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Introduction
Glaucoma is an optical neuropathy affecting the interpu-
pillary and parapupillary area of the optic nerve’s (ON) 
head and the retinal nerve fiber layer [1]. The most vali-
dated risk factor for glaucoma is the rise of IOP [2]. The 
literature contains abundant data suggesting the multi-
factorial nature of glaucoma, including its connection to 
vascular changes [3, 4], interrupted retrograde transport 
of neurotrophins [5], ocular ischemia [6], and oxidative 
stress [7]. Several lines of evidence suggested that oxida-
tive stress harm the trabecular meshwork (TM), result-
ing in an increased IOP and injury of the retinal ganglion 
cells (RGC), which provokes cell death and ON damage 
[8]. Oxidative stress refers to the damage caused by the 
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Abstract
Objective  Glaucoma is a chronic neurological disease that is associated with high intraocular pressure (IOP), causes 
gradual damage to retinal ganglion cells, and often culminates in vision loss. Recent research suggests that glaucoma 
is a complex multifactorial disease in which multiple interlinked genes and pathways play a role during onset and 
development. Also, differential availability of trace elements seems to play a role in glaucoma pathophysiology, 
although their mechanism of action is unknown. The aim of this work is to disseminate a web-based repository on 
interactions between trace elements and protein-coding genes linked to glaucoma pathophysiology.

Results  In this study, we present Glaucoma-TrEl, a web database containing information about interactions between 
trace elements and protein-coding genes that are linked to glaucoma. In the database, we include interactions 
between 437 unique genes and eight trace elements. Our analysis found a large number of interactions between 
trace elements and protein-coding genes mutated or linked to the pathophysiology of glaucoma. We associated 
genes interacting with multiple trace elements to pathways known to play a role in glaucoma. The web-based 
platform provides an easy-to-use and interactive tool, which serves as an information hub facilitating future research 
work on trace elements in glaucoma.
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over-activity of oxidising agents to cellular components 
[9]. It is caused by an imbalance between production and 
mitigation of reactive oxygen species, and it depends on 
exogenous/endogenous factors and the ability of cells 
to detoxify these substances [10, 11]. Surface abnormal-
ity ratio is a significant macular factor in the first phase 
of glaucoma pathogenesis for high-tension glaucoma, 
in which free radicals affect the TM endothelial cells 
and cause morphologic and functional changes inflict-
ing diffuse injury [12]. Trace metal concentrations in 
the body could alter affect oxidative stress balance in the 
pathogenesis of glaucoma [13]. A higher blood ferritin 
level was linked to a higher risk of glaucoma in a South 
Korean cohort. Since serum ferritin, an iron containing 
protein, is connected to oxidative stress and inflamma-
tion, it might have a role in glaucoma development [14, 
15]. In one clinical study, the authors measured levels 
of Cd, Fe, Mn, Co, Cu, and Zn in aqueous humor from 
patients with primary open angle glaucoma, pseudoexfo-
liation glaucoma, or cataract as controls. They identified 
changes in Zn or Fe concentrations as a putative cause 
or effect of glaucoma [16]. Additionally, increased levels 
of Zn can inhibit the absorption of Cu and cause Fe and 
Cu imbalances, which are critical to neuronal growth and 
immunity. Also, the increase of Zn levels can be a com-
pensating mechanism for the neutralisation of free radi-
cals which show elevated concentrations in glaucoma [17, 
18].

Trace elements are linked to deregulation of certain 
glaucoma coding genes and their products. The levels 
of certain iron and/or copper-related proteins increased 
in glaucoma [19]. Yefimova et al. conducted a study to 
look at the distribution of iron and ferritin in the adult 
rat retina. They quantified iron concentration in the cho-
roid and retinal pigmented epithelial cell layer, as well 
as in the inner segments of the photoreceptors and the 
outer retina and found that iron and ferritin shared simi-
lar distribution patterns in these tissues. Also, they found 
that the transferrin receptor likely helps transfer iron to 
photoreceptors [20]. The Ceruloplasmin (Cp) protein 
showed increased expression in the retina, RGC and 
inner nuclear layers after optic nerve crush in humans 
[21] [22] and mice [23]. Cp is involved in copper trans-
port and is mainly synthesized in the liver [24]. The HFE 
H63D gene alteration has been documented to be linked 
to retinopathy in diabetes patients [25]. Intestinal iron 
absorption is significantly increased due to a mutation 
in HFE gene, and iron overloaded states can have sig-
nificant implications in vision [26]. The cellular uptake 
of iron and cadmium utilizes similar transport pathways. 
Thus, gene alterations affecting iron-processing proteins 
(e.g. HFE H63D) may affect as well cadmium metabolism 
[27]. Some studies found alterations in the expression of 
iron-regulating genes in monkey and human glaucoma 

[19]. CBP is a ubiquitously expressed protein cofactor of 
the transcription factor CREB and regulates the develop-
ment of eyes in drosophila [28]. Interestingly, mutations 
in the PHD type zinc finger domain of CBP reduce its 
transcriptional activity [29] [30]. Also, imbalances in zinc 
metabolism can alter the activity of zinc finger proteins 
[54].

Taken together, recent publications suggest that trace 
elements play an important role in the regulation and 
activity of proteins linked to glaucoma pathophysiology. 
In this context, we comprehensively investigate interac-
tions between glaucoma-related proteins and trace ele-
ments and present the results in a web-based database.

Implementation
We designed a workflow for the systematic detection of 
interactions between trace elements and protein-coding 
genes that display differential expression in glaucoma. To 
this end, we retrieved the trace element-binding proteins’ 
interactions from databases like MINAS [31], MetalPDB 
[32], RCSB [33], and MetalMine [34]. To integrate the 
information contained in the databases, we formulated 
a score, in which. a given trace element a protein-cod-
ing gene gets a score which is the number of databases 
in which their interaction is contained. Next, we filtered 
out genes with a score below two. The selected genes 
were annotated with relevant information including gene 
symbol, gene name, location and synonyms taken from 
Ensembl [35], protein ID, protein name and synonyms 
taken from RCSB [33] and UniProt [36], and interac-
tions taken from MMDB [37]. We linked the GeneCards 
database [38] as well as the Protein Data bank in Europe 
(PDBe) [39] to integrate more information. Further and 
whenever possible, interactions between protein and 
trace element were annotated with the PubMed identifier 
(PMID) of the linked publication. We utilised ClueGO to 
annotate the genes with gene ontologies (GO) and link 
them individually to biological processes and pathways 
[40].

To investigate the expression of the protein-coding 
genes in glaucoma, we obtained and processed published 
RNA-Seq datasets of optic nerve head of feline congenital 
glaucoma (FCG) cats and age-matched disease-free cats 
(GSE110019) [41]. We selected genes showing an expres-
sion level equal to or greater than 1 transcript per million 
(TPM) in at least one of the conditions compared. Genes 
without interactions with trace elements were excluded 
from the table. We employed ClueGO to calculate a list 
of significantly over-represented GO terms related to the 
genes belonging to the database and obtain GO terms 
according to their similarity in the ontology [40]. All the 
information was incorporated in the database, which was 
implemented as a Shiny R app (Fig. 1).
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Results
We built a web-based interactive database containing 
information about interactions between trace elements 
and proteins in the context of glaucoma. To this end, we 
systematically collected and merged information existing 
in multiple databases, and integrated this with published 
expression data from glaucoma models. The web-based 
tool is based on Shiny [42], a computational framework 
that makes it possible to develop interactive web appli-
cations using scripts implemented in the R language (R 
Core Developer Team, 2013).

In the web interface, the full table can be browsed and 
downloaded, or it can be filtered by selecting a gene, 
trace element, or biological process/pathway. The search 
generates a table that aggregates and visualises multiple 
types of information. Precisely:

(i)	Gene-related information like gene name, Human 
Gene Name Consortium symbol, and identifiers in 

databases like Ensembl, but also the list of pathways 
and biological processes linked to the gene according 
to GO Terms. Furthermore, the browser visualises 
the average TPM in the dataset utilised for filtering 
protein-trace element interactions (see Sup. Mat.).

(ii)	Protein information like protein name, identifiers 
in relevant databases like PDB, EBML and Uniprot, 
and a STRING subnetwork of first neighbor protein-
protein interactions [43].

(iii)	 Information describing the protein-trace 
element interaction like the databases in which 
the interaction is listed, the PMID for linked 
publications, and additional information like details 
about the binding site.

(iv)	 Other information like enriched pathway and 
biological process GO terms, which are associated to 
the gene interacting to a given trace element.

Fig. 1  (A) Sketch of the workflow to construct Glaucoma-TrEl. (B) Screenshot of the Shiny R application. On the left, there is a slider for selecting genes 
based on expression in TPM. Further, one can select interactions based on (1) a gene or protein list (when empty, all genes are displayed), (2) a trace ele-
ment (filter the genes based on whether they have known interactions with the selected trace element), or (3) the attribution of the genes to selected 
pathways or biological processes. The data are displayed in the table on the right-hand side

 



Page 4 of 8Choudhari et al. BMC Research Notes          (2022) 15:348 

Fig. 2   A) Pairwise trace element intersections accounting for mutual shared interactions with glaucoma-related genes. The matrix is symmetrical regard-
ing the gray diagonal. A yellow color gradient is employed to indicate trace elements with higher number of shared interactions with coding genes. Also, 
columns and rows indicate in brackets the total number of interactions for each trace element. B) Venn diagram depicting the number of shared genes 
between six distinct trace elements. Chromium and iron are not shown due to their low number of interactions with the selected genes
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The online database consists of one table filterable by 
trace element, protein, pathway and BP terms. Figure 1B 
captures the user-visible front end of the app. Our data-
base covers eight trace elements, namely Cr, Cd, Mn, Mg, 
Fe, Co, Cu, and Zn. The complete list holds 437 unique 
genes expressed in the analysed datasets and linked to 
eight trace elements. We also observed that 44 genes 
contain at least two trace element overlaps (Fig.  2B; 
Table  1). Eight genes had three or four interactions 
(APP, HDAC8, UBC, B2M, PDE4B, POLH, SNRPA, and 
SOD1), and the POLB gene interacts with six different 
trace elements. The most promiscuous trace element is 
Zn (205 interactions with glaucoma-related genes), fol-
lowed by Mg (195), Mn (37) and Cd (28). For the iden-
tified trace element-gene interactions, in Fig.  2  A, we 
computed a pairwise intersections matrix comparing 
how many of their interaction partners are shared by any 
pair of trace elements. Sixteen genes interact with both 
Zn and Mg, while fifteen genes have interactions with Mg 
and Mn (Fig. 2). The Venn diagram in Fig. 2B shows the 
intersection of interacting genes between the trace ele-
ments, with Mg, Mn and Zn sharing a relevant number 
of mutual interactions. Interestingly, pathway enrichment 
analysis revealed that the 44 genes in Table 1 are associ-
ated with L1 signal transduction, chromatin modifying 
enzymes, DDX58/IFIH1-mediated activation of inter-
feron-alpha/beta, and MET pathway negative regulation.

Discussion and conclusions
In developing countries, glaucoma causes irreversible 
visual impairment leading to vision loss in aged popula-
tions [51]. Glaucoma has been traditionally associated to 
hereditary genetic predisposition and increase of the IOP, 
but recent discoveries suggest that glaucoma is a multi-
factorial disease whose onset is controlled by a network 
of interconnected proteins and pathways. Further, imbal-
ance in the bioavailability and metabolism of some trace 
elements has been associated to glaucoma [52]. Trace ele-
ments are integrated or regulate the activation of many 
proteins like in case of proteins containing zinc finger 
domains. Also, trace elements are implicated in protein 
modifications mediated by oxidative stress, and thus 
involved in the pathogenesis of glaucoma [15]. Thus, to 
systematically record the interactions of trace elements 
with glaucoma-associated genes can help elucidating the 
pathogenesis of this disease.

The eight selected trace elements have been reported in 
the serum and aqueous humor of glaucoma patients [53]. 
We found interactions between the eight trace elements 
and 437 unique genes. Interestingly, 44 genes interact 
with least two trace elements. Further, the POLB gene 
interacts with six trace elements and is linked to DNA 
damage repair. Upregulation of this gene in the retinal 
ganglion cell layer has been suggested as an early change 
in nerve injury rat models for glaucoma [44]. Eight more 
genes have three or four interactions with trace elements 
(APP, HDAC8, UBC, B2M, PDE4B, POLH, SNRPA and 

Table 1  Comparative analysis of multiple trace element-interacting genes
S. N. Gene #Int. Interactors S. N. Gene #Int. Interactors
1 POLB 6 Mn, Mg, Zn, Cr, Cu, Cd 23 KDM6B 2 Mg, Co

2 APP 4 Mg, Zn, Cu, Cd 24 KRAS 2 Mg, Cd

3 HDAC8 4 Mn, Mg, Zn, Co 25 PABPC1 2 Zn, Cd

4 UBC 4 Mg, Zn, Co, Cd 26 PDE5A 2 Mg, Zn

5 B2M 3 Mg, Cu, Cd 27 PLK1 2 Mg, Zn

6 PDE4B 3 Mn, Mg, Zn 28 POLI 2 Mn, Mg

7 POLH 3 Mn, Zn, Co 29 POLL 2 Mn, Mg

8 SNRPA 3 Mn, Mg, Co 30 POLM 2 Mn, Mg

9 SOD1 3 Zn, Cu, Cd 31 POLR2A 2 Mg, Zn

10 ADAMTS1 2 Mg, Cd 32 PPIP5K2 2 Mg, Cd

11 ALDH2 2 Mn, Mg 33 PRIM1 2 Mn, Mg

12 BPHL 2 Mn, Mg 34 PRKCI 2 Mn, Mg

13 CD59 2 Zn, Cu 35 RAB5A 2 Mg, Co

14 DPP3 2 Mg, Zn 36 RAN 2 Mg, Zn

15 DUT 2 Mg, Zn 37 RPS27A 2 Zn, Cd

16 EGFR 2 Mg, Cd 38 SAMHD1 2 Mn, Mg

17 EPRS 2 Mg, Zn 39 SMYD3 2 Mg, Zn

18 FDFT1 2 Mn, Mg 40 SYT1 2 Mn, Cu

19 FDPS 2 Mn, Mg 41 UBB 2 Mg, Zn

20 FTH1 2 Zn, Cu 42 UHRF1 2 Mg, Zn

21 FTO 2 Mn, Zn 43 WRN 2 Mn, Mg

22 HAGH 2 Mn, Zn 44 ZCCHC6 2 Mg, Zn
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SOD1). Some members of the histone deacetylase fam-
ily of proteins, to which HDAC8 belongs, have been 
linked to retinal ganglion cell death after acute optic 
nerve injury [45]. UBC is a ubiquitin related to protein 
degradation and DNA repair, which has been identified 
in gene association studies in primary open angle glau-
coma [46]. B2M is a component of MHC-I with a soluble 
variant linked to interferon gamma and RET signaling 
and present in the tear proteome, which has been used as 
marker for patient stratification in glaucoma clinical tri-
als [47]. RET is a member of the receptor tyrosine kinase 
superfamily, which acts as receptor for members of the 
glia cell-derived neurotrophic factor family of ligands like 
GDNF and Neurturin. These ligands have an important 
role in the survival and differentiation of neurons and 
neoplastic epithelial cells. [48]. In case of PDE4B, the 
administration of a PDE inhibitor in glaucoma rat models 
induced attenuation of neuroinflammation and enhanced 
viability in retinal ganglion cells [49]. Experiments in 
mouse models with a superoxide dismutase SOD1 knock-
out suggested that its deficiency provokes loss of retinal 
ganglion cells in normal-tension glaucoma (NTG) [50]. 
Further analysis indicated that SOD1 serum levels were 
significantly lower in NTG patients when compared with 
healthy controls.

The 44 genes with at least two interactions with the 
trace elements in Table 1 are associated with L1 signal 
transduction, chromatin modifying enzymes, DDX58/
IFIH1-mediated activation of interferon-alpha/beta, 
and MET pathway negative regulation. Mutations in 
the IFIH1 and DDX58 genes are linked to the Single-
ton-Merten syndrome, which can manifest as glau-
coma [55]. Also, imbalance in cytokine production by 
T helper cells 1 and 2 is known to be involved in neural 
damage and glaucoma [56].

Limitations
Our web-based application provides a user-friendly 
graphical interface to search for trace element-binding 
proteins, as well as their associated pathway and biology 
term in glaucoma disease. New features and additional 
customisation of the visualisations would enhance Glau-
coma-TrEl. We will add the variation with the clinical 
validation report and enrichment analysis in the future.
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