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Tissue-resident macrophages play an important role in clearance, development, and

regulation of metabolism. They also function as sentinel immune cells, initiating

inflammatory responses, clearing inflammatory debris, and maintaining homeostatic

tissue environment. In the cochlea, the roles of tissue-resident macrophages include

maintaining steady-state tissues, immunological defense, and repairing pathological

conditions associated with noise, ototoxic drugs, aging, and various pathogens.

Perivascular macrophages (PVMs) are a unique subset of tissue-resident macrophages

that are closely associated with blood vessels and have unique expression markers

in certain tissues. PVMs are found in the inner ear, brain, skin, liver, and retina. The

origin of PVMs in the inner ear is unclear, but they are already present during embryonic

development. PVMs are members of the blood labyrinth barrier and regulate blood vessel

permeability in the stria vascularis, which lies on the lateral wall of the cochlear duct

and is crucial for endocochlear potential formation. The cytoplasm of strial PVMs can

contain pigment granules that increase in number with age. Strial PVMs are activated

by the loss of Slc26a4 in the cochleae, and they subsequently phagocytose aggregated

pigment granules and possibly degenerated intermediate cells. This review summarizes

the current knowledge of characteristic features and proposed roles of PVMs in the stria

vascularis. We also address macrophage activation and involvement of pigment granules

with the loss of Slc26a4 in the cochleae.

Keywords: stria vascularis, macrophages, hearing loss, inflammation, activation

INTRODUCTION

Macrophages are present in almost all body tissues and display location-specific functions and gene
expression profiles. These “tissue-resident macrophages” play an important role in the clearance,
development, and regulation of metabolism depending on the tissue location and environment (1).
They also function as immune sentinels, initiating inflammatory responses, clearing inflammatory
debris, and maintaining a homeostatic tissue environment (1). Tissue-resident macrophages were
classically believed to originate from the bone marrow via circulating monocytes (2, 3). However,
recent studies provide evidence regarding the existence of monocyte-independent macrophage
precursors in the yolk sac and fetal liver during developmental stages (1, 4, 5). Presently, it is
thought that most adult tissue-resident macrophages are already formed during the embryonic
period and persist and maintain themselves locally throughout adulthood via self-renewal.

Macrophages can support angiogenesis (6)— formation or expansion of new blood vessels
during development and postnatal life (7, 8). During normal vascular development, macrophages
directly interact with, and modulate, the developing vasculature (9, 10). Physical contact between
macrophages and growing blood vessels coordinates vascular fusion (9). Perivascular macrophages
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(PVMs) are a unique subset of tissue-resident macrophages
that are closely associated with blood vessels and have unique
expression markers in certain tissues. In adult tissues, PVMs
are found in the inner ear, brain, skin, liver, and retina. PVMs
maintain tight junctions between endothelial cells and limit vessel
permeability, phagocytose potential pathogens before they enter
tissues from the blood, and restrict inappropriate inflammation.
In the brain, PVMs contribute to increased vascular permeability
and granulocyte recruitment in the acute phase of stroke (5).
Phagocytosis is another role of intracranial PVMs, and is
crucial for preserving the cerebrovasculature (11). In the retina,
PVMs move along the abluminal surface of the blood vessel
endothelium, scavenging potential pathogenic substances present
in the perivascular space (12).

Tissue-resident macrophages are present at various locations
in the cochlea, including the spiral ganglion, spiral ligament,
and stria vascularis. The stria vascularis is located on the
lateral wall of the cochlear duct, which is essential for the
generation of endocochlear potential and hearing acquisition.
In this review, we provide a comprehensive overview of the
origins, specifications, possible functions, and activation of
tissue-resident macrophages in the stria vascularis. We also
relate these with the recent findings of our study in the field
of macrophage research and highlight important questions that
remain unanswered.

SOURCE OF TISSUE RESIDENT
MACROPHAGE IN STRIA VASCULARIS

During development, Iba1-positive resident macrophages appear
in the mouse otocyst as early as embryonic day 10.5, and
are distributed in the spiral ganglion and spiral ligament
until birth (4, 13). Csf1r signaling promotes the development
of Iba1-positive macrophages from the yolk sac during the
embryonic period (4). This is confirmed by evidence that they
are selectively decreased in ears without Csf1r signaling. In
contrast, CD11b-positive cells were observed on the cochlear
mesenchyme at embryonic day 14.5, which are deemed to be
resident macrophages originating from the fetal liver. They reside
in the mesenchyme of the cochlear modiolus or the intraluminal
surface of the perilymphatic space, and most are distinct from
Iba1-positive resident macrophages. Macrophages in the stria
vascularis can be observed only after birth, increase during
the neonatal stages, and are Iba1-positive (4). They are always
distributed close to blood vessels in the stria vascularis. The
unique timing of appearance and location suggest that the origin
of resident macrophages in the stria vascularis may be different
from that of macrophages at other sites of the cochleae.

In the adult inner ear, bone marrow-derived resident
macrophages are present in a steady state in the spiral ligament,
the acoustic nerve and stria vascularis (14, 15). They are an
interchangeable and migratory population that is replenished by
the recruitment of blood-borne monocytes (16). Tissue-resident
macrophages in the stria vascularis of the adult cochleae are
positive for F4/80, CD68, Iba1, and CD11b (16–18) and are
mainly localized around blood vessels, suggesting that almost

all of them are PVMs. Some researchers propose that PVMs
in the stria vascularis originate from cochlear melanocytes
derived from the neural crest that have migrated to the stria
vascularis (19–21). However, the cell populations of neural crest
origin are distinct from those of CD68-positive cells in the
embryonic cochlea (4). Considering the different developmental
lineages and phenotypes ofmacrophages andmelanocytes, PVMs
are unlikely to be derived from the neural crest (22). Taken
together, the data demonstrate that strial PVMs change their
characteristic expression markers during postnatal development,
and are renewed or replaced by blood-borne monocytes in the
adult inner ear.

TISSUE RESIDENT MACROPHAGES AS
MEMBERS OF THE BLOOD LABYRINTH
BARRIER IN STRIA VASCULARIS

There are three separate fluid compartments in the cochlea:
the endolymphatic, perilymphatic, and intrastrial spaces. Each
compartment is morphologically and electrically separated
by tight junctions. Tight junctions are directly involved in
intercellular sealing. Leakage of solutes through the paracellular
pathway to the intrastrial space from other compartments is
prevented by various molecules, including claudin-1, claudin-3,
and claudin-4 in the marginal cells on the medial side (23), and
claudin-11 in the basal cells on the lateral side (24). Intrastrial
fluid is a unique extracellular solution with a highly positive
potential, similar to that of the endolymph, but a low potassium
concentration, as observed in the perilymph (25). The intrastrial
space is also isolated by tight junctions of vascular endothelial
cells from the intravascular lumen. This isolation is referred to
as the blood-labyrinth barrier. The barrier consists of several
tight junctions and adherent junction proteins, including ZO-
1, occludin, and VE-cadherin (20, 21). Endothelial cells are
sheathed by a dense basement membrane shared with pericytes.
Perivascular macrophages further cover the capillary surface
(21, 26). PVMs in the stria vascularis are composed of long-
branching processes and a small cellular body. The cell body
and its branches are always located adjacent to blood vessels
(Figures 2A,C). This characteristic shape is similar to that of
ramified microglia in the central nervous system (CNS). Iba-1
positive macrophages with similar form have also been reported
in the human cochlea (26, 27).

Previous studies suggest that these PVMs are integrated into
the structure of cochlear vessels and maintain the integrity of
the blood-labyrinth barrier between the blood and intrastrial
space (20). The integrity of this blood-strial barrier is critical for
solute homeostasis, maintenance of high endocochlear potential,
and normal hearing. Collapse of this barrier integrity results
in a reduction in endocochlear potential (28–30). A previous
study demonstrated that the elimination of PVMs results in
leaky capillaries and a reduction in endocochlear potential (20).
Hirose et al. (22), in contrast, reported that PVM depletion
does not alter the baseline permeability of cochlear vessels, and
PVMs in the stria vascularis play an active role in opening
the blood strial barrier, depending on the tissue environment
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FIGURE 1 | Distributions of CD68 or Kir4.1 positive cells in the stria vascularis. Whole-mount preparation of the stria vascularis stained with anti-CD68 (green) or

Kir4.1 (red) antibodies to label macrophages or intermediate cells. DIC images show pigmentations phagocytized by CD68-positive macrophages. The CD68

expression pattern is entirely different from that of Kir4.1, suggesting that CD68-positive macrophages are distinct from Kir4.1-positive intermediate cells in vivo.

Reproduced from Figure 9, Ito et al. (17).

FIGURE 2 | Intravascular vessels and macrophages. A rich vascular network develops within the stria vascularis and perivascular macrophages exist close to the

vessels. In the steady state, stria vascularis, macrophages have a ramified cell morphology with multiple finely branched projections on a small cell body (A). Activated

macrophages change to an amoeboid form in the ears of Slc26a4-null mice, displaying larger somata and shorter, coarser cytoplasmic processes (B). Activated

macrophages with phagocytosed aggregated pigment granules (C). The vasculature and macrophages were labeled with anti-CD34 (blue) and anti-CD68 (green)

antibodies, respectively (A,B). Reproduced from Figure 7, Ito et al. (17, 39).

(22). This discrepancy might be due to the method of assessing
barrier function, genetic background of the tested mice, or other
factors (22). In this regard, the latter idea is more consistent
with a previous report that intraperitoneally injected tracers are
incorporated into macrophages in the stria vascularis (16).

TISSUE RESIDENT MACROPHAGES
LIKELY PHAGOCYTOSE MELANIN
PIGMENTS IN THE STRIA VASCULARIS

Melanin is synthesized inmelanocytes and plays diverse roles and
functions in various organs. Intermediate cells are melanocyte-
like cells, presumably derived from the neural crest, that normally
synthesize melanin pigment. Melanin in the stria vascularis is
considered to play protective roles against noise, ototoxins, and
aging. The protective properties of melanin may be derived
from its ability to bind cations and metals and scavenge free
radicals (31–33). Once synthesized by strial intermediate cells,
melanin is exported to the intrastrial space in melanosomes,
where it may remain or be taken up by marginal or basal
cells (34). The majority of melanin might be taken up by
marginal cells, since they are the most vulnerable cell population

in the stria vascularis (35, 36). Noise, ototoxins, and aging
increase melanosome extrusion by intermediate cells; however,
it is currently unclear how melanin is transported, digested,
decomposed, or removed (33).

Macrophages contribute to tissue homeostasis by
phagocytosing cellular debris, foreign agents, and apoptotic
cells. They also ingest self-derived particulates, such as melanin.
Macrophages containing melanin granules are observed in
normal human skin and are referred to as “melanophages”
(37, 38). Melanin granules were also observed in the PVMs
of the mouse stria vascularis. Some reports propose the term
“perivascular macrophage-like melanocyte (PVM/Ms)” to
describe such macrophages, including melanin pigments in
the stria vascularis (19, 20). PVM/Ms are referred to as a
hybrid cell type with characteristics of both macrophage and
melanocyte surface markers, including F4/80, CD68, CD11b,
and Kir 4.1. Kir 4.1, encoded by the Kcnj10 gene, is widely
accepted as an intermediate cell marker (20). However, CD68-
positive cells containing pigment granules appeared distinct
from Kir4.1-positive cells in vivo in our previous study (17)
(Figure 1). Instead, they appear to phagocytose damaged
intermediate cells, marginal cells, or the melanin granule itself
in the intrastrial space (Figure 2C) (39). The involvement of
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FIGURE 3 | Hyperpigmentation in a mouse model of Pendred syndrome. Slc26a4-insufficient cochlear sections were stained with DAPI. Hyperpigmentation is solely

observed in the stria vascularis (A) and pigment granules are localized in the basal, intermediate and marginal cell layers (B). Slc26a4 expression is controlled by

doxycycline in Slc26a4-insufficient (Tg[E];Tg[R];Slc26a41/1) mice (46).

FIGURE 4 | Transportation, distribution and activation of tissue resident macrophage in the stria vascularis. A primitive macrophage travels in the bloodstream (A) and

is distributed on the surface of blood vessels in the stria vascularis. Macrophages exist near the rich vascular network and have a ramified cell morphology with

multiple finely branched projections on a small cell body in the steady-state stria vascularis (B). Macrophage activation is associated with melanin and activated

macrophages appear to phagocytose aggregated pigment granules (C).

PVMs with melanin granules, intermediate cells, and marginal
cells in the stria vascularis remains unclear; however, some types
of tissue-resident macrophages function to not only remove
waste products but also execute cell death by phagocytosing
stressed-but-viable cells (40, 41). PVMs in the stria vascularis
may accelerate the clearance of apoptotic cells. Lastly, an excess
amount of pigment granules may cause damaged intermediate
and marginal cells to be engulfed before they are repaired.

INCREMENT AND ACTIVATION OF TISSUE
RESIDENT MACROPHAGE IN PENDRED
SYNDROME

Pendred syndrome is characterized by autosomal recessive
inheritance of mutations to the SLC26A4 gene, goiter, hearing
loss, and enlargement of the vestibular aqueduct. The stria
vascularis is atrophied and hyperpigmented in the ears
of Slc26a4-null mice, a model of Pendred syndrome (42).
Hyperpigmentation was observed solely in the stria vascularis
across all cochlear turns, and pigment granules were present
throughout the marginal, intermediate, and basal cell layers
(Figure 3). Additionally, significant macrophage proliferation

and activation have been observed in the stria vascularis (18).
Macrophages in the stria vascularis have multiple projections
and a slim cell body, and most cells exist adjacent to blood
vessels in the steady state. In contrast, activated macrophages
shift to an amoeboid morphology with larger somata and shorter,
coarser cytoplasmic processes in the ears of Slc26a4-null mice
(Figures 2B,C). Despite such an apparent switch, the cells are
not observed migrating away from the vascular periphery, and
always have a part of their cells in contact with the vessel wall. We
demonstrated that macrophage incrementation was correlated
with the severity of hearing loss, suggesting that macrophage
activity affects hearing by influencing the function of the stria
vascularis (17).

Macrophage proliferation and activation in the ears of
Slc26a4-null mice are not accompanied by upregulation of
acute inflammatory markers or neutrophil invasion (18).
In the CNS, microglia can be activated by a variety of
factors, including pro-inflammatory cytokines, cell necrosis
factors, lipopolysaccharides, and changes in extracellular
potassium, which are indicative of ruptured cells. However,
the specific signals underlying macrophage activation in
the inner ear remain unclear. They may be associated with
oxidative and nitrative stress signals, which are elevated in

Frontiers in Neurology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 818395

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ito et al. Macrophage in the SV

the ears of Slc26a4-null mice (43), Hyperpigmentation can
also activate perivascular macrophages. The molecular and
biological pathways of perivascular macrophage activation
and the role of hyperpigmentation remain unclear. Activated
amoeboid microglia in the CNS phagocytose foreign materials,
extracellular debris, and apoptotic cells, and then display the
resulting immunomolecules for T-cell activation (40, 44).
Similar pathogenesis may be present in the stria vascularis of
Slc26a4-null mice. Thus, the histological hallmarks of these
pathogenic changes may provide clues for the development
of novel therapeutic medications for the treatment of
hearing loss.

MACROPHAGE AND
AUTOINFLAMMATION OF THE INNER EAR

Autoinflammatory diseases are caused by dysfunction of
the innate immune system. They are characterized by either
periodic or chronic systemic inflammation, usually without the
involvement of adaptive immunity, and some patients exhibit
sensorineural hearing loss. The common pathophysiological
feature of autoinflammatory diseases is the increased production
of interleukin-1 (IL-1), which is predominantly produced by
activated macrophages as a pro-protein, pro-IL-1β . Cochlear
resident macrophages secrete pro-IL-1β through NLRP3

inflammasome activation (45). Knowledge of autoinflammatory
inner ear diseases is limited; therefore, it remains unclear how
strial macrophages would play a role in causing hearing loss in
these diseases. Further investigation to identify the characteristics
of perivascular resident macrophages may potentially shed light
on the pathophysiology of hearing loss with unknown cause.

CONCLUSION

Tissue-resident macrophages in the stria vascularis are observed
only during the postnatal period and are always distributed
close to blood vessels. Their possible functions and roles
include adjustment of the blood-labyrinth barrier integrity
and maintenance of homeostasis in the intrastrial space. The
morphology of tissue-residentmacrophages in the stria vascularis
changes upon activation in the presence of melanin pigments,
which might accelerate the degeneration of the stria vascularis in
the ears of Slc26a4-null mice (Figure 4).
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