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ABSTRACT
We provide a framework for Bayesian coalescent inference frommicrosatellite data that enables inference

of population history parameters averaged over microsatellite mutation models. To achieve this we first
implemented a rich family of microsatellite mutation models and related components in the software
package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to
make coalescent and evolutionary inferences. Our implementation permits the application of existing non-
parametric methods to microsatellite data. The implemented microsatellite models are based on the repli-
cation slippage mechanism and focus on three properties of microsatellite mutation: length dependency of
mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in
a single mutation event. We develop a newmodel that facilitates microsatellite model averaging and Bayesian
model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of
population history parameters are integrated across a set ofmicrosatellitemodels and thus account formodel
uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of u
estimation and also identification of the true mutation model. Finally we apply our method to a red colobus
monkey data set as an example.

MICROSATELLITES, also called short tandem re-
peats (STRs), are repetitions of a DNA sequence

motif with length between 1 and 6 bp. Because they are
abundant, widely distributed in the genome, and highly
polymorphic, microsatellites have become one of the
most popular genetic markers for making inferences on
molecular evolution and population genetics (Shikano
et al. 2010; Spong et al. 2010).

Unequal crossing over (Smith 1976; Richard and
Pâques 2000) and replication slippage (Levinson and
Gutman 1987) are the two main mechanisms proposed
that potentially provide an explanation for the high mu-
tation rate of microsatellites. The study by Levinson and
Gutman (1987) using Escherichia coli showed that repli-
cation slippage is the predominant mutationmechanism
of microsatellite DNA. Replication slippage occurs when
the replicating strand and the template strand disassoci-
ate and then realign out of register, forming a loop in one
of the strands. If the process of replication continues,
a loop formed by the replicating strand gives rise to an
insertion while that by the template strand results in
a deletion.

The simplest microsatellite model is the stepwise
mutation model (SMM) proposed byOhta and Kimura

(1973), which states that the length of the microsatellite
increases or decreases by 1 repeat unit at a rate indepen-
dent of the microsatellite length. Although the SMM has
been employed to devise commonly used statistics for
estimating genetic divergence (Slatkin 1995) and effec-
tive population size (Wehrhahn 1975), the model has
some drawbacks. Under the SMM, there is no stationary
distribution and under this process the repeat length will
eventually grow arbitrarily long, which is inconsistent
with empirical microsatellite length distributions from
genomic data (Kruglyak et al. 1998). Moreover the
SMM ignores various properties of microsatellite muta-
tion that have been observed in empirical data. Many
different models have been developed in attempts to
capture some of these properties.
Observations from many studies support the fact

that longer microsatellites have a higher mutation rate
(Goldstein and Clark 1995; Wierdl et al. 1997;
Schlötterer et al. 1998). A longer microsatellite allele
has more locations for potential slippage errors and
hence possesses a greater chance of experiencing a mu-
tation event during replication, as demonstrated by
Streisinger and Owen (1985) using bacteriophage
T4. This is the motivation behind rate-dependent mod-
els such as the proportional slippage model (Kruglyak
et al. 1998) and others (Calabrese et al. 2001; Sibly
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et al. 2001), which describe the mutation rate as a poly-
nomial function of length in repeat units.

Another property ismutational bias, which exists when
the probability of expansion and contraction is unequal
for a mutation event. Evidence for this phenomenon has
been found in genomes of several species including
humans (Rubinsztein et al. 1999), which exhibit a pref-
erence for expansion, and the bacteriumMycoplasma gal-
lisepticum (Metzgar et al. 2002), which tends to contract.
Models proposed by Calabrese and Durrett (2003)
andWalsh (1987) have accounted for this rate asymme-
try (see original citations for the stationary distributions
of these models).

In one-phasemodels, amutation leads to expansion or
contraction of the microsatellite by 1 repeat unit only.
However, empirical data suggest that mutations can
occasionally result in a change in the microsatellite
length of .1 unit. According to the two-phase model
(TPM), proposed by Di Rienzo et al. (1994), there is
a probability of p that a mutation changes the microsa-
tellite length by 1 unit and has a probability of 1 – p that
a change in length is$1 repeat unit(s), where the length
of change is given by a geometric distribution. The gen-
eralized mutational model (Fu and Charkraborty
1998) is a simplified version of this mixed model, which
sets p to 0, and consequently the length of change is
entirely governed by the geometric distribution.

Manypopulationgenetics inferencemethods formicro-
satellite data require the adoption of a mutation model
such as those described above. These approaches can be
divided into three categories. The first category involves
moment estimators based on summary statistics, includ-
ing sample homozygosity (Kimmel et al. 1998; Xu and
Fu 2004) and allele length variance (Wehrhahn 1975;
Kimmel et al. 1998), to estimate u ¼ 4Nem (four times the
productof effectivepopulation size and themutation rate).

The second category consists of likelihood-based
approaches to the estimation of u. As it is not in general
possible to evaluate the likelihood function analytically,
it is approximated by computational methods includ-
ing Markov chain Monte Carlo (MCMC) (Beerli and
Felsenstein 1999) and importance sampling (Nielsen

1997). Significant progress has been made in the devel-
opment of methods that employ importance sampling
and composite likelihoods for microsatellite inference,
allowing the maximum-likelihood estimate of demo-
graphic parameters to be computed efficiently (Iorio
et al. 2005; RoyChoudhury and Stephens 2007). On
the other hand,Wilson andBalding (1998),Beaumont
(1999), and others have applied MCMC to provide Bayes-
ian inference of demographic history from microsatellite
data, in which case population parameters are treated as
random variables instead of unknown fixed parameters as
inamaximum-likelihoodapproach.Cornuet et al. (2006)
investigates the underlying mutation process of microsa-
tellites using reversible-jump MCMC (Green 1995) of
microsatellite models.

The third category includes likelihood-free approaches
such as approximate Bayesian computation (ABC)
(Weiss and Von Haeseler 1998; Beaumont et al. 2009;
Bertorelle et al. 2010). The application of ABC to
microsatellite data (Beaumont et al. 2002; Cornuet
et al. 2008; Tallmon et al. 2008) aims to increase compu-
tation efficiency as the method uses summary statistics
instead of the full data set and employs simulation to
circumvent the likelihood computation step.

Many of the likelihood approaches mentioned above
are based on the coalescent theory (Kingman 1982;
Griffiths and Tavare 1994). Rather than assuming
a parametric model for the population history, for ex-
ample exponential growth or logistic growth models
(Pybus et al. 2003), advanced coalescent-based methods
provide inference of the demographic history by esti-
mating population as a function of time directly from
the data (Drummond et al. 2005; Opgen-Rhein et al.
2005; Heled and Drummond 2008; Minin et al.
2008), but most of them have not been accessible for
microsatellite inference.

To extend previous work on Bayesian coalescent infer-
ence of microsatellite data, we develop a method that
provides inference of the demographic history averaged
over a nested set of microsatellite mutation models that
incorporate length dependency, mutation bias, and step
size. Our method can handle multiple loci and these are
assumed to be unlinked or in independent blocks of
linkage. The implementation of this method consists of
two main parts. The first part is to introduce the
implementation of a rich family of microsatellite muta-
tional models and other necessary components to the
BEAST software package (Drummond and Rambaut
2007), which provides microsatellite inference access to
sophisticated coalescent models (Drummond et al. 2005;
Heled and Drummond 2008; Minin et al. 2008). The
second part deals with model uncertainty by employing
the product space formulation of transdimensional
MCMC (Sisson 2005) as described in section 2.5 of
Godsill (2001), which facilitates Bayesian model
selection by producing posterior probabilities of the
microsatellite mutation models and Bayesian model
averaging for estimates of population history and gene-
alogies over those models. The transdimensional MCMC
technique chosen here uses techniques from Bayesian
variable selection(BVS)(Geweke1996;KuoandMallick

1998) sensu Godsill (2001). The BVS-inspired scheme is
preferred over other transdimensional MCMC techni-
ques because it trades a small increase in MCMC state
space for a high degree of simplification and flexibility
in programming.

To apply BVS a composite model space must be con-
structed that nests all submodels of interest over which
inference of population history and genealogies should
be averaged. In our case the submodels have a natural
nesting by variable selection, because each model repre-
sents a special case of the most general microsatellite
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mutation model in our family. However, models that do
not nest naturally can still be averaged over using BVS by
introducing a simple index parameter alongside the
union of all submodel parameters to construct a product
space overmodels (Carlin andChib 1995).However, an
advantage of our nested model space is that it is able to
indicate which of the threemicrosatellite mutation prop-
erties has a strong signal in the data.

MATERIALS AND METHODS

The basic global model: Here we give an overview of the
global model and the framework within which our imple-
mentation is developed. The microsatellite data, D, consist of
L loci, D ¼ {D1, . . . ,DL} and each locus is composed of a col-
lection of microsatellite repeat lengths from the population of
interest, Dl 5 fDl1; . . . ;Dln1 ;g where l ¼ 1, . . . , L and nl is the
number of copies of locus l collected. In haploid data, nl is the
number of sampled individuals, while in diploid data nl is
twice the number of individuals from which the samples have
been collected. We assume that the data have been generated
by an underlying continuous time Markov chain (CTMC),
along an unknown genealogy tl, which is a rooted bifurcating
tree. In the simulations and analyses, the mutation rate is
assumed constant along the tree within a locus, i.e., a strict
molecular clock rate. The time intervals between successive
coalescence events in the genealogy are modeled by the co-
alescent, which requires a demographic model component
containing parameters Q. The mutation process is defined
by the microsatellite mutation model (more details in the
Microsatellite models section) with parameters f. Let t ¼
{t1, . . . , tL} and assuming the loci are independent and iden-
tically distributed given (t, f), the joint posterior distribution
of t, f, and Q is

fN ;G ;F

�
Q; t;f jD�} YL

l51

Pr
�
Dl j tl ;f

�
fG
�
tl jQ

�
fN
�
Q
�
fF
�
f
�

(1)

(Drummond et al. 2002). The tree likelihood of locus l is
Pr(Dl jtl, f) and can be evaluated using the peeling/pruning
algorithm described by Felsenstein (1981), although we
employ augmentation of internal nodes with repeat lengths.
The coalescent models come into play by serving as priors
for the tree topology and coalescent/divergence times. The
form of the coalescent likelihood, fG(tl j Q), depends on a
demographic model specified a priori and its parameters
(Q) are jointly estimated. The prior distributions for param-
eters of the demographic model and mutational model are
selected from various standard univariate and multivariate
distributions.

Microsatellite models: The models of interest in this study
were ones that could be approximated by finite state space
continuous-time Markov chains to readily incorporate them
into existing software for likelihood calculations on trees. We
first need to decide on the coding of the data. Unlike nu-
cleotides or amino acids that have a finite state space, the size of
the microsatellite state space is ambiguous, because a universal
upper bound for length of microsatellites probably cannot be
defined (Kruglyak et al. 1998). Yet, according to previous
observations, the number of repeats in a microsatellite allele
rarely exceeds a few tens (Goldstein and Pollock 1997). In
addition, it seems sensible to impose a lower bound on repeat
length, above which we can expect the characteristic behavior

of microsatellite mutation to occur. In this article, an allele
with i repeats is denoted as i. The imposed maximum
and minimum lengths of a microsatellite are denoted as imax
and imin, respectively. Therefore there are s ¼ imax 2 imin 1 1
possible states.

Once boundaries are set, it is easy to define the infinites-
imal rate matrix of an ergodic Markov chain. The infinites-
imal rate matrix Q :5 ðqi;j Þi;j5imin ;...;imax

is a square matrix
wherein each element qi,j specifies the relative instantaneous
rate of allele i mutating to allele j, and the shared lower and
upper bounds of i and j are imin and imax, respectively. Given
the mutation rate (m), the Markov chain has the transition
probability matrix (P),

P ðmtÞ :5
�
pi;j

�imax

i;j5imin
5 e 2Qmt ;

where pi,j (mt) is the probability of mutating from allele i to
allele j, in time t.

In our implementation, the infinitesimal rate matrix of the
most complex model is parameterized:

qi;j 5

8><
>:

aðu0; u1; u2; d0; d1; d2; iÞð11 ð12 pÞgðg ; i; jÞÞ; j i2 j j 5 1
aðu0; u1; u2; d0; d1; d2; iÞð12 pÞgðg ; i; jÞÞ; j i2 j j .1
2
P
k 6¼i

qi;k ; i5 j ;

(2)

or

qi;j 5

8>>>>><
>>>>>:

að1; a1; a2; 1; a1; a2; iÞbðb0; b1; iÞð11 ð12 pÞgðg ; i; jÞÞ; j 5 i1 1
að1; a1; a2; 1; a1; a2; iÞbðb0; b1; iÞð12 pÞgðg ; i; jÞ; j .i1 1
að1; a1; a2; 1; a1; a2; iÞð12bðb0; b1; iÞÞð12 ð12 pÞgðg ; i; jÞÞ; j 5 i2 1
að1; a1; a2; 1; a1; a2; iÞð12bðb0; b1; iÞÞð12 pÞgðg ; i; jÞ; j ,i2 1
2
P
k 6¼i

qi;k if i5 j :

(3)

aðu0;u1;u2; d0; d1; d2; iÞ
5

�
u0 1u1

�
i2 imin

�
1u2ði2 iminÞ2 if j 5 i1 1

d0 1 d1
�
i2 imin

�
1 d2ð12 iminÞ2 if j 5 i2 1

b
�
b0; b1; i

�
5

1
11 e 2 ðb01b1ði2 iminÞÞ;

g
�
g ; i; j

�
5

8<
:

ð12 gÞg j i2j j21

12 g imax 2 i if imin#i,j#imax

ð12 gÞg j i2 j j21

12 g i2 imin
if imin#j,i#imax:

The rate matrix is normalized so that the total mutational out-
flow is 1.0; i.e., let q9i;i 5 cqi;i and find c so that 2

P
i q9i;ipi 5 1:0:

The function a(u0, u1, u2, d0, d1, d2, i) is the truncated version
of the asymmetric quadratic model proposed by Calabrese

and Durrett (2003) and accounts for the length dependency
of mutation rate and mutational bias by modeling the rate of
expansion and contraction as separate quadratic equations.
The rate can be symmetric if expansion and contraction share
exactly the same quadratic equation; in other words u0 ¼ d0,
u1 ¼ d1, and u2 ¼ d2. Equal rate for all lengths is obtained by
setting the coefficients of the linear terms and quadratic
terms to zero in both equations. Similarly, the rates are mod-
eled as linear functions of the length when u2 and d2 are set
to 0.

In Equation 3 the a-function has symmetric rates. It is stan-
dardized so that parameters u0 and d0 are fixed to 1.0, because
the rate of imin must be a positive real number and for any
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a(1, a1, a2, 1, a1, a2, i) it is equivalent to constant · a(1, a1, a2,
1, a1, a2, i), because of the normalization of the rate matrix.

The focal length is equal to if if imin # if # imax and is the
repeated root of the equation (u02 d0)1 (u12 d1)(if2 imin)1
(u2 – d2)(if 2 imin)2 ¼ 0. At the focal length the rate of expan-
sion and contraction is the same, so given a mutation event,
there is equal probability of expansion and contraction.

Although the function a(u0, u1, u2, d0, d1, d2, i) has taken
mutational bias into account, the parameterization may not
necessarily provide answers to questions regarding the rela-
tionship between mutational bias and microsatellite length.
As mentioned earlier, mutational bias can be quantified by
the probability of expansion given a mutation event. The func-
tion b(b0, b1, i) models the probability of expansion by a sim-
ple logistic regression.

Both the bias constant parameter, b0, and the bias linear
parameter, b1, take real values from the range (2N,1N). The
probability of contraction is 1 2 b(b0, b1, i). This is a modifi-
cation of the parameterization adopted by Sainudiin et al.
(2004). They model expansion probability by simple linear
regression. The probability of expansion then becomes

b9ðb90; b91; iÞ5maxf0;minf1; b902 b91ði2 iminÞgg: (4)

In Equation 4 the bias constant parameter is b90 2 ½0; 1 ;� while
the bias linear parameter is b91 2 ð2N;þNÞ:

It is worth noting that b(b0, b1, i) 2 (0, 1) whereas
b9ðb90; b91; iÞ 2 ½0; 1�: The difference may not seem significant
computationally, but b9ðb90; b91; iÞ can give rise to numerical
instability, when there are several consecutive rows of zero
expansion (or contraction) rates in the infinitesimal rate ma-
trix. This situation is very rare since in reality it is unlikely that
probability of expansion will be close to 0 or 1; it can occur,
however, if the user does not specify the appropriate starting
values for b90 and b91. In addition, it is conventionally more
appropriate to model a categorical variable with logistic re-
gression (Agresti 2002).

Both parameterizations b and b9 were implemented.
Parameters of a logistic regression are not as easy to interpret
as those of a linear regression, so for a more straightforward
interpretation, b9 can be chosen for the analysis.

To account for larger steps in state space by a single
mutation, we employ the parameterization used by Sainudiin
et al. (2004), which is similar to the TPMproposed byDiRienzo
et al. (1994). Under this model, single-repeat mutations have
a probability of p whereas multirepeat mutations (length of
change$1 repeat) have a probability of 12 p. For multirepeat
mutations, the distribution of step size, ji2 jj, is given by a trun-
cated geometric distribution g(g, i, j). The symbol g is the fail-
ure probability of the truncated geometric distribution.
Stationary distribution: For an ergodic Markov chain, as

time, t, approaches positive infinity, its transition probability
matrix converges to a matrix in which every single row is the
stationary distribution, limt/N P(mt) ¼ 1p. As mentioned by
Sainudiin et al. (2004) the stationary distributions of all one-
phasemodels are special cases of the general birth–death chain.
Bayesian model uncertainty: The output of a Bayesian

analysis is the posterior distribution of the parameters given
the data. However, the high-dimensional parameter space in
a genealogy-based analysis dictates simulation of the posterior
distributionby computationally intensiveMonteCarlomethods
such as MCMC or importance sampling. Here, the posterior
distribution is produced by the Metropolis–Hastings MCMC
algorithm (Metropolis et al. 1953).

In a Bayesian framework, the standard procedure to com-
pare twomodels is by computing their Bayes factor (BF), which
is the ratio of the marginal likelihoods of the two models (M1
and M2):

BF5

Ð
Pr
�
f1jM1

�
Pr
�
D jf1;M1

�
df1Ð

Pr
�
f2jM2

�
Pr
�
D jf2;M2

�
df2

5
PrðDjM1Þ
PrðDjM2Þ5

PrðM1jDÞ=PrðM1Þ
PrðM2jDÞ=PrðM2Þ:

(5)

If the space of potential models is large, then some
techniques for model comparison are very time consuming.
In addition and more importantly, the mutational model
may not be of prime interest, i.e., nuisance, and therefore it
is not ideal to perform a separate analysis for every mutation
model. The solution to this problem is Bayesian model aver-
aging (BMA). We employ transdimensional MCMC to provide
joint inference via sampling the microsatellite model indica-
tor, n, to produce the posterior distribution

fN ;G ;F;V
�
Q; t;f; vjD�

}
QL
l51

Pr
�
Dl j tl ;f; v

�
fG
�
tl jQ

�
fN
�
Q
�
fF;V

�
f; v

�
:

(6)

Here, f is a union of parameter vectors of all n models of in-
terest, and f 5 [n

v51fMv; where fMv is the parameter vector
of model Mn. The marginal posterior distribution of model
indicator n can be obtained from posterior samples of Pr(Q,
t,f, vjD), representing the posterior distribution of themicro-
satellite model. The joint posterior distribution of Q and t
integrated over the models is

fN ;G ðQ; t jDÞ 5 P
v2V

Ð
fN ;G ;F;V ðQ; t;f; v jDÞdf

5
P
v2V

fN ;G ;FðQ; tjv;DÞfV ðv jDÞ;
(7)

which can also be expressed as the model-averaged posterior
joint distribution of Q and t.

Our implementation of transdimensional MCMC combines
the techniques of BVS (Kuo and Mallick 1998) and pseu-
dopriors or linking densities (Carlin and Chib 1995). Early
BVS applications have aimed to solve the problem of variable
selection encountered when building a linear regression
model. Initially, there is a large number of potential predic-
tors X1, . . . ,Xp, with values xij, j ¼ 1, . . . , p and the focus is on
determining which of these predictors are linearly associated
with the response variable Y. The full model describes the
response yi as a linear combination of the explanatory varia-
bles xij:

yi 5f01
Xp
j51

fj xij 1 ei : (8)

The termf0 is the intercept, and the error term ei�N (0,s2). A
coefficient fj that is (statistically) significantly different from
0 suggests predictor Xj may help in predicting the response.
Conversely, a fj that does not significantly differ from 0 indi-
cates Xj provides little additional information and can be ex-
cluded from the model. The variable selection method by Kuo
andMallick (1998) uses an auxiliary binary indicator variable,
d, of P dimension. dj ¼ 1 indicates the presence and dj ¼ 0 in-
dicates the absence of the parameter fj. The full linear model
becomes
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yi 5f01
Pp
j51

fjdj xij 1 ei

5f01
Pp
j51

cj xij 1 ei :

(9)

The term cj can be considered as the outcome of the function
cj ¼ g(fj, dj) ¼ fjdj. Setting dj to 0 forces cj to 0, so that fj is
effectively excluded from the model. However, even though in
such a case the value of fj has no effect in the likelihood, it is
still sampled by theMCMCmachinery, but according to its prior
distribution only. This means the dimensions of f and d, and
hence the model parameter dimension, are not changed even
though mutation model parameters are effectively included
and excluded in the likelihood during the MCMC. Therefore
it does not require the computation of the Jacobian ratio unlike
transdimensional MCMC techniques such as reversible-jump
(RJ)MCMC (Green 1995).

We augment the parameters in Equation 3 with a set of indi-
cators, each associated with one of the parameters in the most
general microsatellite mutation model, to produce a natural
nesting of the described microsatellite mutation models.

Our most complex (full) microsatellite model (defined by
Equation 3) contains the parameters,fFull¼ {a1, a2, b0, b2, g, p},
and any submodel has only a subset of fFull � fFull

k ;  k5
f1;  : : : ; 6 ;g is the kth element in fFull. We augment fFull with
a binary indicator variable d ¼ {d1, . . . , d6} to provide a set of
toggle switches that can be used to define all nested models of
fFull. Letting qij(fFull) represent Equation 3, the equation that
defines the instantaneous rate matrix of the new model is
q tdMCMC
ij 5 qij ðcÞ and our function for c is given by

ck 5 hðfk ; dkÞ5 dkf
Full
k : (10)

Thus the instantaneous rate matrix depends on both fFull and
d. Even when the value of fFull

k has no effect on the likelihood
as dk ¼ 0, fFull

k is still sampled by the MCMC machinery, but
according to its prior distribution only. The joint posterior
distribution when using this model is

PrðQ; t;f; d jDÞ
}

QL
l51

Pr
�
Dl j t;f; d

�
fG
�
t jQ�

fN
�
Q
�
fF jD

�
f j d�fD�d�; (11)

where f ¼ fFull. If f and d are assumed independent,
fFjD(f jd)fD(d) is replaced by fF(f)fD(d).

Prior on model space: There are six free parameters in the full
model, which theoretically give us 64 submodels. However,
parameter p cannot be estimated for submodels in which g is
not a free parameter (i.e., fixed to 0). This is because if g is
fixed to 0, p does not have any effect on the likelihood. Fur-
thermore, when modeling with regression, it is convention to
estimate all polynomial terms in the model up to the largest
degree considered in the model. We apply this convention to
functions a(1, a1, a2, 1, a1, a2) and b(b0, b1, i) in Equation 3.
The application of these restrictions to the model space
results in a connected subspace of 27 models, and we apply
a uniform prior so that the prior probability on each model is
1/27, while the remaining 37 models have a prior probability
of 0.0. Figure A1 in appendix a shows the restricted model
space.

Proposal distributions: Model switching is performed by two
proposal moves, the flip move and the pick move. The flip
move uniformly picks an index of the bit vector d at random
and performs a flip, whereby the value at that index changes

from 0 to 1 or vice versa. For a bit vector of n dimension, the
probability is 1/n for both the flip move and its reverse. The
Hastings ratio for Mi / Mj is q(Mi jMj)/q(Mj jMi) ¼ (1/n)/
(1/n) ¼ 1.0. This proposal distribution over bit vector d is
symmetric and therefore no Hastings correction is required
for this proposal. Since, in our case, the 27 models with non-
zero prior probability form a connected component, the flip
move will produce an ergodic and irreducible Markov chain.
In effect, the nonhomogeneity of the restricted model space is
corrected for by rejection of the neighboring models with
zero prior probability, rather than defining a Hastings ratio
specifically for the restricted model space (shown in Figure A1
of appendix a).

The pick move, on the other hand, allows larger moves. It
selects a model uniformly at random from the set of 27
permitted models. All permitted models have equal probabil-
ity to be selected, and thus the pick move is symmetric.
Pseudopriors: Pseudopriors or linking densities, a technique

used in transdimensional MCMC, were first introduced by
Carlin and Chib (1995). Their method considers the situa-
tion when there is no overlap among the individual parameter
vectors of the n models of interest. The parameter “pool” f is
therefore simply a concatenation of all model parameter vec-
tors. The joint posterior distribution for v and f given data D
can be written as

Prðv;f jDÞ}PrðD j v;fÞf ðf j vÞf ðvÞ
}Pr

�
D j v;fMv

�
f
�
fMv

j v�f �f2Mv
j v;fMv

�
f
�
v
�
;

where the f2Mv
5 �fMv

\f; and their values do not affect the
likelihood when the current model is Mn. The expression
f ðf2Mv

j n;fMv
Þ represents the “pseudopriors” by Carlin and

Chib (1995) and can be considered the prior distributions of
parameters in f2Mv

; when (by definition) their values are not
being used by the likelihood. Iff2Mv

is assumed independent of
fMv

; the pseudopriors become f ðf2Mv
j v;fMv

Þ 5 f ðf2Mv
jvÞ:

Unlike “real priors,” these pseudopriors have no effect on the
joint posterior f(v, fMv

jY), but govern the mixing of MCMC as
they play the role of jumping distributions in RJMCMC (Green
2003).Appropriatepseudopriors resembleefficientproposal dis-
tributions and achieve efficient sampling by preventing ex-
tremely unlikely parameter values off2Mv

from being sampled.
Selecting suitable pseudopriors can overcome the problem

of poor mixing encountered when the prior is very different
from the posterior for parameters being model averaged.
When a parameter is not in the likelihood, values sampled
from the prior may have little agreement with the data.
Consequently, a parameter may have difficulty reentering the
likelihood, resulting in poor mixing.

Godsill (2001) extended the method by Carlin and Chib

(1995) to allow arbitrary overlap among parameter vectors
fMv

: In addition to a pool of parameters, f, indicators, I(n),
map n to the elements of f used by model Mv. The posterior
is expressed as

Pr
�
v; f jD�}Pr

�
D j v; fIðvÞ

�
f
�
fIðvÞ j v

�
f
�
f2 IðvÞ j v

�
f
�
v
�
:

(12)

Carlin and Chib (1995) suggested that the pseudoprior of
a parameter f in model Mn should match closely the model-
specific posterior distributions Pr(fjMv). It has been observed
in some trial runs that even though two models Mv1 and Mv2
share the parameter f, the marginal posterior distributions
Prðf jMv1Þ and Prðf jMv2Þ are quite different. However, a pa-
rameter can have only a single pseudoprior. To achieve model
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specificity of pseudopriors, we can augment the parameter
space, so that f in Mv1 is a separate parameter from that in
Mv2, thus allowing different pseudopriors.

To accommodate augmented mutation model parameter
space for a model-specific pseudoprior, the new function for c
becomes

ck5

�
fI ðk;dÞ dk 5 1
0 dk 5 0;

(13)

where the mapping function I(k, d) returns the index of the
element in f according to k, which indicates the type of pa-
rameter, and d, which specifies the currently active model. For
example, if f 5 fa1; a2; b10 ; b20 ; b1; g ; pg and b10 is the constant
bias parameter for models of the form * * 10 * *, whereas b20 is
that for * *11* * models, then fI(k ¼ 3,d ¼ **11**) maps to the
parameter b10 , where * is either 0 or 1. Again, when the rest of
the parameters in the pool are not used in the likelihood, they
are sampled from their respective pseudopriors and so the
parameter dimension remains the same.
Tree likelihood computation: Felsenstein’s (1981) prun-

ing algorithm of tree likelihood computation implicitly sums
over all possible ancestral states. For a data type with s states
and a rooted gene tree with n taxa (n 2 1 ancestral nodes),
the pruning algorithm is O(ns2). The speed of this algorithm
is sufficiently fast for analysis to be completed on nucleotide
data, which have state space size of 4 (A, T, C, and G). For
microsatellite DNA, however, the number of states is many
times larger than that of the nucleotide data type, and there-
fore likelihood calculation is much more time consuming.

One solution to this problem is to avoid summation across
all possible states at ancestral nodes by treating unknown
ancestral allelic states, DA

l , as auxiliary parameters (Wilson

and Balding 1998). After augmentation of the tree with an-
cestral states and fixing to a particular microsatellite modelMv
with parameters fMv

; the tree likelihood of loci l is the prod-
uct of all likelihoods of nodes in a tree,

LðlÞ 5Pr
�
Dl ;DA

l j tl ;fMv

�
5piroot

Y2n22

x51

Pr
�
ix j iancðxÞ; tx ;fMv

�
; (14)

where x is one of the 2n 2 2 nodes in the tree excluding the
root and ix is the state of node x. The parent of node x is de-
noted as anc(x) and tx is the length of the branch that connects
x to anc(x). FollowingWilson andBalding (1998), we replace

Felsenstein’s tree likelihood with the likelihood in Equation 14.
The prior probability of the ancestral state in the root node,
piroot ; is computed from the stationary distribution of the muta-
tional process, as is standard in Felsenstein’s likelihood of an
independent ergodicMarkov process on a tree. Ancestral states
in the remaining internal nodes have a uniform prior.

For a discussion on the numerical stability see appendix b.
Proposal moves for ancestral state sampling: The candidate

allelic state of an ancestral node is proposed by a random-walk
integer move, which makes a step from the current allelic state.
This move randomly picks direction and step size, which is an
integer between 1 and a maximum step size specified by the
user. The maximum step size permitted is less than the
difference between the upper and lower boundaries of the
allelic state. If after a random-walk step the value proposed
exceeds the boundaries, then the exceeding proportion of the
step is reflected back. Due to the condition on the maximum
step size and the type of reflection chosen, the result of
a reflection will not be on either boundary. Given maximum
step size, w, the number of possible combinations of direction
and step size is 2w. TheHastings ratio is thus the ratio for amove
from state i to j and is given by H(j, i)/H(i, j), where H(i, j) ¼
h1(i, j )1 h2(i, j )1 h3(i, j ). The equations h1(i, j ), h2(i, j ), and
h3(i, j ) are given below:

h1
�
i; j

�
5

�
1; 0, j i2 j j#w
0; otherwise:

h2
�
i; j

�
5

�
1; i1w. imax and 2imax 2 ði1wÞ# j andj 6¼ imax
0; otherwise:

h3
�
i; j

�
5

�
1; i2w,i min and 2imin 2 ði2wÞ$ j and j 6¼ imin
0; otherwise:

The proposal mechanism is independent of the currently
indicated model in transdimensional MCMC.
Simulations: After developing the implementation for Bayes-

ian microsatellite analysis, it is of interest to obtain some
indication of the accuracy and precision of the estimates. We
consider only a subset of the 27 models in the restricted model
space. This subset is obtained by setting a2 and p to 0; therefore
the most complex model considered here has only four param-
eters and the bit vector d has four dimensions. Because of the
restriction that b1 is a free parameter only when b0 is a free
parameter, this subset has 12 permitted models instead of 16.

These 12 models resemble the set in Sainudiin et al.
(2004), except we use simple logistic regression to model mu-
tational bias. For convenience, we use their model naming
system. This restricted model space of 12 models is illustrated
in Figure 1.

Simulated data were generated under the 12 different
microsatellite models from the procedure described below:

1. One hundred replicate data sets were generated under
each microsatellite model.

2. For each replicate, 30 random coalescent trees were gen-
erated, each with 15 individuals assuming a constant pop-
ulation size with Nem ¼ 2.0 (where Ne is the effective
population size of chromosomes and m is the mutation rate
representing the number of mutations per microsatellite
locus per generation).

3. A microsatellite data type was created with minimum
length of 1 repeat unit and a maximum of 30 repeat units.

4. For each coalescent tree, a microsatellite site pattern was
simulated under themicrosatellitemodel withmutation rate
equal to 1.0. All site patterns in a trial were simulated under
the same microsatellite model. There were 15 sampled hap-
loid individuals in each site pattern.

Figure 1.—Restricted model space of the 12 models con-
sidered in the simulation analyses.
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Each of the 1200 simulated unlinked 30-locus data sets were
analyzed with transdimensional MCMC to demonstrate how
well our method identifies the true microsatellite mutational
model (Mtrue). We also compared the accuracy and precision
in the demographic estimates between model averaging and
when the true model was known. Analyses have chain lengths
of 70 million steps with transdimensional MCMC and 50 mil-
lion steps with the true model. Sampled parameters were
recorded every 50,000 steps.

It is also of interest to investigate the effect of the number
of taxa and that of loci on the precision of u-estimation using
transdimensional MCMC. Data sets were simulated under
the PL2 model with different combinations of number of
loci and number of taxa presented in supporting informa-
tion, Table S1, which also includes the MCMC chain length
for each combination. One hundred simulations were car-
ried out for each combination. For this set of simulations, we
recorded every 10,000th step of the MCMC. The conver-
gence of each analysis was examined by the trace analyses
including the computation of the effective sample size (ESS)
of each estimated parameter. Table S2 is a summary of the
model parameter values that are chosen for simulating the
data. All simulated data sets are provided in .csv format in
File S1.

Measure of accuracy: The accuracy was measured by comput-
ing the relative bias. Here we define relative bias as

biask 5
ûk;median2 u

u
;

where u is the true population size value and ûk;median is the
posterior median population size for trial k.

Accuracy of estimates may also be indicated from the
percentage of trials with 95% highest probability intervals
(95% HPD) containing the true answer. The a% HPD is the
smallest interval containing a% of the posterior distribution.

Measure of precision: The relative error was used to measure
the precision of the estimates obtained. We define the relative
error as

errork 5
jûk;median2 uj

u
:

Another measure of precision is the 95% HPD relative bound
and is given as

95% HPD relative bound

5
95% HPD upper bound2 95% HPD lower bound

u
:

The credible interval coverage, relative bias, error, and HPD
bound defined here are similar to the corresponding meas-
ures used by Heled and Drummond (2008).

Prior distribution for microsatellite model parameters: We used
a normal(0, 10) prior on both b0 and b1, an exponential(1) on
a1, and uniform(0,1) on g.

Pseudopriors: From test runs it appears that only b0, b1, and g
require pseudopriors to reach reasonable convergence. The
pseudopriors for each variable are chosen to be tight distribu-
tions centered around the true parameter values since they
were known. Pseudopriors for each parameter are shown in
Table S3.

Tree prior: For the simulations, the tree prior used was the
coalescent with constant population (see Kingman 1982 or
Griffiths and Tavare 1994 for details on the coalescent
likelihood calculation). For inference, the constant popula-

tion size model was chosen to match the simulation
conditions.

The prior density for u was set to one-on-x prior, f ðxÞ}1= x.
The one-on-x prior is an improper prior; however, in the case
of constant population size, it can be shown to be Jeffrey’s
prior, and its application in this context leads to a proper
posterior distribution (Drummond et al. 2002, 2004).
Microsatellite model prior: Because we did not have any a priori

information regarding the microsatellite model, a uniform
prior is applied to the set of 12 models considered.
Sampling tree topologies: The tree proposal moves subtree-

slide, narrow exchange, wide exchange, and Wilson–Balding
are used for tree topology sampling in all the analyses under-
taken in this article. A nice summary of these proposal moves
is presented in Höhna et al. (2008).
Red colobus monkey data: Data: The red colobus monkey

(Pilocolobus tephrosceles) data set was kindly provided by J. Allen
(University of Florida, Gainesville). This unpublished data set
consists of 62 samples from each of 16 loci. Each locus was
typed for both homologous copies from each of 31 red colobus
monkeys from the Kibale National Park of Uganda. These loci
are treated as unlinked as no clear signal of linkage had been
found ( J. Allen, personal communication). The allele lengths
and the PCR primers are presented in Table S4 and Table S5.
Analyses: An upper bound of 33 and lower bound of 6

repeats were imposed. We made boundaries wider than the
observed length range of the data to account for the
possibility that the observed sample range is not the true
range in the population. We ran two separate analyses of
200,000,000 for each of the 12 microsatellite models. We also
ran two replicate analyses using transdimensional MCMC. To
compare mixing and performance between transdimensional
MCMC and fixing the microsatellite model, we estimated u
from this data set with transdimensional MCMC and each of
the 12 models used for simulation. Values for ESS per MCMC
step were computed for u, tree likelihoods, coalescent likeli-
hoods, and mutation rates. We accommodated the potential
mutation rate variation across loci by estimating the relative
rates but fixing the average rate to 1.0.
Prior selection: A uniform Dirichlet prior for 16 dimensions

was applied to the relative mutation rates. The tree prior and
mutation model parameter priors used for the real data
analyses are the same as the ones for analyses of the
simulation data. However, because the true values of the
mutational parameters are unknown, pseudopriors could not
be picked as easily as for simulated data. We took Carlin and
Chib’s suggestion and obtained preliminary posterior distribu-
tions of mutation model parameters by running a short
MCMC (of 40,000,000 steps) with each microsatellite model.
The posterior densities obtained from these preliminary runs
are still quite broad, but they provide sufficient guidance for
the selection of pseudopriors. The first 10% of each chain is
discarded as burn-in and the remaining chain is used to fit
a standard parametric distribution to the posterior sample of
each parameter.

The marginal posterior distributions of the microsatellite mu-
tation parameters were fitted using the maximum-likelihood–
based fitdistr function in the MASS package (Venables and
Ripley 2002) of R (R Development Core Team 2009), a soft-
ware environment for statistical computing. The fitdistr func-
tion returns parameter estimates for a parametric distribution
that best describes the posterior sample. The quality of the fit
is then examined by the one-sample Kolmogorov–Smirnov
test with the null hypothesis that the posterior sample has
come from the fitted distribution. Several different parametric
distributions were fitted to the sample and the one with the
largest Kolmogorov–Smirnov test P-value (least evidence against
a bad fit) was chosen.
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Table S6 presents all the pseudoprior distributions. In this
case, the parameter space is augmented so that there is no
overlap in model parameter vectors and each parameter has
its own model-specific pseudoprior.

RESULTS

Simulations: For each analysis of simulated data,
the first 10% of the chain was discarded as burn-in
and analysis of traces confirm that all parameters have
ESS. 100. The accuracy of Bayesian model selection by
our method is indicated by how often the maximum
a posteriori model corresponds with the true model,
MTrue. Table 1 presents the frequency distribution of
MBest (the model with maximum posterior probability
using our transdimensional MCMC method) for data
sets simulated under each MTrue. The highest percent-
age value in each row is in italics. It is shown that all
diagonal values are in italics, which means MBest ¼
MTrue has the highest frequency for all 12 models of
MTrue.

Accuracy is also indicated by computing the percent-
age of trials that has the MTrue contained in the 95%
HPD set of models. These values are presented in Table
2. A very high proportion (.0.9) of the trials captures
MTrue within the 95% HPD set. The median 95% HPD
set size is between two and four models, and the major-
ity of the models have a median set size of two, suggest-
ing good precision.

Often, the user is more concerned with the accuracy
of other evolutionary or demographic estimates rather
than the mutational model per se. The values for relative
bias, relative error, and relative 95% HPD bounds for
the demographic parameter of constant population size
are calculated for each trial. Table 3 is a summary of the
median relative bias, the median relative error, the me-
dian 95% HPD relative bound, and the percentage of
trials in which the 95% HPD interval captured the true
value of Nem ¼ 2.0 for each model.

Estimates with high precision have small values of
median relative error or median 95% HPD relative
bound. Accurate estimates have small values of median
relative bias and a high percentage of 95%HPD intervals
containing the true value. Within each row, the values of
the four statistics of accuracy and precision are close
between BMA and when the true model is known.
However, when the true model (TM) is known, the
results have greater coverage of the true population
parameter value, smaller median relative error, smaller
median relative 95% HPD bound, and smaller absolute
median relative bias than model-averaged estimates of u.

All model–method combinations had high frequent-
ist coverage varying from 0.86 to 0.99. Given the small
number of replicates, these coverage statistics are not
significantly different from each other and are all con-
sistent with an underlying proportion in the region of
0.95, although in the Bayesian setting there is no reason
to expect coverage to be at the 0.95 level.

For either method, there is a spectrum of median
relative error values across the models of MTrue, where
the median relative error value is the smallest when the

TABLE 1

Percentage of true model recovery computed from transdimensional MCMC (tdMCMC) analysis of simulated data

MBest

MTrue EU1 EU2 EC1 EC2 EL1 EL2 PU1 PU2 PC1 PC2 PL1 PL2

EU1 95 4 0 0 0 0 1 0 0 0 0 0
EU2 13 87 0 0 0 0 0 0 0 0 0 0
EC1 0 0 59 0 1 0 0 0 37 3 0 0
EC2 2 5 13 63 0 1 0 0 2 15 0 0
EL1 18 0 0 0 59 6 1 0 0 0 17 0
EL2 0 0 0 0 10 76 0 0 0 0 6 14
PU1 0 0 0 0 0 0 97 3 0 0 0 0
PU2 0 0 0 0 0 0 17 83 0 0 0 0
PC1 0 0 21 0 0 0 0 0 73 6 0 0
PC2 0 1 1 5 0 0 0 0 18 75 0 0
PL1 4 0 0 0 4 1 3 0 0 0 78 10
PL2 0 0 0 0 0 1 8 5 0 0 21 65

TABLE 2

Accuracy and precision of true model recovery

MTrue Inside 95% HPD 95% HPD set size

EU1 1.00 2
EU2 1.00 2
EC1 1.00 3
EC2 0.98 3
EL1 0.95 4
EL2 0.99 2
PU1 1.00 2
PU2 1.00 2
PC1 1.00 3
PC2 0.99 2
PL1 0.98 3
PL2 0.93 2
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data are simulated under PU1 and largest when data are
simulated under PU2.

Similarly, there is quite some variation in the size of
the median relative 95% HPD bounds across different
models of MTrue for both BMA and analysis with the true
model. Median relative 95% HPD bounds are the small-
est for data simulated under PL1 and the largest for PU2,
which are approximately three times of that for PL1.

Precision vs. number of loci: Values of median relative
error andmedian relative HPD range are plotted against
the number of loci (Figure 2), where the number of taxa
is fixed to 15. As the number of loci increases, the relative
error (Figure 2, dashed blue line) and 95% HPD range
(Figure 2, solid red line) reduce linearly (on a log-log
scale). It appears that increasing the number of loci to
eight times larger will halve the relative error and reduces
the 95% HPD range by a factor .2.

Precision vs. number of taxa: Figure 3 shows median
relative error and 95% HPD credible intervals as a func-
tion of the number of taxa per loci for 10 unlinked loci.
Both the error (Figure 3, dashed blue line) and the
HPD interval (Figure 3, solid red line) decrease as the
number of taxa increases, but they seem to asymptote to
some positive limits. Further reduction of error and
HPD range can be achieved only by sampling more loci.
The function form y ¼ a01a1/(a21x) is chosen merely
to illustrate the general trend.

Real data example—colobus monkey data: Tracer
(Rambaut and Drummond 2007) was used to decide
the length of the chain to be discarded from a log file as
burn-in. The burn-in length was �10–20% of the orig-
inal length of each log file. The two logs from analyses
with the same microsatellite model were subsequently
combined. The combined log files were then examined
again by Tracer to investigate mixing and convergence
to stationarity. All ESS values were .150.

According to the results from transdimensional MCMC,
the model with the highest posterior probability is EU1.

The 95% highest posterior probability set consists of
EU1, EU2, PL1, EL1, and EL2, with the respective pro-
babilities 0.483, 0.324, 0.053, 0.049, and 0.048. The po-
sterior probability of including a parameter a1 ¼ 0.089,
b0 ¼ 0.193, b1 ¼ 0.186, and g ¼ 0.412. These posterior
probabilities suggest that multistep mutation is the most
evident feature followed by mutation bias and rate
dependency.
The posterior mean, median, and 95% HPD interval

from analyses with each model are presented in Table 4.
The posterior median of u for single-step models

ranges from 4.28 to 4.97 and that for multistep models
ranges from 3.40 to 3.98. Since a multistep model was
sampled almost half the time, the model-averaged poste-
rior median of u is somewhere in between.
Mixing and performance: We use ESS values per MCMC

step as an indicationof the sampling efficiency. Figure S1,
Figure S2, Figure S3, Figure S4, and Figure S5 are dot
plots of ESS value per MCMC step for u, tree likelihoods,
coalescent likelihoods, root heights, and mutation rates.
These plots suggest that the sampling efficiency of trans-
dimensional MCMC is only slightly less than the average
sampling efficiency of single-model analyses. The ratio
of ESS per MCMC step for transdimensional MCMC vs.
single-model analyses on average is 0.78 for u. Averaging
across loci, the ratio is 0.90 for tree likelihood, 0.74 for
coalescent likelihood, 0.71 for root height, and 0.98 for
relative mutation rate.

DISCUSSION

The focus of this research was on the implementation
of a nested family of microsatellite mutation models in
the BEAST software package (Drummond and Ram-
baut 2007). There are many analysis tools unique to
BEAST, including nonparametric coalescent-based in-
ference methods such as the extended Bayesian skyline
plot (Heled and Drummond 2008) and the newly

TABLE 3

Measure of accuracy and precision of model-averaged u-estimates from transdimensional analyses and of u-estimates
from analyses that fixed the microsatellite mutational model to the true model

Inside 95% HPD Median relative error Median relative bias Median relative bound

MTrue BMA TM BMA TM BMA TM BMA TM

EU1 0.97 0.98 0.10 0.10 20.06 20.02 0.58 0.55
EU2 0.94 0.97 0.12 0.10 0.07 0.04 0.83 0.73
EC1 0.96 0.93 0.12 0.12 0.02 0.01 0.68 0.61
EC2 0.89 0.91 0.21 0.14 0.09 0.11 0.97 0.77
EL1 0.89 0.92 0.10 0.10 20.02 0.01 0.59 0.55
EL2 0.92 0.92 0.16 0.12 0.14 0.08 0.95 0.70
PU1 0.98 0.99 0.10 0.09 20.06 20.03 0.65 0.62
PU2 0.94 0.99 0.22 0.18 0.15 0.10 1.01 0.87
PC1 0.93 0.93 0.11 0.10 20.01 0.03 0.65 0.63
PC2 0.86 0.92 0.16 0.14 0.10 0.08 0.95 0.87
PL1 0.90 0.93 0.11 0.12 20.04 0.03 0.32 0.31
PL2 0.89 0.95 0.15 0.13 0.07 0.00 0.80 0.75
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developed multispecies coalescent method *BEAST
(Heled and Drummond 2010). Equipping BEAST with
microsatellite models and other related software compo-
nents permits the application of these methods to micro-
satellite data.

The microsatellite models implemented have all
been previously described in the literature (Di Rienzo
et al. 1994; Fu and Charkraborty 1998; Calabrese
and Durrett 2003; Sainudiin et al. 2004). It was not
intended to introduce new models of microsatellite evo-
lution in this work, except to make slight modifications
where it made the models more suitable for Bayesian
inference in an MCMC setting. Aside from their imple-
mentation, simulations were used to investigate their
statistical properties.

Simulations: Simulation results show moderate varia-
tion in performance across data sets simulated under
differentmicrosatellitemodels. However, when a smaller
number of loci were simulated (10), more biased results
were observed (results not shown).

As mentioned in parameter prior specification (see
section on Prior distribution for microsatellite model parame-
ters), free parameters shared by more than one micro-
satellite model have been given the same prior
distribution for all models containing the parameter.
For example, the constant bias parameter, b0, is inmodels
EC1, EC2, PC1, and PC2, and the prior distribution for b0
is the same for all four models. The impact of the prior
choices made for the mutational parameters has not
been investigated in this study. It is quite possible that
different prior choices would have altered the statistical
properties of the estimators. For parameters such as g in
the two-phase models, which are defined on [0, 1], the
uniform prior is natural; however, for other scale param-
eters, a number of alternatives are feasible. Therefore,

unsuitable prior distributions on the microsatellite
model parameters may be partially responsible for the
demographic estimation bias observed.

Red colobus monkey data example: Our results
suggest that the convergence speed of transdimensional
MCMC is only slightly worse than for singlemicrosatellite
model analyses on average. In addition, only one analysis
of transdimensional MCMC is required to perform
model selection; however, for single-model analyses, we
would need as many as the number of models of interest
(12 in this case) and thus require a far longer time.

In this analysis we have selected pseudoprior densities
by fitting univariate distributions to densities acquired
frompreliminary runs. The procedure can becomemuch
less time consuming if an empirical density function
is used, coupled with the automation of the input file
preparation for preliminary runs and the transdimen-
sional MCMC. However, poorly mixed preliminary runs
may still yield pseudopriors that are very different from
the posterior and thus offer little improvement inmixing
of the analysis with transdimensional MCMC. If human
data are analyzed, then appropriate pseudopriors may
also be constructed from the wealth of empirical data on
the mutation parameters from sperm-typing (Zhang
et al. 1994) and pedigree studies (Weber and Wong

1993; Xu et al. 2000; Whittaker et al. 2003).
Model averaging and Bayes factors: In addition to

providing a model-averaged posterior distribution of
population and genealogical parameters, our transdi-
mensional MCMC method also facilitates robust esti-
mates of the marginal likelihoods (and therefore Bayes
factors) of the individual microsatellite models. These
estimates are not subject to the large, even infinite var-
iances (Raftery et al. 2007; Calderheada andGirolami
2009) associated with the harmonic mean estimator of

Figure 2.—Measures of precision u-estimation vs. the num-
ber of loci.

Figure 3.—Measures of precision u-estimation vs. the num-
ber of taxa.
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marginal likelihoods (Newton and Raftery 1994). Us-
ing transdimensional MCMC to estimate Bayes factors is
also computationally efficient as it requires only a single
MCMC run to determine the relative merits of all k mu-
tationalmodels, rather than the k (ormore) independent
runs required by other techniques, including thermody-
namic integration (Lartillot and Philippe 2006).

Issues and improvement: Low information content in
a single microsatellite locus: Low information content of
a single microsatellite locus means inference results may
be sensitive to poor prior choices. In comparison to
microsatellite data, mtDNA sequence data possess much
more information available for reconstruction of the
genetic ancestry. As a result, an mtDNA tree has a higher
level of resolution than a microsatellite tree. However,
this does notmean inference onmtDNA sequencedata is
more accurate than that on microsatellite data. Given
apopulationhistory, the coalescent admits wide variation
in the topology and coalescent times of the gene trees. To
make a more reliable inference, it is important to use
multiple loci, each of which has an independent history
(Felsenstein 2006). Even though mtDNA sequence
data provide a clear view of the genealogy of the mtDNA
sequences, the whole mtDNA genome is a completely
linked locus. The mtDNA tree therefore provides only
one of the many possible realizations of the coalescent
process for a given population history. On the contrary,
there are potentially thousands of independent micro-
satellite loci available to overcome the problem of sto-
chastic variability of individual genealogies.

Speed and convergence: A large microsatellite data set
with hundreds of loci may give very accurate population
size estimates, but is currently not practical in our im-
plementation, due to slow convergence and computa-
tional inefficiencies. An analysis for a data set containing
�60 unlinked loci and 100 taxa requires days to satisfy
our heuristic diagnostic statistics for convergence when
all the loci were used simultaneously in the same MCMC

run. The slow convergence is due to the large joint param-
eter spacewhenall loci areunlinked.Theparameter space
containing 60 independent 100-tip trees is much larger
than that having a single 100-tip tree with 60 linked sites.
Onepotential solution is sequentialMonteCarlomethods
(Liu 2001), which take advantage of the independence
structure of the likelihood to build up a full posterior dis-
tribution by sequential analysis of the loci (De Finetti
1974). Besides the speed, there is also the need to improve
the efficiency of sampling ancestral states. Our imple-
mentation samples ancestral states by a naive Metropolis–
Hastings algorithm and therefore has low acceptance
probability. Gibbs sampling (Geman and Geman 1984)
is an alternative MCMC algorithm that can sometimes
produce more efficient sampling. It is a special case of the
Metropolis–Hastings algorithm, whereby each proposed
candidate is always accepted, since the components of the
state that change in the proposal are drawn directly from
the conditional posterior distribution. Gibbs sampling of
internal nodes may improve the convergence.
Comparison with other software: Well-known soft-

ware programs such as BATWING (Wilson et al. 2003)
and Migrate (Beerli 2004) also provide Bayesian coales-
cent analysis on microsatellite data. However, these pro-
grams contain only a few simple microsatellite models.
BATWING provides the SMM and the K-allele model;
microsatellite model options in Migrate are the SMM
(called the ladder model in Migrate) and Brownian mo-
tion (an approximation of the SMM). These models do
not take into account many properties of microsatellite
mutation and as mentioned in the Introduction there is
much evidence for those properties. Therefore the sim-
plifying assumptions of the SMMmay not be adequate to
perform inference on real data. Furthermore, weprovide
model averaging over a rich set of microsatellite models,
which is absent in these programs.
In the case of BATWING, all microsatellites are as-

sumed to be linked into a single locus. It was discussed
earlier that incorporation ofmultiple loci is necessary for
accurate inference. Using only a single locus overlooks
the genome-wide distribution of microsatellites, a highly
advantageous trait for coalescent inference.
Future directions: In all analyses in this study, all loci

shared the same (model-averaged) microsatellite model
within an MCMC run. It is possible that the properties of
mutation vary across loci. While our implementation
allows for variation in both rates and microsatellite
models across loci, we have not performed a systematic
study of the properties of such models. A hierarchical
prior structure can account for variation of the same
component in differentmodels. For example, every locus
could have its own EC1model, containing the parameter
b0. During theMCMC, each b0 varies according to a given
distribution, and the parameters of this distribution
(hyperparameters) also have a prior.
Our framework for analysis of microsatellite data can

be combined with the multispecies coalescent (Heled

TABLE 4

Estimates of u from red colobus monkey data

Model Mean Median
95% HPD

lower
95% HPD
upper

BMA 4.08 4.01 2.56 5.76
EU1 4.37 4.31 3.02 5.83
EU2 3.54 3.47 2.25 4.98
EC1 4.33 4.28 3.06 5.75
EC2 3.46 3.40 2.27 4.83
EL1 4.62 4.54 3.26 6.15
EL2 3.87 3.80 2.56 5.38
PU1 4.33 4.28 2.93 5.92
PU2 3.50 3.45 2.11 4.94
PC1 4.60 4.48 2.85 6.68
PC2 3.59 3.49 2.06 5.28
PL1 5.05 4.97 3.33 6.88
PL2 4.05 3.98 2.45 5.72
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and Drummond 2010) to estimate the species tree us-
ing multiple microsatellite loci sampled from closely
related species. Although microsatellite models can be
used alongside various relaxed-clock models in BEAST
(Drummond et al. 2006) to estimate divergence times,
we do not recommend this type of analysis, because
each microsatellite locus does not have sufficient infor-
mation to estimate rate heterogeneity among branches.

Model selectionhas always beenan important problem
in statistical inference. It is common to make inferences
on the basis of the best model selected by a standard
model comparison procedure.However, such a procedure
may produce a subset of models that are not significantly
different from one another in their goodness-of-fit and
therefore create difficulty in deciding which model pro-
vides the most reliable inference. Our transdimensional
method allows the data to speak for themselves andmore
importantly makes population inference on the basis of
a set of microsatellite models, accounting for model
uncertainty and avoiding model misspecification.

The computer simulations in this article were performed using
computational resources provided by BestGRID (http://www.best-
grid.org/), a New Zealand not-for-profit organization that delivers
services and tools supporting research. We thank Raazesh Sainudiin
and three anonymous reviewers for helpful comments. We thank J.
Allen for the unpublished red colobus monkey data set. The collec-
tion of the red colobus monkey data set was funded by the National
Science Foundation under a grant to D. L. Reed (DEB 0717165). The
authors were supported by Marsden grant UOA0809.
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APPENDIX A: RESTRICTED MODEL SPACE

Figure A1 represents the restricted model space. The
nodes represent the models, each labeled with its bit
vector representation, and the arrow-edges are the
Hastings ratios of a move from one model to it neigh-
bor. Two models are neighbors if they have only a single
difference. The nodes (models) are color coded
according to the number of neighbors they have.

In this case the restricted model space is one con-
nected component. However, some prior specification
with zero probabilities on a subset ofmodelsmay result in
two ormoredisjointed components. In such cases theflip
move alone cannot produce an ergodic Markov chain;
therefore the pick move must be used so that all the
models in the restricted space can be proposed.

APPENDIX B: NUMERICAL STABILITY

We used a few shortcuts in the tree likelihood cal-
culation. If a proposal move results only in a change of
likelihood on a few branches, then we subtract the initial
logarithmof partial tree likelihood from the logarithmof
full tree likelihood and add the new log partial tree
likelihood. This is more efficient than computing the
entire full log likelihood.

We have found that if only partial tree likelihood
calculation is used, the difference in likelihood between
partial and entire likelihood calculation at each step
increases as the MCMC proceeds. However, a step that
requires entire likelihood calculation will set this differ-
ence back to 0. Luckily, in a real analysis, there are many
other parameters that will force the calculation of the
entire full likelihood rather frequently. We have also
provided the option so that the user can force the entire
full likelihood computation every n number of likeli-
hood computations.

Another component that is relevant to the numerical
stability of the method is matrix exponentiation. Matrix
exponentiation is achieved by using codes adapted from
Cern Colt library 1.2 (http://acs.lbl.gov/software/colt/,
more details in appendix c). To ensure that matrix
exponentiation of the CERN colt library is reliable, we
compare the matrix exponentiation results computed
from our codes with from the function MatrixExp in the
msm package ( Jackson 2009) of R.

Comparisons were made for five values of t (0.001,
0.01, 0.1, 1, and 10) and 12 different Qmatrices, which
are the instantaneous matrices under which our data
were simulated. There was very little difference be-

tween the two exponential methods (all differences
,10213).

APPENDIX C: MATRIX EXPONENTIATION

The method of matrix exponentiation here requires
the Q matrix to be diagonalizable. This requirement is
checked by using the method described in Gentle

(2007). If the method indicates that the requirement
is not met, a 0 probability matrix is returned, which
leads to the rejection of the proposal move. The code
adapted from Cern COLT library 1.2 performs an eigen
decomposition of the instantaneous rate matrix, so the
matrix Q can be expressed as Q ¼ VUV 21, where V is
a matrix of eigenvectors and the U is a diagonal matrix
of eigenvalues. Given some value of t, the exponential
of Qt is then obtained by finding the matrix product
eQt ¼ VeUtV 21. The expression eUt is also a diagonal ma-
trix, with diagonal values euii t , where uii represents the
ith diagonal value.

Figure A1.—Reduced model space produced by the re-
strictions described in the Prior on model space section in
materials and methods.
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FILE S1 

Data Sets 

File S1 is available for download as a compressed folder (.zip) at http://www.genetics.org/cgi/content/full/genetics.110.125260/DC1.  

The name of each folder indicates the microsatellite model under which the data sets in the folder have been simulated and the 

number of loci and taxa in each data set. 
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FIGURE S1.—Dot-plot of ESS values of  per MCMC step. Circles represents analyses with one of the 12 microsatellite models 

considered, while red cross represents analysis with trans-dimensional MCMC. 
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FIGURE S2.—Dot-plot of ESS values of tree likelihoods per MCMC step. Circles represents analyses with one of the 12 

microsatellite models considered, while red crosses represents analyses with trans-dimensional MCMC. 
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FIGURE S3.—Dot-plot of ESS values of coalescent likelihoods per MCMC step. Circles represents analyses with one of the 12 

microsatellite models considered, while red crosses represents analyses with trans-dimensional MCMC. 
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FIGURE S4.—Dot-plot of ESS values of tree root height per MCMC step. Circles represents analyses with one of the 12 

microsatellite models considered, while red crosses represents analyses with trans-dimensional MCMC. 
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FIGURE S5.—Dot-plot of ESS values of relative mutation rate per MCMC step. Circles represents analyses with one of the 12 

microsatellite models considered, while red crosses represents analyses with trans-dimensional MCMC. 
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TABLE S1 

Combination of the number of loci, number of taxa and MCMC chain length for simulations analyses to 

investigate the effect of the number of loci and taxa on precision of  estimation 

No. of Loci  No. of Taxa  Chain length (106  steps) 

5 15 10 

10 5 10 

10 10 10 

10 15 20 

10 35 50 

10 50 100 

15 15 30 

25 15 60 

50 15 80 
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TABLE S2 

Microsatellite model parameter values for simulation 

  Parameter valuesb 

 a a1 b0 b1 g 

MTrue [a1, b0, b1,g] [0, + ) (– , + ) (– , + ) [0, 1] 

EU1 0000 0.00 0.00 0.00 1.00 

EU2 0001 0.00 0.00 0.00 0.25 

EC1 0100 0.00 0.20 0.00 1.00 

EC2 0101 0.00 0.20 0.00 0.25 

EL1 0110 0.00 0.70 –0.05 1.00 

EL2 0111 0.00 0.70 –0.05 0.25 

PU1 1000 0.50 0.00 0.00 1.00 

PU2 1001 0.50 0.00 0.00 0.25 

PC1 1100 0.50 0.20 0.00 1.00 

PC2 1101 0.50 0.20 0.00 0.25 

PL1 1110 0.50 0.70 –0.05 1.00 

PL2 1111 0.50 0.70 –0.05 0.25 

aThe binary vector  is a the binary representation of the model. The value at 

each index represents the presence (1) or absence of (0) of a parameter. The rate 

proportion parameter (a1) is indicated by the first value of , the constant bias 

parameter (b0) by the second, the linear bias  parameter (b1) by the third and 

multistep parameter (g) by the fourth. 

bValues in bold are fixed parameters and therefore fixed during the MCMC 

run 
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TABLE S3 

Pseudo priors on each parameter in the analysis of simulated data set generated under MTrue 

MTrue
a a1 b0

 b l
 0

b b1 g 

EU1 Exp(1) N(0.0, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

EU2 Exp(1) N(0.0, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

EC1 Exp(1) N(0.2, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

EC2 Exp(1) N(0.2, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

EL1 Exp(1) N(0.0, 0.1) N(0.7, 0.1) N(-0.05, 0.025) N(0.25, 0.05) 

EL2 Exp(1) N(0.0, 0.1) N(1.0, 0.1) N(-0.08, 0.025) N(0.25, 0.05) 

PU1 Exp(1) N(0.0, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

PU2 Exp(1) N(0.0, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

PC1 Exp(1) N(0.2, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

PC2 Exp(1) N(0.2, 0.1) - N(0.0, 0.025) N(0.25, 0.05) 

PL1 Exp(1) N(0.0, 0.1) N(0.7, 0.1) N(-0.05, 0.025) N(0.25, 0.05) 

PL2 Exp(1) N(0.0, 0.1) N(1.0, 0.1) N(-0.08, 0.025) N(0.25, 0.05) 

aThe model under which the simulated data was generated. 

bIn the analyses of simulated data generated under EL1, EL2, PL1 or PL2, the microsatellite model parameter 

space has been augmented so that the constant bias parameter (b0) in EC1, EC2, PC1 and PC2, is treated as a 

separate parameter to that (b l
 0) in EL1, EL2, PL1 and PL2. Since we did not do the augmentation for analyses of 

data generated under other models, so the b l
 0 is not in the parameter pool in those analyses and the pseudo-prior 

of b l
 0 is therefore not applicable (-). 
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TABLE S4 

Microsatellite allele frequencies from the red colobus monkey population from Kibale National Park in 

Uganda 

Length Locus 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

8 4 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

9 4 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 

10 18 0 0 25 0 0 0 0 6 0 36 0 0 0 0 0 

11 32 0 0 36 4 0 1 0 0 0 18 0 0 0 0 0 

12 4 0 0 1 9 0 12 0 9 0 1 2 0 0 4 41 

13 0 0 11 0 8 5 10 0 0 0 0 7 0 0 54 10 

14 0 0 41 0 17 7 25 0 0 0 1 7 0 0 2 9 

15 0 0 10 0 15 11 9 0 0 0 0 26 0 0 2 1 

16 0 13 0 0 6 0 2 8 0 0 0 20 0 0 0 0 

17 0 17 0 0 3 10 3 9 0 0 0 0 13 0 0 1 

18 0 3 0 0 0 11 0 5 0 0 0 0 1 0 0 0 

19 0 25 0 0 0 6 0 15 0 0 0 0 0 0 0 0 

20 0 4 0 0 0 1 0 22 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 11 0 1 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 

24 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 1 15 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 19 31 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

This data set has been prepared and provided by Dr. J. Allen (University of Florida, USA). Missing data are ignored in the 

analysis and are not presented. 
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TABLE S5 

PCR primers for the red colobus monkey data 

 Forward Reverse 

1 TGAGACCCTGTCTCTGAAAC TGTATGGGCTCTTGAAATTG 

2 AAAGCTACATCCAAATTAGGTAGG TGACAAAGAAACTAAAATGTCCC 

3 TCTGAGCACTCTGGATTGTAGC ATCTCTGCACGCTTCACTTCTT 

4 TACCAACATGTTCATTGTAGATAGA CATACACCTGTGGACCCATC 

5 ACCACATGAGCCAATTCTGT ACCCAATTATGGTGTTGTTACC 

6 CATTGGTCCAGGTAAACTGC TTCACAAGGTTCCACAAGGT 

7 CAAATTAATGGCAAAAACTGC CCCCCCATTGAGGTTATTAC 

8 TCCATTATTCCCCTCAAACA GGTTTGCCATTCAGTTGAGA 

9 AGGCTTGCCAGATAAGGTTG GCTGAAGGCTGTTCTATGGA 

10 ACAAGAGCACATTTAGTCAG AGCTTCATTTTTCCCTCTAG 

11 GTATGATTTATTTCAGGTTTGCA TTTGATTTCATTGTCTACTGACA 

12 TAGGTTCTGGGCATGTCTGT TGCTTGGCACACTTCAGG 

13 CACTTCTCCTTGAATCGCTT GCAAGTCCTGTTCCAAGTCT 

14 ATGCCCTCTTCTGTCTCTCC GCAGAGAATCTGGACATGCT 

15 GCCAACAGAGCAAGACTGTC GGAAACAGTTAAATGGCCAA 

16 GAGAATGTGCCACTGTACTCCA ACTGGCTCTGAAACTCACCAAT 
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TABLE S6 

Pseudo priors on each parameter after complete augmentationa of the microsatellite model parameter space 

Model a1 b0
 b1 g 

EU1 - - - - 

EU2 - - - TN(0.892,0.059)e 

EC1 - N(-0.035, 0.022)b - - 

EC2 - N(-0.045, 0.031) - TN (0.873,0.061) 

EL1 - N(0.489, 0.137) N(0.032,0.007) - 

EL2 - N(0.548, 0.150) N(-0.035, 0.008) TN (0.902, 0.053) 

PU1 G(1.376, 15.162)c - - - 

PU2 LN(2.602, 1.043)d - - TN(0.900,0.060) 

PC1 LN(2.897,1.335) N(0.005, 0.028) - - 

PC2 LN(2.311,1.200) N(0.009,0.037) - TN(0.891,0.053) 

PL1 LN(-0.129,0.934) N(0.637, 0.120) N(- 0.0367, 0.006) - 

PL2 LN(0.132,1.009) N(0.704,0.141) N(-0.040, 0.008) TN(0.900,0.052) 

aThe model parameter space was augmented such that there was no overlap in parameter vectors among all 12 models 

considered here. This gave us 24 parameters in the parameter pool and each of them had its own pseudo-prior, assuming they 

were all independent. 

bN(μ, ) is a Normal distribution with mean = μ and standard deviation = . 

cG( , ) is a Gamma distribution with shape =  and rate = . 

dLN(μ, ) is a Log-normal distribution with log space mean = μ and log space standard deviation = . 

eTN(μ, ) is a Truncated-Normal distribution which only supports values between 0 and 1 here and have location = μ and scale = 

. 
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