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Objective breast tissue image 
classification using Quantitative 
Transmission ultrasound 
tomography
Bilal Malik, John Klock, James Wiskin & Mark Lenox

Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the 
potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is 
an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo.  
Here, we report the first demonstration of breast tissue image classification in QT imaging. We 
systematically assess the ability of the QT images’ features to differentiate between normal breast 
tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and 
classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated 
with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast 
image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a 
computer-aided detection/diagnosis platform for QT.

Hand held ultrasound (HHUS) has been a mainstay of diagnostic breast imaging1,2. While the impact of HHUS 
in breast imaging is clear and it has been shown to be prominent in detection of mammographically occult breast 
cancers in women with dense breast parenchyma1, the use has been limited due to operator variability and repro-
ducibility of two dimensional images3. Recent developments in paradigm of ultrasound breast imaging now allow 
fully automated4,5 and true 3D image acquisition and reconstruction6. In this domain, Quantitative Transmission 
(QT) ultrasound has shown significant promise7. QT has the ability to provide both transmission and reflection 
information related to the breast tissue. Specifically, the transmission characteristics of the tissue serve as quan-
titative imaging biomarkers and have the potential to provide specific and reproducible imaging measures asso-
ciated with breast related pathologies8. The corresponding reflection images are spatially compounded and show 
considerably reduced speckle artifact in comparison to that of conventional HHUS.

When comparing volumetric imaging techniques such as magnetic resonance imaging (MRI), computed 
tomography (CT), automated breast ultrasound (ABUS) and QT with conventional screening consisting of 
mammography, a significant hurdle is the large number of slices/images needed to be read for a single study9. 
Therefore, mechanisms to reduce the time taken to read such studies would have direct clinical impact. To this 
end, computer-aided detection/diagnosis (CAD) systems have shown significant potential towards reading such 
image volumes more efficiently10,11. A common theme and basis of CAD methods is image segmentation and clas-
sification. A large number of established methods built on image intensity based and/or shape based parameters, 
have been used to perform such analyses12. The classification problem is typically solved using machine-learning 
methods, which can be either supervised or unsupervised.

While the ultimate goal of breast imaging CAD systems is to detect and classify pathological findings, an 
important initial step is to classify normal breast tissue types. Correct classification and demarcation of normal 
tissue can indirectly improve the accuracy related to identifying diseased tissue. In this study, we use machine 
learning to classify the QT images. Specifically, we employ the most basic intensity based features i.e. image voxel 
values, from co-registered speed of sound, attenuation and reflection images, and use them as feature vectors 
to classify normal breast tissue types: glands, ducts, fat, skin and connective tissue. We then use the classifier to 
provide a color-coded classification of whole breast QT image volumes.
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Materials and Methods
Volunteer preparation and imaging. All imaging procedures were performed on healthy volunteers. All 
the study methods were performed in accordance with the relevant guidelines and regulations expressed in the 
Declaration of Helsinki. Informed consent was obtained from all the volunteers undergoing the imaging protocol  
which was approved by Western Institutional Review Board (WIRB, Puyallup, WA). An adhesive pad with a 
magnet is placed near the nipple region of the breast. The breast is immersed in a water tank and positioned such 
that the magnet attached to the nipple is docked to a magnetized retention rod that gently holds the breast in a 
consistent position during the scan. A breast scan can take 5–10 minutes depending on the size of the breast.

Ultrasound imaging. The volunteers were scanned on QT Ultrasound prototype scanners, technical details 
of which are described elsewhere7. Briefly, in transmission mode, the transmitter emits a plane wave which trav-
erses the breast tissue and is received by the receiver on the opposite end. In this case, the receiver is a 1536 ele-
ment PZT array with data acquisition rate of 33.3 Ms/s at 14-bits per sample. Multiple acquisitions at frequencies 
ranging from 0.3 to 1.5 MHz are acquired for 180 angles as the transmitter-receiver combination is rotated around 
the subject. The acquired projection information is used for image reconstruction using nonlinear inverse scat-
tering in 3D6,7,13. The result of this reconstruction is a three dimensional map of complex refractive index values, 
consequently providing image volumes of both speed of sound and attenuation. In reflection mode, there are 
three reflection transducers (4 MHz center frequency) with different focal lengths to extend the overall depth of 
focus within the imaging volume. The acquired images are spatially compounded and corrected for refraction 
using the corresponding speed of sound information. The spatial compounding results in significant reduction 
of image speckle while maintaining the high resolution nature of the images similar to that of traditional B-mode 
ultrasound. The end result of each scan is a 3D volume of essentially three different modalities: speed, attenuation, 
and reflection. Note that the transmission and reflection data acquisition is time multiplexed, and after calibra-
tion, the respective image stacks are perfectly co-registered.

Statistical analysis. In order to build (train and validate) a classifier, a total of 99 regions of interest (ROI) 
for each breast tissue type were identified across thirteen breast QT image volume sets, one volume set each 
corresponding to thirteen subjects. The ROI identification was performed by a trained physician (J.K.) who had 
experience reading over 1,000 QT breast scans. The breast tissue types are: ducts, glands, fat, skin and connective 
tissue. Each ROI is essentially a single voxel with dimensions of 400 μ m ×  400 μ m ×  1 mm. The number of ROIs 
per study varied from 6 to 8, in order to account for inter-subject variability, if any. Note that we presently estimate 
the spatial resolution of our imaging system at approximately 1.5 mm, as reported previously7. However, the con-
trast resolution is approximately 400 μ m. By choosing a smaller area to determine our ROI, centering correctly, 
we avoid as much as possible the inevitable volume averaging inherent in this kind of calculation. The ability 
of the three QT image features to distinguish between breast tissue types was first assessed. The nonparametric 
Mann-Whitney U-test was performed between every pair of classes, wherein p <  0.05 was considered significant. 
Holm correction was applied to control the probability of false positive error accumulated in a sequence of multi-
ple comparisons. Any features which showed insignificant differences were not included in further analysis. The 
features set was then used as feature vector in Support Vector Machines (SVM) algorithm for statistical classifi-
cation. We tested both linear and nonlinear SVM classifiers. Specifically, the nonlinear SVM approach was tested 
with Gaussian kernel function. In both instances, a 50-fold cross-validation was adopted in order to assess the 
classification performance. The algorithm was then validated on whole breast volumes to demonstrate the clinical 
application of the classifier.

Image segmentation. The QT images are acquired with breast inside a water tank. Therefore, the image 
space consists of both breast tissue and the surrounding water. Before going forward with image classification, we 
remove the water surrounding the tissue within the images. We do this using an algorithm originally developed 
to estimate breast density in the sense of BI-RADS, which uses the attenuation images wherein the skin is clearly 
identified as a relatively high attenuation structure within the surrounding water with essentially zero attenuation. 
For any given slice, we start from the edge of the image (water) and move pixel-by-pixel inwards (towards breast 
tissue). Once the breast surface is encountered, everything from that point until the center of the breast is con-
sidered breast tissue (convexity assumption). Pixels that are ascertained to be close to the border between breast 
tissue and water are marked as border pixels. We then fuse this information provided by the attenuation image 
and use it along with speed of sound (for skin) to segment the speed of sound image. This is appropriate since 
both the images are automatically co-registered by the reconstruction algorithm7. As noted below in results, the 
skin and fibroglandular tissue both have relatively high speed of sound compared to that of fat and are segmented 
out based on that. The last step is that skin is now removed from the fibroglandular tissue by noting the proximity 
of the pixel to the border between breast tissue and water as determined by the attenuation based segmentation. 
Thus planar convexity assumptions of the breast and the geometric position of the pixels are important in the 
overall segmentation process.

Implementation. The technical methods and approaches described above were implemented using 
MATLAB (R2016a, Mathworks, Natick, MA) and ImageJ (National Institutes of Health, Bethesda, MD) software 
on a standard computer workstation (Intel Core i7 3.6 GHz, 16GB RAM). Both custom written routines and 
built-in application and functions were used in MATLAB towards overall implementation of the methods.

Results
QT ultrasound characteristics of breast tissue. As mentioned above, a single QT whole breast scan 
and data processing generates three co-registered volumes corresponding to speed of sound, attenuation and 
reflection characteristics of the tissue. A representative image set is show in Fig. 1. Note that the attenuation image 
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reconstruction is a more difficult problem to solve due to its ill-conditioned nature as compared to the speed of 
sound reconstruction14. Note also that our attenuation image tends to concentrate high values near interfaces 
due to the reflection coefficient. That is, our ‘attenuation’ does not distinguish between the mechanism of tissue 
scattering and tissue absorption, and thus interfaces are highlighted. These constraints do not diminish the value 
of the individual voxel attenuation values that were used for statistical analysis and tissue classification as noted 
below.

The data summary statistics for all the ROIs across thirteen studies are provided in Fig. 2 in the form of column  
charts. Note that the height of each column represents the mean value of that variable. The speed of sound range 
values associated with different tissue types provided most distinct values and also proved to be the most signif-
icant contributor to the classifier, as noted later below. In general, ducts show the highest speed of sound out of 
all normal tissue types followed closely by glands and skin, in that order. Fat shows the lowest speed of sounds, 
typically under 1450 m/s. Connective tissue such as Cooper’s ligaments appear as high reflection structures with 
relatively low speed values. We would like to point out that these ligaments appear as very fine and thin structures 
in the reflection images and hence QT image feature values associated with it may be biased to that of surround-
ing tissue (which is typically fat) due to volume averaging effects15. Skin and Cooper’s ligaments exhibit high 
reflection which is similar to that as seen in conventional B-mode ultrasound16. The attenuation values show least 
amount of distinction as a function of tissue types. Note that skin shows the highest attenuation and this fact is 
used in segmentation of skin in an anatomical manner, as mentioned above.

Figure 1. Representative multimodality QT ultrasound images of a volunteer’s breast. Left: speed of 
sound, middle: attenuation, and right: reflection images. Example ROIs are identified within the images. 
Speed of sound image: The white and black squares in the speed of sound image mark fat and glandular tissue, 
respectively. Single and double black arrows mark ductal tissue and skin, respectively. Reflection image: Single 
white arrows mark the connective tissue identified as Cooper’s ligaments.
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Statistical analysis and classification. The statistical comparison between each pair of tissue types for 
the three modalities is shown in Table 1. It is worth noting that the statistical comparisons of speed of sound 
and reflection values show significant differences for all comparisons except that of skin and glands for speed of 
sound, and glands and ducts for reflection. More importantly, for every tissue type comparison there is at least 
one out of three modalities which shows a significant difference, demonstrating the complementary nature of the 
QT image features.

We used two classification strategies (1) linear Support Vector Machines (SVM), and (2) radial basis function 
SVM which utilizes a Gaussian kernel. While both methods provided over 80% accuracy in classification, we 
ultimately used Gaussian SVM which provided slightly higher accuracy rate of 85.2% in comparison to linear 
SVM which provided accuracy of 83.2%. Table 2 shows the confusion matrix associated to this 5-class Gaussian 

Figure 2. Data summary: speed of sound, attenuation and reflection characteristics as a function of breast 
tissue type. 
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SVM classifier. The radial basis function SVM took ~4.9 seconds to train and cross-validate. Application of this 
classifier to classify a whole breast image slice (in the coronal plane) took approximately 0.5 seconds.

As mentioned above, we also used attenuation images to classify and segment skin in a breast-specific manner, 
utilizing the anatomy of the breast tissue. By doing so, we are left with a 4-class problem. The classifier perfor-
mance now improved significantly to 91.4% demonstrating the strength of the QT image features in demarcating 
normal breast tissue types. The modified confusion matrix is shown in Table 3.

Image volume segmentation. The SVM classifier developed above was then used to classify whole breast 
image volumes. A representative example of this classification is shown in Fig. 3. We have also included 3D visu-
alization of each of the tissue types as video files in the supplementary information (Supplementary Videos 1–4). 
The image in Fig. 3 has been color coded as a function of breast tissue types. We would like to point out that while 
the ROIs corresponding to connective tissue training set were mostly identified as Cooper’s ligaments, the image 
volume segmentation identifies more areas of connective tissue such as regions under the skin and around the 
fibroglandular region. The ductal tissue elements are clearly shown to be embedded within the glandular regions. 
We believe that such a visual model can be instructive in evaluation of breast pathologies and also serve as a tool 
to guide further CAD development.

Discussion
In all instances, QT scanning provided seamlessly co-registered volumetric speed of sound, attenuation and 
reflection images. As noted in multiple comparisons of Table 1, each of these modalities provide mostly signifi-
cant differences in comparison of tissue types. Speed of sound is clearly the most important contributor towards 
the classification. In fact, we used sequential floating forward selection (SFFS) method in order to establish the 

Pair

p-value

Reflection Speed of Sound Attenuation

skin fat < 0.0001 < 0.0001 < 0.0001

skin glands < 0.0001 0.1597 < 0.0001

skin ducts < 0.0001 < 0.0001 < 0.0001

glands fat < 0.0001 < 0.0001 0.0058

glands ducts 0.5379 < 0.0001 0.049

fat ducts < 0.0001 < 0.0001 0.2943

skin CT < 0.0001 < 0.0001 0.0005

ducts CT < 0.0001 < 0.0001 < 0.0001

glands CT < 0.0001 < 0.0001 < 0.0001

fat CT < 0.0001 < 0.0001 0.0007

Table 1.  Results of the non-parametric Mann Whitney U Test for all pairs of classes. Note that a p-value of 
less than 0.05 indicates significance. CT =  connective tissue.

Predicted Class

connective tissue ducts fat glands skin

True Class

connective tissue 92 3 2 2

ducts 4 72 12 11

fat 3 94 1

glands 1 1 77 20

skin 5 9 85

Table 2.  Classification performance table assessed by 50-fold cross-validation performed on five tissue 
types.

Predicted Class

connective tissue ducts fat glands

True Class

connective tissue 93 3 3

ducts 4 78 17

fat 3 94 1

glands 1 1 1 96

Table 3.  Classification performance table assessed by 50-fold cross-validation performed on four tissue 
types. Note that in comparison to Table 2, the data points corresponding to skin tissue were removed from this 
analysis.
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order of feature importance and the result, in order of importance, was: speed of sound, reflection, and attenu-
ation. We would like to point out that, as applicable in any ultrasound system, the reflection data is not quan-
titative. It is a sensitive function of several factors including complexity of the scatterers’ shape, local angle of 
incidence of the beam, and the attenuation of the intervening medium. Nevertheless, when comparing the range 
of reflection values over many case studies, as done in this research, the range of reflection values associated with 
different tissue types was still relatively distinct enough to serve as an important feature in image classification. 
Also, as noted above and in Figs 1 and 3, the QT attenuation images are not as high quality and high resolution 
as speed of sound and reflection images, and their ability to resolve between tissue classes is relatively limited, 
as observed in Fig. 2 and Table 1. Nevertheless, there is information encoded in attenuation images which is not 
apparent qualitatively but aids to improve the classifier performance. The accuracy rate of greater than 85% when 
distinguishing between five tissue classes, is reduced to 81% when attenuation images are not included to build 
the classifier.

We have reported before that both speed of sound and attenuation maps are derived from the complex refrac-
tive index of the tissue medium, wherein the two modalities are associated with the real and imaginary parts of 
the refractive index, respectively. Together with the reflection map, which is essentially a spatially compounded, 
extended depth-of focus version of conventional B-mode ultrasound (with refraction correction), the three 
modalities provide highly complementary and synergistic information for most breast tissue types. While syn-
ergy is shown by the classification, we quantified the correlation coefficients between every pair of modalities. The 
calculated mean correlation coefficient across all multiple comparisons was less than 0.1 which typically indicates 
negligible correlation.

While we used and showed results from a non-linear SVM classifier in this work, the strength of the data pro-
vided by QT images is such that most of the frequently used classifiers in machine learning, such as discriminant 

Figure 3. Image classification using the SVM classifier. The speed of sound, attenuation and reflection images 
are used together by the classifier to generate a respective tissue-color-coded classified image. Note that the skin 
was segmented using the algorithm described in Materials and Methods section.
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analyses, decision trees, and k-nearest neighbors’ approaches provided greater than 75% accuracy in all cases. 
SVM methods provided highest accuracy. We also tested the data and the classifier’s performance against a 
leave-one-subject-out (LOSO) cross validation scheme. This consisted of using all the ROIs except those from 
one subject to train the classifier. The predictive model was validated on the ROIs from the subject that was 
excluded from the training data. The procedure was repeated thirteen times (i.e. equal to the number of subjects) 
and the results were pooled together to calculate the overall accuracy of such a scheme. The 4-class non-linear 
SVM classifier with LOSO provided an overall accuracy of 88.6% which shows that the variation of data within a 
subject is similar to that of across subjects.

In most cases, a significant classification overlap was noted between glands and ducts. A potential explanation 
for this behavior might be volume averaging. Volume averaging can occur when a structure is only partly present 
within the voxel. The effect is exacerbated when finer structures are embedded within other structures such as the 
case of ducts inside glands. While both ducts and glands have relatively distinct range of speed of sound, the range 
of attenuation and reflection values overlap. Volume averaging can potentially affect all of the three modalities 
in both lateral and axial direction, and can confound the performance of our image intensity based classifier. A 
possible method to circumvent its effects is to employ shape-recognition based geometric information in addi-
tion to our intensity based classifier. For instance, by assuming ducts are relatively continuous and ‘connected’ 
across axially adjacent images/slices, misclassification of ducts as glands can be potentially improved. This form 
of geometric information might also be embedded in second order statistics, such as gray level co-occurrence 
matrices. We intend to include such shape based classification/segmentation in our future work.

A common artifact in ultrasound imaging is motion17. While the effect of motion artifact is not significant in 
conventional B-mode ultrasound due to fast and repetitive imaging of a given region, three dimensional ultra-
sound embodiments do not typically allow imaging of the same region in such a continuous manner. Specifically, 
the motion artifact associated with patient movement in a pendant breast position can effect the image quality, as 
previously noted in the literature18. However, we utilize a breast retention apparatus which offers a relatively much 
steadier mechanism in comparison to a freely pendant breast position. In addition, the gentle stretching of nipple 
can aid in decreasing the effective angle of incidence in the lower breast, resulting in more energy transmitted 
through the region and, hence, better image quality.

As noted above, ultrasound is particularly important in women with dense breasts i.e. breasts with higher per-
centage of fibroglandular parenchyma, since mammographic sensitivity for breast cancer drops significantly as a 
function of increasing breast density2,3. In such instances, sonography serves as an important adjunctive modality 
to improve the low accuracy of mammography for cancer detection. However, traditional B-mode ultrasound is 
also associated with more false positives, leading to increased cost of subsequent diagnostic procedures. QT ultra-
sound has been developed to address these concerns with mammography and conventional HHUS. It provides 
high tissue specificity using quantitative speed of sound information and thereby has the potential to significantly 
reduce recall rates.

The type of classification shown here has many potential applications in clinical breast imaging. Such applica-
tions could include discrimination of fine anatomic features, the validation of tissue “biomarkers” for discriminat-
ing normal from abnormal tissues and tools for looking at normal biological variations in tissue (such as during 
breast lactation). We are currently performing additional clinical trials to further explore and elucidate the role 
of the aforementioned discriminators using QT ultrasound breast imaging. For instance, we have been using dis-
crimination based on speed of sound in studies of masses seen on mammography as a diagnostic tool to classify 
cystic versus solid lesions. In blinded ROC studies using multiple readers, binary classifications with XRM +  QT 
show significant improvement over XRM alone (E.I., K.S., N.O., J.B. and J.K., manuscript in preparation). The 
performance of such classifications can be further improved by including QT features in addition to speed of 
sound. We are also working to use this research to detect and isolate calcifications, which is considered a marker 
of both prognostic and diagnostic significance19.

Conclusions
In summary, this research presents the first step towards CAD based systems for QT image based breast imaging. 
We have demonstrated the strength of the data provided by QT images towards classification of normal breast 
tissue types namely, glands, ducts, fat, skin and connective tissue. Once calibrated, the QT image parameters can 
generate whole breast image volumes classified into the aforementioned tissue types. This work provides a foun-
dation for further investigation of QT features towards ultimate application of detection and diagnosis of breast 
cancers.
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