with its em-
pirical properties. But we cannot easily use real functional anatomy
when this is what we use lesion mapping to determine in the first place.
We could use the power to predict individual behaviour as a proxy

measure of anatomical fidelity, but such a test has two critical defects.
First, it is only one-sided: a high-dimensional model may perform as
badly as a low-dimensional one simply because the underlying func-
tional anatomy is too variable, not because the model is not vastly
superior. Second, even when correctly estimated, a high-dimensional
model may sometimes achieve relatively high individual predictive
power without adequately identifying the underlying causal anatomical
features.

Rather than use real functional anatomy here it is far better to de-
fine a synthetic, artificial ground truth. This gives us full control over
the space of possible anatomical organisations, allowing us to quantify
the mapping error for arbitrarily large families of different lesion-deficit
models (Inoue et al., 2014; Mah et al., 2014; Pustina et al., 2017;
Sperber and Karnath, 2017; Zhang et al., 2014). That our models will
likely be simpler than reality is not a critical defect, for we are inter-
ested in quantifying the minimal error: the "best case" scenario. If this
error is large, then the reality can only be worse. Where such an ana-
lysis is combined with a lesion dataset far larger than is generally used
in lesion-deficit studies, the error cannot plausibly be trivially attrib-
uted to relative undersampling, and so its quantification becomes au-
thoritative.

Though powerful—indeed key to further progress in the field—such
modelling has rarely been applied to the problem of dimensionality in
lesion-deficit mapping. But we can use the five published studies (one
available only in pre-print form) to highlight the distinctive features
and limitations of the approach (Inoue et al., 2014; Mah et al., 2014;
Pustina et al., 2017; Sperber and Karnath, 2017; Zhang et al., 2014).

First, the critical output of interest of a synthetic lesion-deficit
model is the estimated distribution of anatomical mislocalisation, not
any qualifying statistic, essentially the size of the anatomical error. This
tells us how wrong, in millimetres, the spatial inference will on average

Fig. 1. The biasing effects of the vascular tree.
Three-dimensional vector plot of the direction
(colour map) and magnitude (length of arrow) of
mislocalization at adequately sampled voxels within
three representative planes (left axial, top coronal,
bottom sagittal), based on a sample of 581 acute
stroke lesions, normalized into standard stereotactic
space and mirrored onto one hemisphere (see Mah
et al., 2014 for details). The value at each voxel was
calculated by labelling the stack of 581 lesioned
volumes as being ‘affected’ or ‘unaffected’ depending
on whether or not that voxel fell within the lesion in
each volume, running a standard voxel-wise Fisher's
exact test-based mass-univariate analysis on the two
groups, and identifying the centre of mass of the
resultant significant cluster, identified by the
asymptotic p-value thresholded at a Bonferroni cor-
rected p<0.01. This procedure was performed at all
voxels hit more than three times in the data set. Each
arrow points from the true location of a voxel in the
brain to the location where the mass-univariate
model erroneously places it. The colour map corre-
sponds to the orientation of this error vector in the
visualised plane. Note that the mislocalization tends
to follow the organisation of the vascular tree, with
clusters corresponding to the branches of the middle
cerebral, anterior cerebral, and posterior circula-
tions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web
version of this article.)

Table 1
The dimensionalities of lesion-deficit inference. The inferential consequences of ne-
glecting the dimensionality of lesion-deficit data vary depending on the source. Where the
anatomy is complex, mass univariate methods are inefficient but not necessarily biased.
By contrast, where the lesion anatomy is complex, mass univariate methods become
unquantifiably biased. High-dimensional multivariate inference solves both problems, but
is conditional on the availability of large datasets. Note what constitutes sufficient data is
difficult to prescribe, for conventional power analyses are not applicable here: the only
guide is behavioural predictive performance of the anatomical model, tested on in-
dependent, “out-of-sample” data.

Dimensionality of functional
anatomy

Dimensionality of lesion
anatomy

Mass-univariate
inference

Insensitive but spatially
mostly unbiased, given
sufficient data

Spatially biased,
regardless of data size.

High-dimensional
multivariate
inference

Sensitive and spatially
unbiased, given sufficient
data

Sensitive and spatially
unbiased, given sufficient
data
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be, given the underlying model of lesion-deficit relations. That the
distribution of another model is statistically different does not matter if
the extent of mislocalisation remains substantial. For example, the
change in the distributional mean error to 11.5 mm reported by Sperber
and Karnath—under idealised, synthetic conditions—still leaves en-
ough error to mislocalise across lobes of the brain: this is miles, in
neuroanatomical terms. Reviewing a set of such studies meta-analyti-
cally, the salient values are the size and variance of the localisation
error across them. In the five independent studies carried out so far,
mass univariate approaches are shown to produce errors of similar and
very substantial order. Where comparisons with high-dimensional ap-
proaches are drawn, the errors are materially—not just statistically—-
lower (Mah et al., 2014; Pustina et al., 2017; Zhang et al., 2014).

Second, any estimated error distribution will always be specific to
the hypothesized lesion-deficit relation. Since the real lesion-deficit
relation is definitionally unknown, we must hypothesize a variety of
them. It is natural to structure this process hierarchically, beginning
with simple relations, incrementally escalating to the complexity likely
to obtain in reality. A model that performs poorly when the relation is
simple can only be worse when it is more complex. Making the simplest
modelled relation too simple to be biologically plausible ensures any
error is not trivially explained by an artificially contrived complexity.
Modelling simple relations can also help illustrate the likely source of
lesion-induced bias: in Mah et al. (2014), for example, revealed by the
patterns of distortion to be the anatomical structure of the vascular tree.
Though the model has no explicit information about the vasculature,
when a single-voxel lesion-deficit is assumed the resultant mis-
localisation field clearly identifies the major vascular territories,
thereby revealing them to be its principal drivers (Fig. 1).

Crucially, a methodological change that improves the error for a
simple lesion-deficit relation cannot be assumed to have an identical
effect with more complex relations, indeed any effect at all. For

example, one could trivially invert the error field depicted in Fig. 1 to
“correct” a model, but this would only work were the lesion deficit
relation really that simple. The challenge is to devise a method that
succeeds with models of complexity far closer to reality—including two
or more interacting areas—and is explicitly shown to do this (Mah
et al., 2014; Pustina et al., 2017). Where a new approach is advocated,
it is insufficient to stop at the first hurdle, examining only simple, single
area models, as two of the published studies have done (Sperber and
Karnath, 2017; Zhang et al., 2014).

Third, the point of synthetic modelling is to illuminate the optimal
approach in the real world, not to come up with a solution specific to
the synthetic context. One cannot, for example, bend the basic rules of
inference. Sperber and Karnath (2017) arbitrarily prune the voxels of
each modelled lesion at a proportional cuttoff—those affected in at least
5% of all lesions in any one study. Before any modelling proper begins,
each lesion is distorted by removing voxels from it, to a degree and in a
pattern that unpredictably interacts with their comparative rarity. Be-
cause the criterion is proportional, if one assembled a dataset of (say)
10,000 lesions one would still needlessly distort lesions in the same
way, even though such voxels would now be sampled 500 times. To
bring rare voxels back into the picture one would have to remove le-
sions confined to common areas, further distorting the lesion patterns
fed into the model. Rarely hit voxels are, of course, generally further
away from the vascular tree (where, as here, the aetiology is
ischaemic), and so pruning them trivially reduces the mean localisation
error. But to accept this is to assume that the function of areas of the
brain varies with their vascular position, indeed that they might simply
be ignored on that account alone. This is justifiable neither statistically
not neuroanatomically, whatever any synthetic model might say. Any
proposed solution must be inferentially viable in its real world appli-
cation to be worth investigating at all.

Fourth, it is helpful to remember that no methodological innovation

Fig. 2. The relation between lesion probability
and overall lesion volume. Reanalysing the data
presented in Mah et al. (2014), here we used Baye-
sian logistic regression (Makalic and Schmidt, 2016),
performed independently at each voxel, to estimate
the odds ratio for the relation between the volume of
a lesion and the probability of damage at each lo-
cation across the brain. The odds ratios are visualised
as box glyphs whose colour and dimensions are
proportional to the estimated value. Note the en-
ormous variation in the odds across the brain, and
the complex anatomical pattern—distinct from the
pattern observed in Fig. 1—it follows. Using lesion
volume as a regressor in a mass-univariate lesion-
deficit model will thus unquestionably distort the
inference, penalising voxels more commonly hit by
large lesions such as those that reach the cortical
periphery or fall on vascular territorial boundaries.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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can break the fundamental laws of physics. Where a distorting effect is
generated by the complex interaction of irreducibly many variable-
s—here the complex spatial features of lesions—it cannot be sa-
tisfactorily corrected by any single variable. For example, we know le-
sion volume could not explain the biasing effects we observe, for one
could not thereby generate the error map shown in Fig. 1 or its inver-
sion: the necessary information simply is not there. Of course, a single
variable may well modify the pattern of distortion. Since lesion volume
shows its own idiosyncratic variations with anatomy (see Fig. 2), it is
bound to bias any low-dimensional spatial inference that incorporates it
as a covariate. Areas of the brain showing strong correlations with le-
sion volume—generally those at the edges of vascular boundaries—will
be unjustifiably penalised, whereas others just as unjustifiably fa-
voured. For most voxels the error will be increased, for some it might be
decreased because lesion volume gives the model some, even if in-
credibly crude, idea of collateral damage, but the effect overall will be
to substitute one kind of distortion for a subtly differing other.

This is indeed what Inoue et al. (2014) found in their comprehensive
simulation analysis. Sperber and Karnath (2017), by contrast, report a
reduction in mislocalisation, and suggest regressing out lesion volume
as a way of “correcting” mass univariate analyses. The a priori concerns
aside, their approach is mathematically invalid, for they apply linear
rather than logistic regression to a binary classification, rendering the
residuals uninterpretable. Confidence in their calculations is further
undermined by some of the vectors in their estimated error fields
pointing outside the slice, where the estimated centroids could not
physically lie (see Fig. 5 in their paper). In any event, where the pro-
posed manoeuvre is information-theoretically powerless to correct the
error, the value of any modelling is moot.

Fifth, although synthetic models have so far been used to quantify
the fidelity of mapping behaviour onto anatomy, they can—and
should—be used to quantify the fidelity of the inverse inference: from
lesioned anatomy to behaviour (Godefroy et al., 1998). It is useful to be
able to predict the behaviour of a patient—now, in the future, or in
response to treatment—from the pattern of damage in conjunction with
other clinical parameters. Since the behavioural effects are inevitably
generated through the anatomy, one cannot ignore it, but it is here
implicit in the model. Crucially, whether or not it is distorted need not
affect the fidelity of any behavioural prediction, for all we need care
about now is differentiating between lesions, not between the anato-
mical areas they disrupt.

To illustrate the point, consider a pathological process that always
damages a neural locus that is itself of no consequence whatsoever.
Damage to this locus will now be a “biomarker” with a sensitivity and
specificity dependent wholly on the strength of the lesion-deficit asso-
ciation, not on any aspect of its specific function. Naturally, for the
pathology to have a behavioural consequence it must also damage
other, functionally critical, areas. But though our biomarker cannot be
better than an index that correctly identifies all critical areas—logically
cannot—it may offer a parsimonious description of their integrity that
makes it reasonably and efficiently predictive. A simple analogy is the
use of troponin in detecting a myocardial infarction: it could never be
better than acute histology, but it is much more convenient to perform a
blood test.

But none of this means lesion dimensionality may be ignored with
impunity in this context, as some have argued (Price et al., 2017). In the
next section, we briefly outline how the issue may be explored with
synthetic models of lesion-deficit clinical prediction rather than lesion-
deficit anatomical mapping.

6. Lesion-deficit models for clinical prediction

Consider two groups of lesioned patients differing in some beha-
vioural parameter of interest such as response to rehabilitation. If the
behavioural outcome is sensitive to the neuroanatomy, the lesion pat-
terns in the two groups may differ. If so, a mass-univariate test will

identify a set of discriminating voxels, which may or may not coincide
with the causal neuroanatomy as the lesion bias dictates. To infer the
behavioural outcome in an individual patient whose membership of the
groups is unknown, we need to compare his lesion with the set of dis-
criminating voxels, usually by calculating a (weighted) overlap be-
tween the two. The sensitivity and specificity of the classification then
depends solely on how well the cluster of discriminating voxels reflects
membership of the two groups. Parasitic voxels that are perfectly cor-
related with damage to critical voxels will naturally be no less pre-
dictive. But where strong lesion bias has displaced the estimated cluster
far from the critical locus, thereby founding most of the prediction on
parasitic voxels, lesions that happen to hit the critical locus without
much collateral damage will now be misclassified. The relationship
between lesion bias and classification performance thus becomes U
shaped: best with zero or maximal lesion bias, worst somewhere in-
between.

To illustrate this, here we extended the two-region analyses de-
scribed in Mah et al. (2014) to model the individual outcome predicted
from the set of inferred critical voxels. As in the original paper, we
posited a hypothetical syndrome probabilistically dependent on da-
mage to at least 20% of the volume of either BA39 or BA44 and, in
separate models, of either BA37 or BA38, with the probability set at 0.9
for those meeting the damage criterion. Taking randomly selected sets
of 407 lesions (70% of the entire dataset), we proceeded to estimate the
critical voxels with either a standard mass-univariate approach—vox-
elwise Fisher exact test—or a high-dimensional multivariate ap-
proach—linear support vector machines. We used the remaining 174
lesions to test the predictive performance of these maps, generating a
separate ROC curve for each method from sets of possible thresholds of
the estimated predictive parameters. To generate outcome predictions
in the mass-univariate case, we used Fisher's method to derive a single
negative log p value for each test case after voxel-wise multiplication of
the lesion map to the Fisher exact test-estimated field of p values,
generally thresholded at p<0.001 uncorrected so as not to remove the
potentially helpful influence of voxels of low significance. In the mul-
tivariate case, we analogously applied the support vector machine-de-
rived weights to each test lesion map. Iterating over 200 different
randomisations of the data, we generated an average ROC curve for
each inferential method, including 95% confidence intervals (Fig. 3).

It is easy to see the mass-univariate approach falls someway short of
the performance achieved with a high-dimensional model. The AUC
values for the support vector machine models are 0.979 (95%CI
0.977–0.981) for BA39|BA44, and 0.984 (95%CI 0.983–0.985) for
BA37|BA38, whereas for the Fisher exact test models they are only
0.960 (95%CI 0.958–0.962) for BA39|BA44, and 0.900 (95%CI
0.893–0.907) for BA37|BA38. Note it is not the absolute numbers that
matter here—these are idealised conditions—but the relative difference
in performance, which clearly shows clinical outcome prediction needs
anatomical fidelity too.

7. Implications

Lesion-deficit mapping has an enormously important role in systems
neuroscience, not least in reigning in the rampant speculation fed by
the perpetually “bull” market of functional imaging. No other method
of comprehensive applicability across the brain has comparable in-
ferential power, establishing the necessity—not just correlated activi-
ty—of a candidate neural substrate (Adolphs, 2016). But if it is to
perform this role with authority its methodological foundations must be
secure. The unavoidable practical difficulties of lesion mapping will
generally place it at a numerical disadvantage against the weaker,
correlative methods that are so much easier to deploy.

Here it is worth considering how evidential conflicts are naturally
resolved in the field. In a perfect world, data would be stratified by
quality—not quantity—and inferences from it commensurately
weighted. But in the real world, the volume of published studies exerts
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a disproportionate influence on community beliefs. So where the be-
haviour can be positively defined or experimentally simulated—i.e.
unlike visuospatial neglect—functional imagers will get to a problem
faster than lesion mappers, in greater numbers, and will tend to dom-
inate the discourse. Replicating a functional imaging finding with lesion
mapping merely adds us to the also-rans, of distinctive interest only to
our peculiar methodological clique. And obtaining a lesion mapping
result that runs counter to the prevailing, functional imaging-driven
models, no matter how compelling, is in practice far harder to sell than
the data themselves might suggest. We wish to test the inferential
foundations of lesion mapping so robustly here not out of a childish
oppositionism to the past, but because our discipline needs the highest
possible standards to overcome its numerical disadvantage.

Anyone in doubt about this should consider the case of the conflict
detection model of the anterior cingulate (Botvinick et al., 2001), a
highly influential theory of the role of this medial frontal region in the
control of action, built on the now familiar conjunction of simple
conceptual models with highly reductive behavioural paradigms sub-
stantiated with functional imaging data. Though torpedoed by nearly
all lesion studies, holed underwater by conceptual considerations alone,
the ship sails on, carried forward on the wind of correlative data. (The
interested reader should see (Brown, 2011; Grinband et al., 2011;
Nachev, 2011; Yeung et al., 2011) for a recent discussion). It helps, of
course, that the anterior cingulate is rarely damaged (Mah et al., 2014),
and its deep location makes it relatively inaccessible to other disruptive
techniques such as TMS, but had the functional imaging predictions
been rigorously lesion-tested at scale, perhaps less would have been
unsafely invested in so obviously doomed a vessel.

The fieldcraft of cognitive neuroscience aside, the clinical applic-
ability of lesion-deficit models is critically dependent on their in-
dividuating power. A clinician treats the specific patient before him or
her: the group matters only as far as it informs that individual decision.
Where individuality is richly multidimensional—as is certainly true of
the brain—we cannot degrade one without degrading the other. But
even those of us with less practical an interest ought to care, for any
claim to mechanistic generality—the preoccupation of the scientist—-
will always be undermined by an alternative model with greater in-
dividuating power. It is no defence that the asserted model might be

elegantly simple, for to the extent to which it does not fit predictable
instances it cannot be adequately causal.

That the application of high-dimensional methods escalates the
scale of the necessary delivery infrastructure is an opportunity at least
as much as it is an obstacle. The investment will follow if we justify it:
the kind of synthetic lesion-deficit modelling we have discussed can be
used positively to show that high-dimensional methods can succeed as
well as that low-dimensional methods fail. Rather than resisting criti-
cisms of our current inferential framework we should use them to
motivate its replacement with another, strong enough to deal with the
challenges that lie ahead.
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