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Dehydrins are a family of plant proteins that accumulate in response to dehydration

stresses, such as low temperature, drought, high salinity, or during seed maturation.

We have previously constructed cDNA libraries from Rhododendron catawbiense leaves

of naturally non-acclimated (NA; leaf LT50, temperature that results in 50% injury of

maximum, approximately −7◦C) and cold-acclimated (CA; leaf LT50 approximately

−50◦C) plants and analyzed expressed sequence tags (ESTs). Five ESTs were identified

as dehydrin genes. Their full-length cDNA sequences were obtained and designated

as RcDhn 1-5. To explore their functionality vis-à-vis winter hardiness, their seasonal

expression kinetics was studied at two levels. Firstly, in leaves of R. catawbiense

collected from the NA, CA, and de-acclimated (DA) plants corresponding to summer,

winter and spring, respectively. Secondly, in leaves collected monthly from August

through February, which progressively increased freezing tolerance from summer

through mid-winter. The expression pattern data indicated that RcDhn 1-5 had 6- to

15-fold up-regulation during the cold acclimation process, followed by substantial

down-regulation during deacclimation (even back to NA levels for some). Interestingly,

our data shows RcDhn 5 contains a histidine-rich motif near N-terminus, a characteristic

of metal-binding dehydrins. Equally important, RcDhn 2 contains a consensus 18 amino

acid sequence (i.e., ETKDRGLFDFLGKKEEEE) near the N-terminus, with two additional

copies upstream, and it is the most acidic (pI of 4.8) among the five RcDhns found. The

core of this consensus 18 amino acid sequence is a 11-residue amino acid sequence

(DRGLFDFLGKK), recently designated in the literature as the F-segment (based on

the pair of hydrophobic F residues it contains). Furthermore, the 208 orthologs of

F-segment-containing RcDhn 2 were identified across a broad range of species in

GenBank database. This study expands our knowledge about the types of F-segment
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from the literature-reported single F-segment dehydrins (FSKn) to two or three F-segment

dehydrins:Camelina sativa dehydrin ERD14 as F2S2Kn type; and RcDhn 2 as F3SKn type

identified here. Our results also indicate some consensus amino acid sequences flanking

the core F-segment in dehydrins. Implications for these cold-responsive RcDhn genes in

future genetic engineering efforts to improve plant cold hardiness are discussed.

Keywords: expressed sequence tags (EST), gene expression profiling, cold hardiness, Rhododendron, cold

acclimation, deacclimation, FSK-type dehydrins, dehydrin F-segment

INTRODUCTION

Survival and growth of woody plants in cold climate is important
for traditional sectors of horticulture and forestry. One advantage
of using Rhododendron as a material to study cold-hardiness
physiology is the wide range of leaf and bud cold (freezing)
tolerance among species (Sakai, 1986). Rhododendron, like many
other woody perennials, can adapt to harsh winter through a
process called cold acclimation (CA), by which they develop
tolerance to low temperature and freezing seasonally, with
hardiness increasing through the autumn, peaking in midwinter,
declining during the spring, and reaching the lowest in summer
(Arora and Taulavuori, 2016).

Cold acclimation is considered to be an active process
that involves a wide range of physiological and biochemical
reprogramming, including altered membrane structure and
function (Yamada et al., 2002), as well as myriad of changes in
primary and secondary metabolisms (Guy, 1990; Thomashow,
1990, 1998); most of these are also accompanied by related
changes in protein/gene expression. As the D-11 subgroup of late
embryogenesis abundant proteins (Dure, 1993), dehydrins have
been found to play an important role in plant defense against
dehydration stresses, including freeze-desiccation stress (Lin and
Thomashow, 1992; Close, 1996; Wisniewski et al., 2003; Kaplan
et al., 2004; Kosová et al., 2007; Tunnacliffe and Wise, 2007).
The defining characteristic of plant dehydrins is the existence
of a putative amphipathic α-helix-forming domain, called the
conserved K-segment (Close, 1997; Malik et al., 2017). It has been
shown that dehydrins are located in the nucleus or cytoplasm of
the cell (Close, 1997), specifically in the vicinity of the plasma
membrane (Danyluk et al., 1998), cytoplasmic endomembrane
(Egerton-Warburton et al., 1997), and plasmodesmata (Karlson
et al., 2003). In addition, their high concentrations in cells
(Baker et al., 1988), add to the appeal as engineering targets for
enhancing plant stress defense capacity.

We had previously generated 862 5′-end high-quality ESTs
from cold acclimated (CA) and non-acclimated (NA; non-
cold-hardened) leaves of field grown plants of Rhododendron
catawbiense, a cold-hardy North American rhododendron
species (Wei et al., 2005a). NA (summer-collected) and CA
(winter-collected) leaves were also evaluated for cold-hardiness
in a laboratory-based freeze-thaw assay which indicated their
leaf-freezing tolerance (defined as LT50, temperature that results

Abbreviations: ABA, abscisic acid; CA, cold-acclimated; DA, de-acclimated;
Dhn, dehydrin; EST, expressed sequence tag; NA, non-acclimated; RcDhn,
Rhododendron catawbiense dehydrin.

in 50% injury of maximum) to be approximately −7◦ and
−50◦C, respectively. Comparative analysis of NA- and CA-EST
data sets revealed cDNAs for five dehydrins that were more
abundant in the more cold-hardy CA tissues (Wei et al., 2005a),
and are thus of interest for further characterization. In the
present study, sequence analyses of these five rhododendron
dehydrins were performed to characterize their conserved
motif features. In addition, the seasonal gene expression of
individual dehydrins was characterized using northern blot and
RT-PCR, providing experimental information on their cold-
acclimation-response. Furthermore, a thorough bioinformatic
analysis was carried out for an identified 18 amino acid
sequence (ETKDRGLFDFLGKKEEEE) located in one of the
rhododendron dehydrins. Interestingly, the center part of this
consensus 18 amino acid sequence is a 11-residue amino acid
sequence (DRGLFDFLGKK) that has been recently identified
and named as the “F-segment” based on the pair of hydrophobic
F residues it contains (Strimbeck, 2017). This present study,
however, expands our knowledge regarding the types of F-
segment peptides found in the known single copy (FSKn)
dehydrins to the F2S2Kn or F3SKn dehydrins which contain two
or three F-segments (this study). Our bioinformatic analysis also
indicates some consensus amino acid sequences flanking the
core F-segment in at least some of the F-segment containing
dehydrins. Potential use of the identified cold stress-related
rhododendron dehydrins for plant engineering is also discussed.

MATERIALS AND METHODS

The overall experimental and analysis approaches are illustrated
in Figure 1.

Sample Collection
Field-grown plants of R. catawbiense, maintained at The Holden
Arboretum’s David G. Leach Research Station in Madison,
Ohio, were used for this study. Two sets of leaf samples
were collected from these plants to determine the changes
of dehydrin expression profiles. The first set of leaf samples
was the seasonal collection representing summer (July), winter
(January), and the following spring (May). Summer and winter-
collected samples represent NA and CA leaves, respectively;
whereas the spring collection is for tissues that are expected
to have lost their previously acquired (during fall/winter) cold
hardiness in a process called deacclimation (DA) upon the
return of warmer temperatures in spring (Kalberer et al., 2006).
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FIGURE 1 | Diagram of the outline for the experimental design and analyses.: CA, cold-acclimated; DA, de-acclimated; EST, expressed sequence tag; NA,

non-acclimated.

Together, this sampling represented annual cycle of NA-CA-
DA tissues. Leaf freezing tolerance, defined as LT50, of NA
and CA leaves, was found to be −7◦ and −53◦C, respectively
(Wei et al., 2005a). Whereas precise freezing tolerance of
deacclimated leaves (May collection) could not be ascertained
for this study, it can be safely assumed to be substantially
lower than cold acclimated levels (from January) and closer
to that of non-acclimated tissues (Kalberer et al., 2006). The
second set of leaf samples was approximately monthly collections
from August through February, representing the period of
gradual/seasonal development of cold acclimation from summer
(August) through the fall/early winter (September, October,
November) reaching close to maximal cold-hardiness by January.
For all the samplings, leaf tissues were flash frozen in liquid
nitrogen and stored at−80◦Cuntil RNA and cDNApreparations.

RNA Extraction
Total RNA was extracted according to the modified hot-borate
method of Wilkins and Smart (Wilkins and Smart, 1996). The
prepared RNA was dissolved in DEPC treated water and store at
−80◦C until use.

Northern Blot
Equal amounts of total RNA (8 µg) extracted from leaf tissues
were denatured and fractionated on 1% (w/v) formaldehyde-
agarose gels for electrophoresis, followed by viewing and
photographing under UV light to confirm RNA quality and
equal sample loading. The transfer of RNA to nylon membranes,
the preparation of DNA probes corresponding to cDNA inserts
of interest, and the hybridization conditions were described
previously (Wei et al., 2005a). After the northern blotting, the
intensity of positive bands was analyzed by densitometry using
imaging software (NIH Image version 1.41, National Institutes of
Health, Bethesda, MD).

Reverse Transcription
For each sample’s reverse transcription (RT), RNA was treated
with DNase I (amplification grade; Invitrogen, Carlsbad, CA)
to avoid contamination with genomic DNA. First-strand cDNA
was synthesized using 3 µg of total RNA with the Superscript
RT III kit (Invitrogen, Carlsbad, CA) and random hexamer
primers for 18S and R. catawbiense ubiquitin-like (RcUbql) genes

(used for initial reference gene screening), or oligo(dT)18 for
RcUbql gene and dehydrin genes (used in formal functional gene
screening) according to themanufacturer’s instructions. The total
RT reaction volume was 20 µL and was further diluted to 80 µL
by adding DEPC-treated water (thus each µL contained “first-
strand cDNA” derived from approximately 40 ng of initial total
RNA). This was used as “first-strand cDNA” for regular RT-
PCR and real-time RT-PCR as described below. A second aliquot
of total RNA (also 3 µg) was treated using ddH2O instead of
reverse transcriptase and used as minus reverse transcriptase
(–RT) controls for monitoring any genomic DNA contamination
or nonspecific DNA amplification.

Selection and Validation of RcUbql as
Reference Genes for Regular and
Real-Time RT-PCR
As in our EST dataset, we have identified the EST for RcUbql
(GenBank accession No. CV015651), which allowed us to design
a pair of primers for both regular RT-PCR and real-time RT-
PCR with an amplicon size of 254 bp (Table 1). To validate the
suitability of RcUbql as the reference gene, the Quantum RNA
Universal 18S Internal Standards primers (amplicon size of 315
bp; Ambion, Austin, TX, USA) were used as an internal standard
with 18S primers-to-competimers ratio of 3:7. As described by
the manufacturer’s manual, the 18S rRNA and our target gene
(RcUbql) were amplified in a multiplex reaction using the above-
mentioned random hexamer primers-reverse transcribed cDNA
as templates.

Regular RT-PCR and Real-Time RT-PCR
The primers used for both regular and real-time RT-PCR are
listed in Table 1. Whereas, the regular RT-PCR with three
different cycle numbers provided a visual, traditional means to
examine the expression level of target genes, the real-time RT-
PCR allowed a more accurate, quantitative assessment of the
gene expressions.

For regular RT-PCR, which was used in parallel to real-
time RT-PCR (as described below) to detect the expression level
of dehydrin genes and RcUbql gene, the “first-strand cDNA”
(derived from approximately 40 ng of initial total RNA) was used
in a final reaction of 20 µL containing 0.2mM dNTP, 2mM
MgCl2, 625 nM of each forward and reverse primers and 1 unit
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TABLE 1 | Primer sequences for regular and real-time RT-PCR.

Dhn

genes

Forward primer Amplicon

size (bp)

RcDhn 1 F: CCACCAGTCCCACGACACTA

R: TACCCACCACCTGCTCCAG

57

RcDhn 2 F: AAGGATGGGTTGTTGACGAAGT

R: TTCCTCCGAAGAGCTTGAGC

51

RcDhn 3 F: ATCGCCCCGTCCTAATCTTCT

R: CCCTCGAGACTCCGTCCAC

71

RcDhn 4 F: CGTGGACAAGGTGAAGGACAA

R: ACTAGCGGCGGAAAAGAAGAT

111

RcDhn 5 F: AAGTTCCACCGTTCCGATAGC

R: ATTCGTGTCCTCCTCGTGCT

128

RcUbql F: AGAGGTGGTGTTGAACGATCG

R: TCTCGCACTTATTACCGCACA

254

GenBank accession No. for RcDhn 1-5 can be found in Table 2, while that for RcUbql is

CV015651.

of Taq. The setup reaction mixture was subjected to regular RT-
PCR at three different cycle numbers empirically determined
for amplification at non-saturation levels (28, 32, and 36 cycles
for most transcripts). This setup ensured that the amount of
amplified products stayed in the linear proportion to the initial
template amount present in the reaction under at least one of
these three cycle numbers. The PCR products were separated and
analyzed on agarose gels.

For real-time RT-PCR, the “first-strand cDNA” (equivalent
to approximately 10 ng of initial total RNA extracted from leaf
tissues) was used in a final reaction of 20 µL containing 1X SYBR
Master Mix, 625 nM forward primer and 625 nM reverse primer,
using ABI optical tube and caps. All reactions were performed
in triplicate and repeated in two independent experiments. The
real-time RT-PCR were performed in ABI model 7000 sequence
detection system (Applied Biosystems, Foster City, CA). Thermal
cycling conditions consisted of 2min at 94◦C for denaturation
and 40 cycles of amplification (15 s at 94◦C, 30 s at 59◦C, 20 s
at 72◦C), followed by standard dissociation procedure. PCR data
were analyzed with the sequence detection software version 1.2.3.

PCR amplification efficiency of real-time RT-PCR was
determined using the absolute fluorescence method (Ramakers
et al., 2003), in which a serial cDNA template dilutions were
conducted to obtain the standard curves. The resultant PCR
efficiency for each gene’s primers was calculated. Expression
level of test gene (i.e., RcDhn 1-4) relative to reference
gene (RcUbql) was calculated using the comparative CT
method, i.e., by subtracting the CT of reference gene from
the test gene CT according to the function 1CT = CT
(test gene)—CT (reference gene). To obtain the seasonal
changes in expression levels of a certain RcDhn gene, the
function 11CT was determined using the equation 11CT
= 1CT(test gene in a specific month’s sample)—1CT(test
gene in August sample). The final fold change of a specific
month against August was then calculated by the formula
2−11Ct in accordance with ABI sequence detection system
user manual, with the gene expression level in August set
as 1. For statistical analysis, the p-values were calculated

using a Student’s t-test on the fold change values, and
the analyses were performed using Excel; significance was
defined as p<0.05, whereas high significance was defined
as p < 0.01.

ESTs Source and Primer Walk to Obtain
Full cDNA Sequence of Dehydrins
Previously, 423 and 439 5′ ESTs were generated from cold
acclimated (CA) and non-acclimated (NA) leaves, respectively,
of R. catawbiense (Wei et al., 2005a). These ESTs (GenBank
accession nos. CV014938– CV015799) were clustered to produce
a list of unique transcripts, which were annotated using PIR-
NREF protein database (Protein Information Resource: Non-
Redundant Reference) and BLASTX (Wei et al., 2005a). The
study annotation led to the identification of five dehydrins,
which were labeled as RcDhn 1-5, wherein “Rc” represents
R. catawbiense, Dhn for dehydrin, and each gene has a
unique number.

Sequences of full length dehydrin genes were obtained by
primer-walking sequencing of the 5 RcDhn cDNA clones. The
primers used were either the universal primers or designed based
on the sequences of ESTs that also existed for cDNA clones.
DNA multiple sequence alignments were conducted by using the
Genetics Computer Group (GCG) PILEUP program (University
of Wisconsin, Madison, WI, USA) to determine the full-length
sequences of the cDNA clones.

Open Reading Frame (ORF) of the
Nucleotide Sequences and Protein
Sequence Alignment
The full-length sequences of theRcDhn clones were input into the
NCBI’s ORF to deduce the amino acid sequences of the dehydrin
genes. The most feasible ORF was determined by comparing the
deduced amino acid sequence with the sequences in GenBank
databases using the BLAST server. The resultant amino acid
sequences were used to (1) identify the potential YSK segments of
dehydrins, (2) identify the expanded F-segment (see below), and
(3) align specific dehydrins of interest from other plant sources.

Identification and Clustering of the
Expanded F-Segment Containing Ortholog
Proteins and Bioinformatics Analysis
The procedure for BlastP analyses to identify the homolog
proteins that contain the conserved F-segment in protein
database is outlined in Figure 2. The R. catawbiense dehydrin
2 (RcDhn 2) amino acid sequence obtained from NCBI
(AGI36547) was used to search for other similar dehydrins
using the local Protein-protein BLAST (BlastP) program against
the non-redundant (NR) protein database. The e-value was set
to 0.01 and other parameters kept at default. Consequently,
270 sequences were retained to do the next analysis after
removing the 10 repeats in all 280 hits. Another local BlastP
was performed to search for the similar amino acid consensus
sequence using the 18 amino acid sequence initially identified
in RcDhn 2 (ETKDRGLFDFLGKKEEEE) as the query and
the 270 sequences as database. The e-value was set to 0.01
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FIGURE 2 | Flowchart for global and local BlastP analyses to identify the homologous proteins that contain the conserved, expanded F-segment in protein database.

See the Materials and Methods section for details.

and other parameters kept at default. There were 212 hits
with AGI36547 (i.e., RcDhn 2 deposited into GenBank by our
group) containing three F-segments, XP_010474361 containing
two F-segments (Camelina sativa dehydrin ERD14; F2S2Kn as
illustrated in Figure 3, bottom panel), and the rest containing
one F-segment.

The start and end positions of the 212 F-segments in the
BlastP result was extracted using a customized Perl script, which
were then used for multiple sequence alignment. Four segments
containing two amino acid “CG” insertions may belong to
another family and were removed for alignment, as illustrated
in Supplemental Figure S1. The rest 208 segments were used
for consensus sequence analysis and the unrooted evolutionary
tree construction by using CLC Genomics workbench 9. The
consensus sequence Logo was then constructed by WebLogo
online server (http://weblogo.berkeley.edu/logo.cgi) (Schneider
and Stephens, 1990; Crooks et al., 2004).

Charge and Hydropathy Analyses of
Conserved Segments of Dehydrins
For conserved segments, Peptide Analyzer (http://haubergs.com/
peptide) was used to calculate the charge and hydropathy scores,
and to generate hydropathy plot.

RESULTS

Sequence Analyses of Rhododendron
Dehydrin Genes
BLASTX search of PIR-NREF protein database revealed that
several ESTs from the CA library were identified as dehydrin

transcripts encoding five distinct dehydrins (Table 2). Five
corresponding cDNA clones from the cold-acclimated cDNA
library (Wei et al., 2005a) were picked and cultured for plasmid
extraction. The extracted plasmid DNA was sent to the DNA
facility of Iowa State University for Primer Walking service to
obtain the full-length sequence of these clones. The resultant
sequence analysis showed that each cDNA contains the 3′

untranslated region, the start codon, stop codon, and the
poly(A)+ tail, confirming that they represent the full-length
genes (data not shown). The deduced amino acid sequences from
these genes are shown in Figure 3.

As noted before, the distinct Dhn genes were referred by a
nomenclature composed of five-letter (RcDhn) plus a sequential
number (1 to 5), in which “Rc” represents R. catawbiense,
Dhn for dehydrin. The dehydrin protein names follow the
same convention, except that the letters are capitalized and not
italicized. Based on the presence of certain consensus regions
of amino acids in their sequence, dehydrins are conventionally
described by the “YSK” shorthand, according to which plant
dehydrins can be categorized into five distinct structural types:
(1) YnSKn, (2) SKn, (3) YnKn, (4) Kn, and (5) KnS (Close, 1996,
1997). Except for the type 5 (KnS), other four types, 1 to 4,
have been identified in Rhododendron in this study (Table 2).
The predicted size of dehydrins identified was from 81 to 303
in amino acids (Table 2), which fits within the reported wide
range of dehydrins (82-648 amino acids) (Close, 1996). Variation
in isoelectric point is in the range of 4.8 to 6.9. It is suggested
that each YSK structure type may bear a distinctive functional
role (Svensson et al., 2002), thus we characterized each identified
dehydrin as below.
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FIGURE 3 | Deduced amino acid sequences for Rhododendron dehydrins RcDhn 1-5 and C. sativa dehydrin ERD14. Amino-acid residues are designated in

single-letter code. The Y-, S-, and K-segments are boxed. The defined expanded F-segments in RcDhn 2 are boxed and in boldface and yellow; the histidine-rich (H)

segment are boxed and in pink. C. sativa dehydrin ERD14 was identified by our BlastP analysis hit against the NCBI protein database.

(1) Y3SK2 type RcDhn 1

Y3SK2 has been found widely across diverse plant species
some of which include sunflower (Helianthus annuus),

radish (Raphanus sativus) (Campbell and Close, 1997),
Arabidopsis thaliana (Nylander et al., 2001; Svensson et al.,
2002), Brassica juncea and B. napus (Yao et al., 2005).
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TABLE 2 | Characteristics of Rhododendron Dhn genes and their protein

products.

Dhn genes GenBank

Protein No.

(cDNA clone

No.)

Dehydrin type Amino

acid

number

MW PI

(kDa)

Picked

timesa

RcDhn 1 KC425881

(CA3A12)

Y3SK2
potato type

177 20 6.5 1

RcDhn 2 KC417479

(CA5B04)

Y2SK2 + F3 303 34 4.8 1

RcDhn 3 KC425882

(CA1F12)

Y1K1 85 10 6.9 4

RcDhn 4 KC425883

(CA3E05)

K1
blueberry type

81 10 6.9 1

RcDhn 5 ACB41781

(CA2D12)

SK2
kidney bean type

240 29 5.2 1

aNumber of times that a particular cDNA was picked from cDNA library (containing 423

5′ end ESTs) of rhododendron cold acclimated (CA) leaf tissues (Wei et al., 2005a).

The transcript of sunflower Y3SK2 type dehydrin (HaDhn1)
increased in abundance under water deficit stress (Cellier
et al., 2000), while this type of dehydrins in B. juncea and
B. napus were found to be expressed in germinating seeds
and with enhanced cold tolerance during seedling emergence
(Yao et al., 2005).

(2) Y2SK2 + F3 type RcDhn 2 (F3SK2)

RcDhn 2 (Z05B04) belongs to the Y2SK2 type and
can be distinguished from the other four rhododendron
dehydrins because it has three copies of an unusual,
expanded F-segment (ETKDRGLFDFLGKKEEEE), one of
which is always present near the N-terminus (Figure 3;
Table 2). Dehydrins with all three consensus segments, Y,
S, and K, have been widely reported to occur in plants
(Close, 1996; Wisniewski et al., 2006).

(3) RcDhn 3 and RcDhn 4: the blueberry-type dehydrins

RcDhn 3 (CA1F12; Y1K1) belongs to Y1K1 type (Figure 3
and Table 2). Although YnKn dehydrins have been found
in other species, such as Y2K2 (Pisum sativum) (Haider,
2012), and Y2K9 (Prunus persica) (Wisniewski et al., 2006),
Y1K1 type has not been reported in literature based on
our knowledge. RcDhn 4 (CA3E05; K1) belongs to K1

type (Figure 3 and Table 2); unlike RcDhn 3, it lacks Y-
segment. Kn type dehydrins have been found in many
other species, including K2 in Pseudotsuga menziesii, K3 in
Medicago falcata, K6 in Triticum aestivum and A. thaliana,
and K9 in Hordeum vulgare (Campbell and Close, 1997).
In addition, K2 type dehydrins also exist in Pinus sylvestris
(GenBank accession No. CAD54624.1, CAD54623.1, and
CAD54621.1). However, K1 type has not been reported in
other species so far. Since the defining feature of dehydrins
is the conserved K-segment, the K1 type RcDhn 4 is
among the groups of a few simplest dehydrins reported
so far with regard to deduced amino acid sequences(Lee
et al., 2005). Except for the Y-segment, both RcDhns 3
and 4 have K1 and also show considerable similarity to
each other in their deduced amino acid sequences. BLAST
search against NR-PIR database identified five blueberry
(Vaccinium corymbosum) dehydrin orthologs (Dhanaraj

et al., 2005). Since Rhododendron and blueberries both
belong to the health family (Ericaceae), RcDhns 3 and 4 were
thus labeled as blueberry-type dehydrins.

(4) RcDhn 5: the kidney bean-type dehydrins

RcDhn 5 (CA2D12; SK2) is an acidic, SK2 type dehydrin
(Figure 3 and Table 2); it lacks the Y-segment. It also
contains a histidine-rich segment (HHQHHHHVE) close
to N-terminus. SK2 dehydrins have also been found in
other woody plants like peach (Prunus persica) (GenBank
accession No. AAZ83586) (Bassett et al., 2009) and birch
in which the pre-exposure to short-day followed by low-
temperature treatment led to a significant increase in the
expression of a SK2 type dehydrin gene, compared with low-
temperature-treated plants grown at long-day photoperiod
(Puhakainen et al., 2004). Heterologous expression of this
birch SK2 type dehydrin in Arabidopsis indicated that this
short-day potentiation of gene expression could be tree-
specific (Puhakainen et al., 2004).

Seasonal Expression Profiling of RcDhn
Genes by Northern Blot: Approach I to
Identify Quantitative Expression of RcDhns
vis-à-vis Seasonal Changes in Freezing
Tolerance
To further investigate seasonal changes of RcDhns during NA-
CA-DA seasonal cycle, we used the respective gene probes to
hybridize with the RNA extracted from the non-acclimated (NA),
cold acclimated (CA), and deacclimated (DA) Rhododendron leaf
tissues as described in the Materials and Methods. The northern
blot results showed that the transcript levels of all five RcDhns
followed a distinct seasonal cycle, i.e., relatively low levels in less-
hardy tissues in summer followed by ∼5–14-fold accumulation
(densitometric analysis) in much cold-hardier tissues in winter
and then substantial decline in concert with a seasonal transition
to spring with the expected loss of freezing tolerance (Figure 4;
Peng et al., 2008). The magnitudes of fold-change of these genes
among NA CA, and DA tissues indicate that they were all cold-
responsive dehydrin genes.

It is noteworthy that northern blot analysis using RcDhn
4 EST probe revealed three hybridizing mRNA bands of 2.0,
1.1, and 0.5 kb (Figure 4). The predominant band was 0.5 kb,
corresponding to the expected size of theRcDhn 4 EST, which had
been previously deposited to GenBank by our group (accession
no. CV015159, with mRNA length 491 bp) (Wei et al., 2005a).
This RcDhn 4 EST sequence was used to design primers (as
listed in Table 1) for real-time RT-PCR analysis for its monthly
expression profiling as described below. The occurrence of three
bands on northern blot of RcDhn 4 indicates the presence
of three mature RcDhn 4 transcripts, which could arise by
either alternative splicing, and/or due to alternative transcription
initiation or polyadenylation sites.

Monthly Expression Profiling of RcDhns by
RT-PCR: Approach II to Identify Cold
Acclimation-Responsive Dehydrin Genes
The very hardy species, R. catawbiense, has the remarkable
ability to increase their leaf freezing tolerance to cope
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FIGURE 4 | Northern blot analysis for the seasonal expression levels of RcDhn 1-5 in NA, CA, and DA leaf tissues. Total RNA (8 µg) was isolated and hybridized with

respective cDNA probes. Lower panel shows control hybridization of the filters to rRNA using a blueberry cDNA probe confirming equal loadings among the lanes.

Fold change in the expression level during cold acclimation and deacclimation relative to non-acclimated state (defined as ‘1’) was estimated by densitometry. The

putative genes in red text showed at least 5-fold differences in the intensity of bands of northern blot between NA and CA, thus defined as highly cold-responsive

genes. RcDhn 5’s northern blot data were adapted from a previous study (Peng et al., 2008). CA, cold-acclimated; DA, de-acclimated; NA, non-acclimated.

with cold winters (Wei et al., 2005a; Wang et al., 2009).
This study examined the monthly gene expression of five
RcDhns using the samples collected monthly between August
(summer) and January (winter); as well as late February.
This work provides cold-acclimation-responsive dehydrin
gene expression patterns with greater resolution than before,
showing that leaf tissues progressively increase their freezing
tolerance from summer through fall (Peng et al., 2008).
Gene expression profiling was conducted using both regular
RT-PCR and real-time RT-PCR. The relative expression
levels in each cDNA sample were normalized by comparing
the data to the reference gene (e.g., ubiquitin-like protein)
in the same sample, which remained constant throughout
the season changes. The threshold cycle (Ct) values and
calculation worksheets for the fold changes of dehydrin gene
expression are provided in Additional File 2, following the
data presentation examples for semi-quantitative RT-PCR
published in recent literature (Nguyen et al., 2014; Xiong

et al., 2016; Feng et al., 2017; Sharma et al., 2017). The
statistical analysis process and results are also included in the
worksheets (Additional File 2).

The transcript levels of RcDhns 1, 2, 3, 4, and 5 followed
an incremental accumulation pattern from late August
(summer), through October (autumn) till January (winter). The
accumulation of transcript began in early autumn (October),
and reached a peak in January (Figures 5, 6). Such accumulation
pattern mirrors the monthly increase in leaf freezing tolerance
from August through January in this species (Peng et al.,
2008). Overall, the magnitude of changes of RcDhns 1-5 genes
in R. catawbiense between August and January, estimated by
real-time RT-PCR, were in the range of 6- to 15-fold, confirming
the results observed in the above Approach I for gene expression
profiling and supported that they were all cold-acclimation-
response dehydrins, which was also similar to the seasonal
expression pattern of RcDhn 5 previously reported by our
group (Peng et al., 2008).
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FIGURE 5 | Regular RT-PCR DNA gel images for monthly expression patterns

of dehydrin genes in leaf tissues of field-grown R. catawbiense collected in

August, September, October, November, January, and February. Total RNA

extracted from leaf tissues were used for cDNA synthesis. Regular RT-PCR

was conducted by using each dehydrin’s primers, while the Universal 18S

Internal Standards primers (Ambion) and gene-specific primers of

rhododendron ubiquitin-like (RcUbql) gene were used as the mixed primers for

the reference genes; the cycle numbers were 32, which was in the exponential

phase of the PCR amplification.

Orthologous Proteins of Cold-Responsive
RcDhn 2 and Distribution of Expanded
F-Segment in Protein Database
To investigate if an expanded F-segment found in RcDhn
2 is conserved in amino acid sequences relative to other
dehydrins from other plant species, a bioinformatic study was
conducted by two rounds of BlastP search as described in the
Materials and Methods and outlined in Figure 2. Briefly, the
first round of search was conducted by using the RcDhn 2
amino acid sequence to search for other similar dehydrins using
the local BlastP program against the non-redundant protein
database (NR), which generated 270 hits. The second round
of local BlastP was performed to search for the expanded F-
segment consensus sequence using the expanded F-segment
initially identified in RcDhn 2 (ETKDRGLFDFLGKKEEEE) as
the query and the 270 hits as the database, which led to 208
hits containing the expanded F-segments. Accordingly, the start
and end positions of the 208 expanded F-segments in the
BlastP result was extracted, and the NCBI accession numbers of
resultant hit protein sequences and their contained expanded F-
segment sequences are listed in Supplemental Table S1. These

208 expanded F-segment sequences were used to generate the
unrooted evolutionary tree using CLC Genomics Workbench 9.
Expanded F-segments can be arranged into classes 1, 2, 3, 4, and
5, among which the expanded F-segment in RcDhn 2 belongs to
class 3 based on sequence similarity, as illustrated in Figure 7.

Furthermore, the 208 expanded F-segment sequences listed
in Supplemental Table S1 were used to generate the expanded
F-segment consensus sequence, which is presented in two
forms. The first form is the WebLogo graphic form (Figure 8,
upper panel), which reveals the consensus sequence with
a stack of amino acid letters, with the height of each letter
representing the observed frequency of the corresponding amino
acid at each position. The second form is the conventional
form, which is illustrated in Figure 8, lower panel. Whereas,
the original expanded F-segment identified in RcDhn 2
is ETKDRGLFDFLGKKEEEE, the expanded F-segment
consensus sequence generated from 208 F-segment sequences is
E197T67K92D188R207G207L150F200D198F204L123G167K142K149E93
E114E105.

Comparison of the Expanded F-Segment
With K-Segment
As listed in the Supplemental Table S1, the 208 expanded F-
segment containing dehydrins were found to exist broadly across
a range of species.

Bioinformatics analyses of charge and hydropathy were
conducted for the expanded F-segment and the K-segment,
the signature sequence of all dehydrins (Campbell and Close,
1997). The results show that the expanded F-segment, explored
in this study, contains K3E5D2R1; whereas the K-segment
consensus contains K5E2D1, as illustrated in Figure 9. It is
interesting to note that among the four most hydrophilic amino
acids—glutamic acid (E), glutamine (Q), aspartic acid (D) and
asparagine (N)—two of them (E and D) are present in the
expanded F-segment and the K-segment, which lead to the
overall hydrophilic nature of these two motifs. For these two
motifs, the expanded F-segment has a more negative net charge
(with a value of−3.0) (Figure 9A).

The hydropathy plots are shown in Figure 9B, in which the
Kyte–Doolittle scale (Kyte and Doolittle, 1982) was used to
compare hydrophobicity by which a positive score indicating
hydrophobic and negative score indicating hydrophilic residues.
The expanded F-segment has an unique hydropathy plot, which
is significantly different from the K-segment (Figure 9B) and
may have an implication for its role in interacting with other
molecules and subcellular structures, differentiating it from the
K-segment motif, as further explored below.

DISCUSSION

Possible Function for F-Segment Domain
in Dehydrins
Although there is a general acceptance about a broad range
of functions of dehydrins, a question still arises as to the
fundamental biochemical role of F-segments in dehydrins.
Strimbeck (2017) proposed that the F segment may form a
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FIGURE 6 | Real-time RT-PCR analysis for monthly expression patterns of dehydrin genes in leaf tissues of field-grown R. catawbiense collected in August,

September, October, November, January, and February (A-D) RcDhn 1-4. Total RNA extracted from leaf tissues were used for cDNA synthesis. Real-time RT-PCR

was conducted by using each dehydrin’s primers, while the gene-specific primers of rhododendron ubiquitin-like (RcUbql) gene for the reference gene. The monthly

expression of each dehydrin gene was presented as the expression levels relative to its expression level in August (which was set at 1). * and ** indicate statistical

significance of p < 0.05 and p < 0.01, respectively, comparing with the expression level in August.

short, amphipathic helix capable of binding with membranes or
proteins (Strimbeck, 2017). Further biochemical characterization
of the F-segments will provide more clues to its structural and
functional roles, if any.

It is known that a group of calcium-binding proteins,
including calreticulin, calsequestrin, calnexin, and calmegin, use
the negatively charged, acidic amino acid region near the C-
terminus to bind calcium at high capacity and low affinity
(Corbett and Michalak, 2000; Alsheikh et al., 2003). Similarly,
an acidic Arabidopsis dehydrin was also found to have the ion
binding properties (Alsheikh et al., 2003). As described above, the
expanded F-segment consensus contains K3E5D2R1, and has the
lowest net charge (with a value of – 3.0) among three compared
motifs. Not surprisingly, the expanded F-segment containing
RcDhn 2 is an acidic dehydrin, with the lowest pI of all five
RcDhns (a value of 4.8), and it is reasonable to speculate that
RcDhn 2 and its orthologs in other species are also likely able
to bind with ions, thus may play a role in water retention and/or
directly replacing water for the “solvation” of the membrane.

Implications for the Genetic Engineering of
Plants
Dehydrins are a group of intrinsically disordered proteins
(lacking secondary and tertiary structure) (Graether and
Boddington, 2014) with multiple potential roles, such as
cryoprotection, antifreeze proteins (Wisniewski et al., 1999;
Reyes et al., 2008), metal binding/ion sequestration, antioxidants
(Svensson et al., 2000; Alsheikh et al., 2003; Hara et al.,
2005, 2013), and chaperone properties (Kovacs et al., 2008).

Current study identified five RcDhn genes related to stress
tolerance traits. These can be used for genetic engineering of
plants to enhance their cold adaptation capacity. A previous
study conducted by co-authors and collaborators supports the
feasibility of this approach, demonstrating thatArabidopsis plants
overexpressing RcDhn 5 were significantly more freeze-tolerant
than the wild-type controls (Peng et al., 2008); same dehydrin
also was shown to provide cryoprotection and dehydration-stress
tolerance, in vitro, to cold labile lactate dehydrogenase protein
(Peng et al., 2008; Reyes et al., 2008).

Based on the amino acid sequence data (Figure 3), we propose
here that RcDhn 5 may also have a metal/ion-binding property.
This SK2-type acidic dehydrin contains a histidine-rich sequence.
Published research suggests that metal/ion binding property
may be restricted to acidic, SK-type dehydrins (Alsheikh et al.,
2005) and that histidine-rich motif is characteristic of metal
binding proteins (Hernández-Sánchez et al., 2014). Hernández-
Sánchez et al. (2015) reported that the deletion of histidine-rich
motif in cactus dehydrin OpsDHN1 restricted its localization
to cytoplasm, and the deletion of its S-segment also affected
its nuclear localization (Hernández-Sánchez et al., 2015). We
speculate that the histidine-rich motif of RcDhn5 may also be
involved in the similar function as both histidine- and serine-
rich motifs exist in RcDhn5, and further studies are needed to
test this proposal.

It has also been shown for several SK-type dehydrins (ERD14,
ERD10, and COR47 of A. thaliana) that activation of their ion-
binding (Ca2+−binding) property may require phosphorylation
and that this phosphorylation site is contained within the serine
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FIGURE 7 | Unrooted tree of total 208 expanded F-segment sequences using CLC Genomics Workbench. The labels beside each dot are protein NCBI accession

numbers. The segments are arranged into 5 classes based on the genetic distance. The unique expanded F-segment (three copies from RcDhn 2) is highlighted by

the blue box. All are eukaryotes.

(S) motif (Alsheikh et al., 2005). Presence of a serine tract in
RcDhn 5 sequence (Figure 3) is in line with this proposition.

In addition, the transcript levels of all five RcDhns genes
increased throughout the autumn and reached a peak in the
middle of winter season (January), as illustrated in Figures 5, 6.
This prompts us to further propose that the sequences of
RcDhns promoters can be explored for the temporal control
of expressing heterologous cold-hardiness related genes aiming
to enhance cold acclimation of plants. Literature shows that
promoters selected from highly expressed genes are effective
to build expression vector for expressing heterologous genes in
eukaryotic organisms (Poulsen et al., 2006).

Future Studies for Gene Structure Analysis
of RcDhn4 and Its Variants
It is interesting that we identified three mature transcripts of
the RcDhn 4 gene, which could arise by alternative splicing,
and alternative transcription initiation or polyadenylation sites.
Furthermore, it is noteworthy that SKn-type dehydrins are

known to typically contain one intron sequence within the S-
segment (Jiménez-Bremont et al., 2013). It would be interesting
to determine, by obtaining and comparing the genomic sequence
with the cDNA sequence of RcDhn 4 gene, whether this gene also
contains intron(s). If the presence of intron is indeed confirmed,
it can be used to design the intron-flanking PCR molecular
markers for rhododendron genetic mapping, since it is assumed
that intronic regions have richer polymorphism than exonic
regions (Wei et al., 2005b).

CONCLUSION

Multiple approaches were taken to identify and characterize
five RcDhns and examine their transcriptional profiling
over the course of NA, CA and DA spanning from summer,
autumn, winter, and spring. Their transcript expression patterns
indicated that RcDhn 1-5 had 5- to 10-fold upregulation
during the cold acclimation process, followed by a significant
downregulation in spring as plants lose their previously
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FIGURE 8 | Consensus amino acids of expanded F-segment in dehydrin protein hits from BLASTP search against rhododendron expanded F-segment containing

RcDhn2. The sequence graphics in the upper panel was created using WebLogo program. Single letters are abbreviations for amino acids. The number after the

letters in the lower panel indicates the occurrence of each amino acid residue at each position. “-” represents a gap in alignment. The most hydrophilic amino acids

lysine (K), glutamate (E), aspirate (D) and arginine (R) are indicated by the star marks (*), and counted as K3E5D2R1.

FIGURE 9 | Comparison of charge and hydropathy between the expanded F-segment and K-segment. (A) Charge profiling. (B) Hydropathy plot. K-segment was

reported in literature as described in the text.

acquired freezing tolerance, supporting the roles of these
cold-responsive genes in plant freezing tolerance. The
identification of an unique expanded F-segment consensus
sequence in RcDhn 2 and its orthologs across a broad
range of species, together with their negative charge and
hydrophilic nature, highlight their potential to be used for
genetic engineering of crops and bioenergy plants for improved
cold tolerance.
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