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Abstract

Identifying the species most vulnerable to extinction as a result of climate change is
a necessary first step in mitigating biodiversity decline. Species distribution model-
ing (SDM) is a commonly used tool to assess potential climate change impacts on
distributions of species. We use SDMs to predict geographic ranges for 243 birds of
Australian tropical savannas, and to project changes in species richness and ranges
under a future climate scenario between 1990 and 2080. Realistic predictions re-
quire recognition of the variability in species capacity to track climatically suitable
environments. Here we assess the effect of dispersal on model results by using three
approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting
species to track climate change at a rate of 30 km per decade. As expected, the
projected distributions and richness patterns are highly sensitive to the dispersal
scenario. Projected future range sizes decreased for 66% of species if full dispersal
was assumed, but for 89% of species when no dispersal was assumed. However, re-
alistic future predictions should not assume a single dispersal scenario for all species
and as such, we assigned each species to the most appropriate dispersal category
based on individual mobility and habitat specificity; this permitted the best esti-
mates of where species will be in the future. Under this “realistic” dispersal scenario,
projected ranges sizes decreased for 67% of species but showed that migratory and
tropical-endemic birds are predicted to benefit from climate change with increas-
ing distributional area. Richness hotspots of tropical savanna birds are expected to
move, increasing in southern savannas and southward along the east coast of Aus-
tralia, but decreasing in the arid zone. Understanding the complexity of effects of
climate change on species’ range sizes by incorporating dispersal capacities is a cru-
cial step toward developing adaptation policies for the conservation of vulnerable
species.

Introduction

Global climate change is already having an effect on species
and communities, with severe impacts expected across
taxonomic groups with increasingly rapid climate change
(Walther et al. 2002; Thomas et al. 2004). Climate change has
resulted in species’ Grinnellian niche—defined as the envi-
ronmental conditions characterizing its occurrence (Grinnell
1917)—shifting to new geographic locations (Tingley et al.
2009). The Grinnellian niche is well represented by climate

for many species, and is commonly referred to as its suit-
able climate space (Root 1988; Kearney and Porter 2009).
Many species have been documented as tracking the shifts
in their suitable climate space to new geographic locations
(Tingley et al. 2009) and generally this shift is toward the
poles or higher altitudes as temperatures increase (Parme-
san and Yohe 2003). However, rising temperatures combined
with changing precipitation patterns can have more com-
plex effects on species distributional shifts, and some species’
suitable climate spaces are projected to disappear altogether
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(Williams et al. 2003; Malcolm et al. 2006; Williams and
Middleton 2008; Coetzee et al. 2009). The increased extinc-
tion risk predicted for many species due to climate change
has resulted in conservation initiatives to incorporate vul-
nerability to climate change as a factor for listing a species as
threatened and requiring management intervention (Brook
et al. 2009; Hawke 2009). With up to 50% of the world’s
biodiversity already threatened with extinction (Millennium
Ecosystem Assessment 2005) and biodiversity continuing to
decline (Secretariat of the Convention on Biological Diver-
sity 2010), broad-scale assessments of species’ vulnerabilities
to climate change are needed to prioritize those in need of
urgent conservation action.

Tropical biota are expected to have higher than average sen-
sitivity to climate change, due to the high species diversity,
smaller ranges, and narrower thermal tolerances (Colwell
et al. 2008; Deutsch et al. 2008). Species restricted to high
altitude tropical regions face “mountain top extinctions” as
their suitable climate space shifts upslope with rising temper-
atures (Williams et al. 2003). Tropical lowlands are predicted
to decrease in species richness, as there are no species cur-
rently in hotter places available to replace those that move
to higher latitudes or altitudes (Colwell et al. 2008). In Aus-
tralia, modelling studies on climate change impacts on trop-
ical rainforest fauna forecast severe declines in the area of
suitable climate space and possible species extinctions, par-
ticularly for species confined to tropical uplands (Williams
et al. 2003; Hilbert et al. 2004; Shoo 2005). However, over
60% of tropical Australia is savanna and few assessments of
the consequences of climate change for species occupying
this biome have been conducted. One example examining
kangaroo (Macropodidae) distribution in northern Australia
predicted average range reductions per species of 48% with
2◦C of warming (Ritchie and Bolitho 2008). A more in-depth
understanding of the climate change threat to species persis-
tence in Australian tropical savannas is imperative, as many
vertebrate populations are declining at sufficient rates to be
cause for concern. In particular, small mammals (Woinarski
et al. 2010, 2011) and granivorous birds (Franklin et al. 2005)
are declining as a result of altered habitat conditions due to
changed fire regimes and widespread cattle grazing, despite
most of the region being relatively unmodified (Fensham
et al. 1999; Russell–Smith 2002).

Many studies have documented mobile species such as
birds shifting their ranges and migration strategies in re-
sponse to change in climate and weather patterns (Dunlop
and Wooller 1986; Pounds et al. 1999; Thomas and Lennon
1999; Cotton 2003; Reid 2003; Brommer 2004; Austin and Re-
hfisch 2005; Beaumont et al. 2006; Visser et al. 2009). These
responses are likely to amplify as global climates continue
to change in line with projections (IPCC 2007b). Birds are
an exemplar study group for understanding and anticipating
the potential effect of climate change because more is known

about their distributions and life histories than many other
taxa (Webb and Gaston 2000). In Australia, range shifts of
birds have been documented in recent years; but attributing
this observation to climate change is confounded by the rela-
tive effects of land-use change on bird movements and distri-
butions (Chambers et al. 2005). Despite this complexity, there
is evidence for climate change contributing to species declines
in southern Australia (Mac Nally et al. 2009), Western Aus-
tralia (Rowley and Russell 2002), and for seabird populations
in the northeast (Smithers et al. 2003).

Birds of the Australian tropical savanna biome have com-
plex and flexible movement patterns and therefore highly
adapted to variable resource distributions (Chan 2001;
Woinarski et al. 2000). Despite the general mobility of sa-
vanna bird species, some are habitat or food specialists with
restricted distributions (Weaver 1982; Rowley and Russell
1993; Perry et al. 2011). While some species have the adaptive
capacity to track suitable climate space as it shifts geograph-
ically, some species may be constrained by the time required
for habitats (e.g., vegetation) to change in response to chang-
ing climate (Warren et al. 2001). Therefore, forecasting actual
climate change responses by individual species requires real-
istic dispersal scenarios. Ideally, the dispersal scenario should
be tailored to be as accurate for individual species as cur-
rent knowledge will allow, in order to account for variation
in individual species dispersal ability (le Roux and McGeoch
2008). These realistic dispersal scenarios improve projections
by predicting not only the direction in which species’ suit-
able climate spaces are shifting, but also the ability of species
to track the shift, including accounting for species’ habi-
tat limitations (Midgley et al. 2006). Generally species are
expected to move to higher latitudes (Parmesan and Yohe
2003). For birds of the Australian tropical savanna, direct
poleward movement of many species may be impeded by
the arid zone on the southern boundary of the biome, and
the disjunction between wooded savanna and largely treeless
grassland and desert (Mott et al. 1985). While global studies
on future climate suggest that while the broad climatic biome
classification of northern Australia are unlikely to shift sub-
stantially (Rubel and Kottek 2010), this region is expected to
experience climates that are relatively novel (Williams et al.
2007). However, it is unknown how the suitable climate space
of savanna birds will change on a regional scale, how well dif-
ferent species will be able to track that movement, and as a
consequence, what will happen to the species richness of the
tropical savannas. In this study, we investigate the impact of
future climate change on the bird fauna of Australian tropi-
cal savannas. We use distribution models for 243 species to:
(1) estimate the change in species richness between 1990 and
2080; (2) investigate the effects of different dispersal scenarios
on species potential response to climate change; and (3) us-
ing a realistic dispersal scenario for each species, estimate the
potential impact of climate change on individual species, and
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across groupings of: (a) autecology and (b) current conser-
vation concern under Australian and international listings.

Materials and Methods

Study area

The Australian tropical savannas occur north of ca. 23oS
(Franklin et al. 2005), occupying nearly one-quarter of the
continent (Williams et al. 2005). Savannas are characterized
by a discontinuous stratum of trees above a mostly contin-
uous layer of grasses (Williams et al. 2002; Lehmann et al.
2011). Rainfall is highly seasonal and largely occurs in the
wet season between December and March (Felderhof and
Gillieson 2006). A climatic gradient extends from the higher
rainfall savannas near the coast, to the semi-arid savannas
inland with increased interannual rainfall variability (Mott
et al. 1985).

Bird data

We focused our study on 243 bird species occurring within
the northern tropical savanna woodlands excluding water-
birds and rainforest species that may occur intermittently in
savanna regions. Bird occurrence records were collated from
the Birds Australia Atlas (Blakers et al. 1984; Barrett et al.
2003), the Queensland Governmental atlas WildNet (Envi-
ronmental Protection Agency 2004), and CSIRO (protocol
as in Reside et al. 2010). The mean number of records per
species was 23,027 (range: 6–34,330), and the occurrence
records spanned from 1950 until 2009. Species were grouped
according to their movement life history (migratory, no-
madic, sedentary, partially migratory, and species that were
both nomadic and sedentary). Most species that occur within
Australian tropical savannas also occur beyond the savanna
region, many occurring widely across Australia. The species
were grouped into five broad biogeographic groups describ-
ing their broader range: arid, Cape York Peninsula, temper-
ate, tropical, and ubiquitous for species that encompassed
two or more of the above categories; according to the litera-
ture (Schodde 1981; Marchant and Higgins 1990; Marchant
and Higgins 1993; Higgins and Davies 1996; Higgins 1999;
Higgins et al. 2001; Higgins and Peter 2002; Higgins et al.
2006). Details for each species are provided in the Support-
ing information. While we focused our study on the suite of
species that occur in the tropical savannas, we investigated
the effect of climate change on species’ broader ranges, even
when they extend beyond the savanna and across the rest of
Australia. Detailed explanations of the biogeographic group-
ings can be found in Reside et al. (2010). Species conservation
status was also compiled. Nineteen of 243 species in our study
are listed as having a significant conservation status under the
Australian Commonwealth Government (EPBC: Environ-
ment Protection and Biodiversity Conservation Act 1999),

Queensland Sate (NCA: Nature Conservation Act 1992), or
international (IUCN 2001) categories of endangered, vulner-
able or near-threatened (Table 2).

Climate data

The climate data used for modelling were grided spatial lay-
ers of annual mean temperature, temperature seasonality
(the standard deviation of the weekly mean temperatures
expressed as a percentage of the annual mean), maximum
temperature of the warmest period, annual precipitation,
precipitation seasonality, and precipitation of the driest pe-
riod. These variables have been shown to produce robust
species distribution models for vertebrates in northern Aus-
tralia (VanDerWal et al. 2009a, b; Williams et al. 2009; Reside
et al. 2010). The climate layers were derived from monthly cli-
mate surfaces obtained from the Australian Water Availability
Project (Jones et al. 2007; Grant et al. 2008) averaged over the
period 1961–1990 at a 0.05o resolution (∼5 km grid). The
climate layers were created using the “climates” package in R
(VanDerWal et al. 2011), and are equivalent to the bioclim
variables derived using Anuclim 5.1 software (Hutchinson
et al. 2000).

Climate projections

Climate projection layers consisted of climate surfaces for
10-year intervals between 1990 and 2080. The layers used for
each of the 10-year intervals were a 30-year average around
that year; for example, the climate representing “1990” was
climate averaged from 1985 to 2005, the climate represent-
ing “2000” was the climate averaged from 1995 to 2015, etc.
The future climate surfaces were based on the IPCC Special
Report on Emission Scenarios (SRES) scenario A1B, which
represents a medium-severity projection of both fossil fuel
and nonfossil fuel energy sources (Nakicenovic et al. 2000).
Future climate surfaces were based on eight global circula-
tion models (GCM) (Cubash et al. 2001) as used in the IPCC
Fourth Assessment Report (IPCC 2007a), some with multiple
realizations (Table 1), resulting in 30 projections per 10-year
interval. Figure 1 presents the weighted mean change in each
climate variable between 1990 and 2080. The weighting was
based on the number of realizations per GCM to remove
any possible GCM-specific bias. By 2080, both mean annual
temperature and temperature of the warmest period are pro-
jected to increase the most in the Pilbara and Great Sandy
Desert bioregions of northwestern Australia, by up to 3.4◦C
(Fig. 1). The increase in temperature declines with decreas-
ing distance to the coast. This is in broad agreement with
other work projecting future climate in Australia (Whetton
et al. 2005). Temperature seasonality is projected to decrease
in northern Australia (less variation throughout the year in
temperature) and increase across the south.

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 707
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Table 1. The eight global circulation models used for the projections of future climate. The number of runs for the 20th (C20) and 21st (C21) century,
and the total number of realizations, used for the future projections are shown for each GCM (Cubash et al. 2001).

Global circulation model No. of runs for C20 No. of runs for C21 No. of realizations

BCCR-BCM 2.0 1 1 1
CSIRO-Mk 3.0 3 1 3
CSIRO-Mk 3.5 3 1 3
GISS AOM 2 2 4
INM CM 3.0 1 1 1
MIROC 3.2 (hires) 1 1 1
MIROC 3.2 (medres) 3 3 9
NCAR CCSM 3.0 2 4 8

The climate projections indicate that precipitation may in-
crease across the central tropical savanna by up to 5%; but de-
crease across northwestern Australia and southern Australia.
Precipitation seasonality is projected to decrease slightly in
northern savannas, and precipitation of the driest period
is predicted to decrease across most of the continent. The
extreme changes (maximum and minimum, Appendix S1)

show similar spatial patterns in increases in annual mean
temperature between 1990 and 2080, with varying degrees
of warming. Changes in annual precipitation are more var-
ied: the minimum shows the whole continent getting drier,
with large tracts of inland Australia receiving half the current
annual rainfall; whereas the maximum shows most of the
continent receiving more rainfall by up to 184%.

Figure 1. The change in climate between mean projections for 1990 and 2080, modeled at a 0.05o resolution. Thirty climate projections representing
eight different global circulation models (GCMs) and multiple realizations for each GCM were summarized first within GCM and then across GCMs
to give the mean projection for each year. The climate variables used are mean annual temperature (MAT), temperature seasonality (TS), temperature
of the warmest period (TWP), annual precipitation (AP), precipitation seasonality (PS), and precipitation of the driest period (PDP). The scale bars show
the absolute change in temperate variables between the 1990 baseline and the 2080 projection for (A–C); and (D and E) the proportional change
between 1990 and 2080 for rainfall variables. The units for the temperature variables are degrees Celsius. Higher values for seasonality correspond
with increasing seasonality.
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Distribution models

Species distribution models incorporating baseline climate
data and species occurrences were created using Maxent
(Phillips et al. 2006). Maxent uses presence-only data to sta-
tistically relate distribution records to environmental vari-
ables on the principle of maximum entropy. Default settings
were used as these have been optimized for numerous species
across many regions (Phillips and Dudik 2008). Models were
run at a spatial resolution of 0.05◦ (ca. 5 × 5 km). We used
the default of 10,000 background points sampled from across
Australia, which for most species here is the most appropriate
background, as many of the species modeled are widely dis-
tributed across the continent (VanDerWal et al. 2009a). We
acknowledge that for the smaller ranged species, this back-
ground may provide a liberal estimate of the distributions;
however, we wanted to use a consistent background for all
species. Model performance was evaluated by the area under
the receiver operating characteristic curve (AUC). AUC mea-
sures each models’ consistency and predictive accuracy (Ling
et al. 2003). An AUC score of 1 is a perfect model fit of the
data; 0.5 is no better than random (Elith et al. 2006, Phillips
et al. 2006). AUC values ≥ 0.7 indicate “useful” models, while
values ≥ 0.9 indicate models with “high” performance (Swets
1988). Models for each species were screened for low AUC
(<0.7) so that underperforming models were not included
in further analyses. Model performance was generally high:
AUC scores ranged from 0.66 to 0.99, with 82 species having
AUC scores greater than 0.95. Eleven species had AUC scores
less than 0.7 and so were excluded from species-specific anal-
yses (see Supporting information).

Species’ range projections

Species models were projected onto each of the 300 future
climate surfaces (30 realizations across 8 GCMs per decade).
These were averaged to examine the weighted mean and ex-
tremes as an ensemble model. The mean was weighted by
the number of realizations per GCM to avoid undue influ-
ence by GCMs with more realizations; and the extremes were
calculated as the minimum and maximum projections. The
projections represent “potential” future distribution ranges,
which are the suitable climate space based on the current
Grinnellian niche for the species. Potential distributions are
often an overestimate of species actual, “realized” distribu-
tion (Anderson et al. 2003); therefore realized distributions
were created by clipping the current potential distribution
to the subregions for which the species has, at some time,
been observed. The subregion boundaries are ecologically
relevant biogeographic regions defined by the Interim Bio-
geographic Rationalization for Australia, Version 6.1 (En-
vironment Australia 2000; Williams et al. 2010). Although
there is a sampling bias for birds toward populated areas,
there was sufficient sampling across bioregions such that we

could realistically suggest that if a species has never been re-
ported in a bioregion, the region was treated as unsuitable for
the species beyond climatic suitability (e.g., dispersal limita-
tions, unsuitable vegetation, and competition). For example,
it is likely a dispersal limitation preventing a species confined
to east coast of Australia from occurring in suitable climate
on the west coast due to the 3000 km of unsuitable ma-
trix separating the environments. The future species’ range
projections were limited to three dispersal scenarios: full dis-
persal (no clipping), a realistic dispersal scenario of 3 km per
year (applied as 30 km per decade), and no dispersal (i.e.,
species were constrained to the subbioregions that they cur-
rently occur in). Different studies documenting range shifts
of birds have found that, averaged across the assemblage for
each study, birds can shift their ranges from between 100 m
to 5 km per year (Thomas and Lennon 1999; Brommer 2004;
Devictor et al. 2008; Tingley et al. 2009; Zuckerberg et al.
2009; Martinez–Morales et al. 2010). We chose 3 km per year
as an intermediate of these observed dispersal distances. The
3 km per year dispersal scenario represented the intersection
of the future potential distribution (full-dispersal scenario)
with the current realized distribution buffered by 3 km ×
number of years into the future being examined. Thus, for
each 10-year period from 1990 to 2080, the current distri-
bution was buffered (extended) by 30 km, resulting in 10
dispersal masks for each species. Each species was assigned
to one of the three dispersal categories (full, 3 km per year,
or no dispersal) as a best estimate of likelihood of dispersal
ability, herein referred to as “realistic” dispersal. This estimate
was based on the long-distance movements recorded in the
literature, and by the current habitat specificity of the species
(Marchant and Higgins 1990, 1993; Higgins and Davies 1996;
Higgins 1999; Higgins et al. 2001, 2006; Higgins and Peter
2002). Species with greater habitat specificity were assumed
to be less able to establish a new range without corresponding
shifts in their preferred habitat, while species with generalist
habitat associations are more likely to be able to track their
climatic niche as it shifts (Warren et al. 2001). Estimates of
realistic dispersal from the literature were corroborated with
expert opinion (Eric Vanderduys pers. comm.), resulting in
197 species in the “full dispersal,” 28 species in the “3 km
per year,” and seven species in the “no dispersal” categories,
respectively.

The default Maxent distribution output is a continuous
prediction of environmental suitability for the species. A bi-
nary distribution output was created by applying an appro-
priate threshold obtained from the Maxent results output file.
The threshold showing the most realistic distributions for the
species was the “equate entropy of threshold and original dis-
tributions logistic threshold.” All areas for the distribution
of each species that the probability of presence fell below this
species-specific threshold were accorded a “0,” and all areas
equal to and greater than this threshold were accorded “1” or

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 709
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Figure 2. Species richness of savanna bird species, calculated by stack-
ing each species’ Maxent model for 1990 (A), compared to the species
richness projected for 2080 (B).

presence. The details of the threshold value for each species
are given in the Supporting information.

Summary characteristics of each species projected distri-
bution range, such as the total area, number of patches,
proportion of the landscape, and statistics related to frag-
mentation were calculated using the “ClassStat” function of
the SDMTools package from the CRAN website http://cran.r-
project.org/web/packages/SDMTools/. Species richness maps
were created by stacking all the binary distribution outputs
for each species for each 10-year interval. The species rich-
ness maps included all 243 species to achieve more realistic
species richness estimates, including species with low AUC
scores as accuracy of individual species models was not vital
given the of the large scale of the output. All analyses were
conducted using the statistical package “R” version 2.12.1
(www.r-project.org).

Results

Species richness

Species richness of the savanna bird assemblage is projected to
change across the savanna region and across Australia with
some notable shifts projected between 1990 and 2080 for
the realistic dispersal scenario (Fig. 2). Savanna bird species

richness is projected to decrease in the arid zone, particularly
in western regions. This contrasts with the increase in species
richness projected for the southern savannas, and eastward
and southward along the east coast of the continent by 2080
(Fig. 2B). Projected increases in species richness correspond
with projected increases in annual precipitation within the
savannas (Fig. 1D). Savanna regions in which a decrease in
species richness is projected are those likely to experience the
greatest increase in temperatures, both annually (MAT) and
during the humid summer (TWP) (Fig. 1A and 1C).

The extent of potential decreases and increases in species
richness of savanna birds varies greatly depending on the dis-
persal scenario (Fig. 3). Assuming full dispersal is possible
for all species; most of the tropical savannas are projected to
increase in species richness (Fig. 3A). Under the full dispersal
scenario, most of the decreases in species richness are con-
fined to the arid zone. Increases in species richness of savanna
species are projected for most of eastern Australia, Tasmania
and southwest Western Australia. Few areas are projected to
increase in species richness if all species are restricted to a
dispersal rate of 3 km per year (Fig. 3B). The arid interior
of the Australian continent remains the region of greatest
potential loss of savanna species, with some small increases
in species richness throughout the savanna and southward
along the east coast. If no dispersal occurs, all of Australia
will decrease in savanna species (Fig. 3C). The near-coastal
northern savanna and southeastern Australia will face the
least decrease in savanna species richness. Under restricted or
no-dispersal scenarios, species will be unable to move to sim-
ilar climate-niche areas of southwestern Australia, and south-
eastern Australia including Tasmania (Fig. 3B and 3C). Our
realistic dispersal scenario shows species richness changes
somewhat intermediate between the full dispersal and the
3 km per year dispersal scenarios (Fig. 3D). The reduction in
species richness of savanna birds in the arid zone is greater for
the realistic dispersal scenario compared with full dispersal,
but many regions are projected to show increases in species
richness.

Figure 3. The change in species richness of savanna bird species between 1990 and 2080 depending on dispersal scenario. “Full” is unlimited
dispersal (A), “3 km/year” is dispersal at a rate of 3km per year (B), “No” is no dispersal (C), and “Realistic” (D) the best estimate of dispersal ability
for each species. Warm colors indicate a reduction in species richness (yellow is the least lost and red the most); cool colors indicate an increase in
species richness.
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Figure 4. Histograms representing the proportional change in species’ suitable climate area between 1990 and 2080 according to the full (A), 3 km
per year (B), no (C), and realistic (D) dispersal scenarios. The scale on the x-axis represents the proportional change, with 1 representing no change, 0
representing a complete loss of suitable climate space, and 3 representing a tripling of suitable climate space.

Projected changes for species

The proportional change in individual species distributions
between 1990 and 2080 varied greatly depending on which
dispersal scenario was used (Fig. 4). Under a full dispersal
scenario, 154 species are expected to experience a decrease in
their suitable climate space (Fig. 4A). Of the 78 distributions
projected to increase, the average increase is 35% and the
greatest increase is 164%. The number of species projected
to increase in suitable climatic space is reduced to 66 species
with an average of 16% with dispersal limited to 3 km per
year (Fig. 4B). By definition, no increase in distribution is
possible under a no-dispersal scenario (Fig. 4C). With a 3-
km dispersal scenario, the suitable climate spaces for 166
species are projected to decrease, and with no dispersal this
increases to 207 species.

Under the realistic dispersal scenario, the overall mean
area percentage shift in suitable climate space for species is
–13%. Decreases are projected for 155 (ca. 67%) bird species
by 2080, by an average of 34%. One-third of species are
projected to increase their area of suitable climate space by
2080. The average projected increase is 30%, and 16 species

are likely to increase by 50%. Despite the large proportion of
declines and the number of severe declines, 47 (20%) species
are projected to change very little by 2080, only increasing or
decreasing the size of their suitable climate space by less than
10%. From here on, all results will be discussed in terms of
the realistic dispersal scenario for each species. Details of the
proportional change in suitable climate space for each species
are provided in the Supporting information.

Autecology and biogeography for shifting
species

Migratory species are projected to have the greatest distribu-
tion increases, with no difference between other movement
categories (Fig. 5A, F = 2.73, P = 0.03). Species with a
“tropical” biogeographic affiliation showed on average the
greatest increases in distribution, while “Cape York Penin-
sula” (CYP) species decreased the most (Fig. 5B, F = 29.45,
P < 0.001). Of the eight species projected to lose more than
80% of their suitable climate space, six are largely restricted to
northern CYP (black-backed butcherbird Cracticus mentalis,

Figure 5. Boxplots showing the proportional
change in species climatic niche area in
relation to species movement life history and
biogeographic affiliation, using a realistic
dispersal scenario. Movement categories are
migratory (M), nomadic (N), partially migratory
(P), sedentary (S), and both sedentary and
nomadic (SN). Biogeographic affiliation
categories are arid, Cape York (CY), temperate
(Temp), tropical (Trop), and ubiquitous (Ubiq).

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 711
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Figure 6. Examples of current and future predicted distributions showing some of the patterns found among tropical savanna birds using a realistic
dispersal scenario. The green color indicates area that is suitable both in 1990 and 2080, red indicates area that was suitable in 1990 but not in 2080,
and blue areas are gained by 2080. Examples shown are: Cape York species predicted to have the greatest proportional decrease in climatic niche (A
and B); (C) an arid species predicted to face a severe decline in range; (D–F) examples of tropical species predicted to increase in range. (G–I) Species
predicted to lose the Cape York section of their range or the inland margin. Some of the changes to threatened species climatic niche changes are
shown in (J–L).

Fig. 6A; palm cockatoo Probosciger aterrimus; golden-
shouldered parrot Psephotus chrysopterygius, Fig. 6B; tawny-
breasted honeyeater Xanthotis flaviventer; white-streaked
honeyeater Trichodere cockerelli and buff-breasted button-

quail Turnix olivii), and the remaining two (black honeyeater
Sugomel niger, Fig. 6C, and crimson chat Epthianura tricolor)
are distributed throughout arid Australia. The CYP species
that are expected to experience decreases in their suitable

712 c© 2012 The Authors. Published by Blackwell Publishing Ltd.
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Table 2. The species in our study listed as critically endangered (CE), endangered (E), vulnerable (V), or near-threatened (NT) under the federal
(EPBC: Environment Protection and Biodiversity Conservation Act 1999), state (NCA: Nature Conservation Act 1992), or international (IUCN 2001)
classifications, including those with threatened subspecies (subsp.). The “Proportion of current” column gives the proportional change that the future
range is projected to be in 2080 in relation to the current range size.

Species EPBC NCA IUCN Proportion of current Direction of change in area

Buff-breasted button quail Turnix olivii E V E 0.17 Decrease
Golden-shouldered parrot Psephotus chrysopterygius E E E 0.06 Decrease
Gouldian finch Erythrura gouldiae E E E 1.76 Increase
Red goshawk Erythrotriorchis radiatus V E V 1.32 Increase
Painted honeyeater Grantiella picta V 0.62 Decrease
Purple-crowned fairy-wren Malurus coronatus V subsp V 1 No change
Yellow chat Epthianura crocea CE subsp V 1.62 Increase
Crimson finch Epthianura tricolor V subsp V 1.55 Increase
Grey goshawk Accipiter novaehollandiae NT 1.33 Increase
Grey falcon Falco hypoleucos NT NT 0.89 Decrease
Square-tailed kite Lophoictinia isura NT 1.07 Increase
Palm cockatoo Probosciger aterrimus NT 0.05 Decrease
Pictorella mannikin Heteromunia pectoralis NT 1.45 Increase
Australian Bustard Ardeotis australis NT 1.24 Increase
Bush stone curlew Burhinus grallarius NT 1.14 Increase
Squatter pigeon Geophaps scripta V subsp V subsp V subsp 0.71 Decrease
Double-eyed fig-parrot Cyclopsitta diophthalma E subsp E, V, NT subsp 0.80 Decrease
Black-throated finch Poephila cincta E subsp E subsp 0.40 Decrease
Star finch Neochmia ruficauda E subsp E subsp 1.24 Increase

climate space are projected to lose the western edge of their
range; becoming restricted to the cooler upland “refugial” ar-
eas of the Eastern Cape (Fig. 6A and 6B). The CYP decreasers
are unlikely to be able to extend their distributions directly
south to adjacent regions, as these will face greater increases
in temperature than the rate of change in their current distri-
bution (Fig. 1). Many species distributed along the east coast
and partly occurring on CYP are projected to lose the CYP
part of their range in the same manner as the CYP restricted
species; that is, the western edge of their range is eroded while
the cooler upland suitable climate space is retained.

Many species occurring across the arid zone are projected
to lose the part of their range that encompasses western Aus-
tralia, around the Pilbara and Great Sandy Desert bioregions
(approximately 21◦00′S, 124◦00′E). This region is expected
to experience the greatest increase in mean temperatures
(Fig. 1A and 1C), and declines in species richness projec-
tions (Fig. 2B). Many species with distributions currently
extending down the east coast of Australia are projected to
lose the inland edge of their range, presumably related to the
higher temperature gradient.

Currently threatened species

Of the nineteen species currently listed as threatened, eight
are projected to increase in distribution by 2080, 10 are pro-
jected to decrease and one is likely not to change in dis-
tribution (Table 2). Three threatened species are within the
group projected to decline on CYP (golden-shouldered par-

rot, Fig. 6B; buff-breasted button quail and palm cockatoo).
Two species listed as endangered, Gouldian finch Erythrura
gouldiae and red goshawk Erythrotriorchis radiatus, are pro-
jected to increase in suitable climate space (Fig. 6J and 6L).

Discussion

This study has demonstrated that decreases in distribution are
expected for over two-thirds of Australian tropical savanna
birds by 2080 based on their suitable climate space. However
it should be noted that all the projections for species shown
here are based on the weighted mean of 30 climate realiza-
tions derived from eight different GCMs each with several
realizations (Table 1), and therefore the actual manifestation
of future climate could diverge from these mean projections.
The projections used here are based on the SRES A1B emis-
sions scenario, which is a conservative mid-range scenario.
This contrasts with the current rate of increase in global CO2

emissions since 2000 that is greater than the most severe pro-
jection developed by the IPCC in the late 1990s (Raupach
et al. 2007). As a consequence, our projections for birds of
the Australian tropical savanna are conservative. There is a
significant potential for faster and more extreme change in
suitable climate space further reducing the ability of many
species to track this change.

The choice of dispersal scenario affects the predicted
change in species richness, which varies from continent-wide
decreases to large areas of increasing species richness. Many
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studies include a no-dispersal scenario in their projections,
which is likely to be unrealistic given the natural plasticity in
the distribution of most birds (Webb and Gaston 2000; Jetz
and Rahbek 2002; Coetzee et al. 2009; Marini et al. 2009). Bird
species have been recorded shifting their ranges in the North-
ern Hemisphere (Thomas and Lennon 1999; Brommer 2004;
Tingley et al. 2009; Zuckerberg et al. 2009; Martinez–Morales
et al. 2010), though these range shifts have lagged behind the
spatial shifts of climate (Devictor et al. 2008).

For this reason, we chose an intermediate dispersal sce-
nario to simulate a realistic projection into future locations
of species ranges. In this study, the species richness projection
for 2080 based on realistic dispersal scenarios for each species
is most similar to the full dispersal projection, although de-
clines in the arid zone are similar to those projected for the 3
km per year dispersal scenario (Fig. 3B).

The projected increases in species richness of savanna birds
extend across most of the tropical savanna region under a re-
alistic dispersal scenario. This is true for the coastal lowlands
and the mid-elevational regions, coinciding with the pro-
jected increases in rainfall in the region. In contrast to the
prediction that tropical lowlands are likely to lose the most
species (Colwell et al. 2008), our study projects that it is the
higher elevation areas within the region that are predicted to
face a reduction in species richness. However, our study only
looks at projections of tropical savanna bird species, therefore
the actual bird species richness of the region may differ due
to different responses by birds that are currently restricted to
rainforest or arid areas.

Tropical savanna bird species that migrate annually north
beyond the Australian continent (e.g., eastern koel Eudy-
namys orientalis, oriental cuckoo Cuculus saturatus and dol-
larbird Eurystomus orientalis) are projected to benefit the
most from climate change. These species are expected to ex-
tend their range down the east coast and into areas in which
rainfall is projected to increase; a response to climate change
that may already be occurring (Reid 2003). Aside from as-
signing each species to a dispersal scenario, our modeled
projections of future range are based on the bioclimatic cor-
relates of current distribution for each species and do not
take behavior into account. However, migratory behavior is
likely to enhance species’ adaptive capacity in response to cli-
mate change; as migratory species already disperse to suitable
habitat with changing weather patterns (Şekercioğlu 2007).

In general, species distributed predominantly across north-
ern Australia, the “tropical” distribution (e.g., Fig. 6D, 6F,
and 6J), are projected to fare the best with future range
expansion south and east in tandem with increasing rain-
fall. In contrast, large range decreases are projected for
the narrow-ranged species currently found on Cape York
Peninsula. These species are likely to be the most vulnerable
to extinction. This fits with the theory that diverse tropical as-
semblages consisting of small-ranged species have the highest

vulnerability to climate change (Colwell et al. 2008). These
species may be on the edge of their thermal tolerances, as they
occupy one of the hottest regions in the continent (Deutsch
et al. 2008). The western side of the Cape currently has higher
annual mean temperature and lower dry-season precipitation
than the eastern side, and these western regions are pro-
jected to become unsuitable (Fig. S1). For the three species
on Cape York Peninsula projected to face severe declines that
are currently listed as threatened (golden-shouldered parrot,
buff-breasted button quail and palm cockatoo), the combi-
nation of climate change and their current threatening pro-
cesses (e.g., inappropriate fire regimes and grazing; Garnett
and Crowley 2002; Mathieson and Smith 2009) is likely to
lead to a high risk of extinction. For those that rely on spe-
cific nesting requirements, for example, termite mounds for
golden-shouldered parrot and hollow-bearing trees for palm
cockatoo, their vulnerability is exacerbated by the risk that
climate change will interrupt the crucial biotic interactions
they depend upon through changes in fire or cyclonic activity
(Weaver 1982; Murphy and Legge 2007).

These projected species-specific responses are likely to re-
sult in substantial changes in species composition across
the Australian tropical savannas and the rest of Australia.
Migratory and tropical species are likely to become more
widespread while species inhabiting the savannas at the
southern edge (e.g., arid-affiliated species) are likely to be
lost from the savanna region. Northern Australia may re-
ceive more migrants from Papua New Guinea and southeast
Asia, which may expand their ranges south. Potential changes
could result in “no-analogue” species assemblages due to
community reorganization (le Roux and McGeoch 2008).
Compositional changes in bird species assemblages have al-
ready occurred in response to climatic change in other regions
(Albright et al. 2010). In particular, generalist species have
increased while specialists decreased (Christian et al. 2009).
This has been shown for butterfly populations, where in-
creases in species richness lag behind the predicted increases,
with the resultant species assemblages showing a greater dom-
inance of generalist species (Warren et al. 2001; Menéndez
et al. 2006). In Australia, widespread generalist bird species,
such as crested pigeon (Ocyphaps lophotes) and galah (Eolo-
phus roseicapillus), have increased their ranges across Aus-
tralia largely as a result of land-use change (Franklin 1999);
generalists in Australia might benefit from the synergy be-
tween climate and land-use change.

Despite the potential for many birds of tropical savannas
to track the geographic shift in their suitable climate space,
the realization of this range shift may depend on whether
land is available or has been anthropogenically modified to
the extent of being unsuitable habitat (Pearson 2006). Many
Australian tropical savanna bird species are predicted to show
similar patterns to those documented elsewhere (Parmesan
and Yohe 2003); tracing the movement of their suitable
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climate space across increasing latitudes. However, the pro-
jected future locations of greatest species richness—down
the east coast and in far southwestern Australia—are heavily
modified in comparison to the current savanna biome, with
extensive urbanization and more intensive agriculture (Berry
and Roderick 2006), a pattern predicted for tropical savanna
birds in other parts of the world (Marini et al. 2009). The
next important step in refining the understanding of the op-
portunities or constraints to fauna dispersing in response to
changing climates will include other factors that limit or aid
potential new distributions of species over time (Early and
Sax 2011). For example, the location of conservation reserves
in Australia and globally will need to be re-evaluated to assess
their efficacy in light of the increasing evidence for species
movements with shifting climate (Coetzee et al. 2009). Such
re-evaluation may highlight the need for restoration of urban
and agricultural areas to create suitable habitat to facilitate
movements by range-shifting species (Shoo et al. 2011).

Conclusions

Projected increases in extinction risk due to climate change
have necessitated comprehensive climate change impact as-
sessments across species assemblages (IPCC 2007b). The
birds of Australian tropical savannas are projected to shift
out of the arid zone as mean temperature increases, some
into the southern savanna where rainfall is projected to in-
crease, and others southward toward and along the east coast
of Australia. Using realistic dispersal scenarios makes a sub-
stantial difference to the range projections when compared
with no dispersal scenarios, and therefore appropriate dis-
persal scenarios are important for meaningful projections of
species’ range-shifts. Overall, birds occurring in Australian
tropical savannas are projected to decline in distribution size,
and this response is reflected in assemblage measures such as
species richness. While many species are predicted to change
marginally, others species found in particular biogeographic
zones (e.g., Cape York Peninsula and the arid zone), are pre-
dicted to show severe contraction and become increasingly
vulnerable. Therefore an understanding of species dispersal
capacities and the patchiness of available habitat in future
destinations for these species is important in planning for
the long-term persistence of species. Studies such as these
support conservation adaptation programs by anticipating
the effectiveness of current conservation for range-shifting
species.
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