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Introduction

Animal communication and motoric behavior develop over time.

Often, this temporal dimension has communicative relevance and is

organized according to structural patterns. In other words, time is a

crucial dimension for rhythm and synchrony in animal movement

and communication. Rhythm is defined as temporal structure at a

second-millisecond time scale (Kotz et al. 2018). Synchrony is

defined as precise co-occurrence of 2 behaviors in time (Ravignani

2017).

Rhythm, synchrony, and other forms of temporal interaction are

taking center stage in animal behavior and communication. Several

critical questions include, among others: what species show which

rhythmic predispositions? How does a species’ sensitivity for, or

proclivity towards, rhythm arise? What are the species-specific func-

tions of rhythm and synchrony, and are there functional trends

across species? How did similar or different rhythmic behaviors

evolved in different species? This Special Column aims at collecting

and contrasting research from different species, perceptual modal-

ities, and empirical methods. The focus is on timing, rhythm and

synchrony in the second-millisecond range.

Three main approaches are commonly adopted to study animal

rhythms, with a focus on: 1) spontaneous individual rhythm produc-

tion, 2) group rhythms, or 3) synchronization experiments. I con-

cisely introduce them below (see also Kotz et al. 2018; Ravignani

et al. 2018).

Spontaneous Individual Rhythm Production

Spontaneous individual rhythms deal with the temporal structure of

individual behaviors, mostly in a non-interactive context. The adjec-

tive “spontaneous” here denotes a general methodological trend in

observing or recording how an animal behaves spontaneously rather

than in response to experimental manipulations. These individual

rhythms have been studied in several taxonomic groups. African

apes and songbirds are good examples of this (e.g., Arcadi et al.

2004; Trejos-Araya and Barrantes 2018).

Both chimpanzees and bonobos show forms of individual rhyth-

mic behaviors. Bonobos perform “staccato hooting” displays, consist-

ing of series of vocalizations which seem to repeat metronomically

twice a second (de Waal 1988; Bermejo and Omedes 1999). In chim-

panzees, instead, rhythmic sound production is mostly non-vocal, con-

sisting of sequences of percussive sounds. This so-called “buttress

drumming” can be observed in wild chimpanzees, who drum on hol-

low trees (Arcadi et al. 2004), and their captive conspecifics, who will

employ any resonant object to produce loud sequences of sounds

(Dufour et al. 2015; Ravignani et al. 2013a, 2013b).

Zebra finches are songbirds whose songs have been thoroughly

studied. Classical work on zebra finches has explored the complex

ways in which syllables (i.e., elements of a song) are organized,

learnt, and reused to produce complex vocal displays (Scharff and

Nottebohm 1991; Feher et al. 2009; Lipkind et al. 2013). Recent

work, however, has also explored the rhythmic dimension of zebra

finches’ songs (Saar and Mitra 2008; Benichov et al. 2016; Norton

and Scharff 2016; Spierings and ten Cate 2016). For instance, when

metronomically-occurring (i.e. isochronous) sounds are overlaid to

recordings of zebra finch songs, the syllables’ onsets occur—more

often than not—on the metronome clicks (Norton and Scharff

2016). Hence, these songbirds’ songs appear rhythmically structured

so that syllables occur at specific points in time.

Group Rhythms

Beyond individual rhythms, animals can produce vocal or behavior-

al rhythms in an interactive, coordinated manner (e.g., Couzin

2018). The classical framework of chorusing traditionally studies

this kind of phenomena, even in non-auditory modalities (Ravignani

et al. 2014). Duets are the simplest form of group chorusing, at least

in terms of participants. Examples of duetting include those per-

formed by birds, gibbons, lemurs and anurans. In the study of the

precise rhythmic structure of duetting, mammals seem to be historic-

ally neglected. For instance, mated gibbons have been reported to

sing in pairs, to enhance pair-bonding and defend a territory
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(Geissmann 2002). From an observational perspective, these duets

show good temporal coordination, with gibbon pairs alternating

synchronous and antiphonal parts. Quantitative studies, comparable

to those in other taxonomic groups, to test the precise mechanisms

of vocal rhythmicity in gibbons have only recently appeared

(Terleph et al. 2018a, 2018b)

From duets, when we increase the number of participants in a group

rhythm, we find for instance “quartets.” Neotropical plain-tailed wrens

Thryothorus euophrys are known for their 4-parts choruses (Mann

et al. 2006). Males and females alternate in their performance of com-

plementary parts, whereas birds of the same sex synchronize.

A particularly fruitful strand of research over the last century has

examined chorusing in orthopterans (crickets, bush crickets, etc.)

and anurans (Ravignani et al. 2014). One orthopteran species,

Neoconocephalus spiza, displays group choruses of hundreds of

insects (Greenfield and Roizen 1993). All insects stridulate isochron-

ously (i.e., metronomically) with a constant and small delay between

pairs of individuals. More elaborate group rhythms can be seen in

the Indo-Malayan katydid of the genus Mecopoda. As in

Neoconocephalus, all Mecopoda individuals produce isochronous

sounds, with potentially individual-specific periods (Sismondo

1990). When neighbors have similar sound production periods, syn-

chrony, or antiphony ensues. When neighbors have different sound

production periods, they slightly adapt to each other and end up

being related by small integer ratios (e.g., 2:3). Finally, other species

perform rhythmic group displays in non-auditory modalities.

Fireflies (e.g., Pteroptyx malaccae) perform visual displays, compet-

ing to be the most conspicuous signaler (i.e., the first one to signal)

and hence to attract potential mates (Greenfield 2005). This compe-

tition for conspicuousness, however, leads to the opposite of individ-

ual conspicuousness (as in the Neoconocephalus spiza example

above), with hundreds of animals all flashing in perfect synchrony.

Synchronization experiments

A third strand of animal rhythm research stems more from compara-

tive psychology, rather than zoology and bioacoustics. Focusing on

the concept of synchrony and prediction, synchronization experiments

somehow combine the 2 categories above. In other words, the capaci-

ties to partake in group rhythms are tested in isolation. In synchron-

ization experiments, isolated individuals are usually exposed to

sounds (or visual stimuli, Takeya et al. 2017; Takeya et al. 2018),

which can be as simple as metronomic clicks or much more structured

(Patel et al. 2009a; Cook et al. 2013). The typical task consists in 1)

extracting a periodic structure from the sound stream, 2) building

expectations about future incoming events, and 3) adjusting future

behaviors predictively so that they occur in synchrony with the exter-

nal periodicity extracted from the sound stream (Kotz et al. 2018).

This work has been extensively reviewed elsewhere (Ravignani et al.

2013b; Patel 2014; Ravignani and Cook 2016; Wilson and Cook

2016; Kotz et al. 2018). However, it is important to notice that a

trademark of synchronization experiments is cross-modality. In other

words, the modality involved in perceiving a rhythmic stimulus is

often (required to be) different from the modality used to produce a

synchronous rhythmic behavior (Patel et al. 2009a, 2009b).

Contributions to This Special Column

Each paper in this Special Column belongs to one of the 3 macro-

areas described above, or their intersection. Contributed papers are

beautifully diverse along several dimensions. Here, instead of rehash-

ing the abstract of each individual paper, I will attempt to point out

similarities and differences across papers along a few key dimensions.

Animals discussed include fiddler crabs (Backwell 2019), lemurs

(De Gregorio et al. 2019), macaques (Katsu et al. 2019), seals

(Ravignani et al. 2019), parrots, and humans (Seki and Tomyta

2019). This is a diverse group of animals, and species’ diversity was

one of the aims of this Special Column. This diversity is needed if

one wishes to understand why animals have rhythm, especially the

phylogeny and function of rhythmic behaviors.

Which aspects of temporal structure are tackled in each paper?

Two papers investigate the classical issue of synchrony (Backwell

2019; Seki and Tomyta 2019), each however with a fresh spin.

Backwell (2019) notices how, across species, synchrony is the norm in

the auditory modality, but quite an exception in the visual modality. In

addition, by investigating different species of fiddler crabs, one could

aim at reconstructing “rhythmic phylogenies.” Seki and Tomyta

(2019) also focus on synchrony, but do so using a paradigm uncom-

mon in primate and bird experiments. Instead of reinforcing the ani-

mals to synchronize, they show how an isochronous metronome sound

pushes bird pecking and human tapping behavior to be more syn-

chronous with the metronome. Two more papers tackle the reciprocal

influence of individual timing in primate duets (Katsu et al. 2019) and

choruses (De Gregorio et al. 2019). Even the one paper where rhythm

is studied at the within-individual level and in isolation shows some

signatures of interactivity (Ravignani et al. 2019). In fact, harbor seal

pups, even when vocalizing in isolation, produce call sequences with a

rhythmic structure quantitatively closer to non-isochronous, interactive

behaviors than to monologue-like “solo” sequences (Falk and Kello

2017; Kello et al. 2017; Ravignani et al. 2019).

Pitting the papers against Tinbergen’s 4 questions (Table 1), we

also see quite a diverse array of approaches to the question of why

animals have rhythm. Behavioral mechanisms are, to a different ex-

tent, investigated in all contributed papers (Backwell 2019; De

Gregorio et al. 2019; Katsu et al. 2019; Ravignani et al. 2019; Seki

and Tomyta 2019). The contributions by Backwell (2019), De

Gregorio et al. (2019) and Ravignani et al. (2019) also explore the

biological function of rhythmic behaviors. Ravignani et al. (2019)

covers the ontogeny of vocal rhythms, which is the least studied aspect

of rhythmic behaviors from a comparative perspective. Finally, phy-

logenies are discussed in Backwell (2019) and Katsu et al. (2019).

Methodologically, several papers employed empirical, though not

necessarily experimental, methods. Data were obtained in the field

(Backwell 2019; De Gregorio et al. 2019; Katsu et al. 2019), or in cap-

tive conditions (Ravignani et al. 2019). Alternatively, behavioral

experiments were performed in parrots and humans (Seki and

Tomyta 2019), minimizing the verbal instructions given to human

participants to enhance cross-species comparability. Relatedly,

Backwell (2019) shows how playback experiments do not need to be

limited to the auditory modality: visual playback experiments can

elicit rhythmic behaviors in fiddler crabs (Reaney et al. 2008).

Statistical methods used to infer rhythmic patterns were also

quite diverse. Classical, linear statistical methods are of course a

first, necessary approach when probing temporal structure in animal

interactions (De Gregorio et al. 2019; Ravignani et al. 2019). Phase

response curves (Greenfield and Roizen 1993) are quite effective in

predicting how the behavior of an individual will be shifted in time

depending on the exact time of occurrence of a conspecific behavior

(Backwell 2019; Katsu et al. 2019). Circular statistics (Fisher 1995;

Berens 2009; Zar 2010) are also increasingly used in animal rhythm

research (Backwell 2019; Seki and Tomyta 2019). Ideally, circular
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statistics can and should be used when 1) two series of temporally-

structured behaviors co-occur, 2) one of which is isochronous. If

these conditions hold, circular statistics enable testing the relative

phase delay of an individual behavior with respect to the constant

period length of another individual’s behavior (see e.g., Cook et al.

2013; Ravignani and de Reus in press). A possible visual counterpart

of circular statistics is the rose plot (e.g., Cook et al. 2013; Ravignani

and de Reus in press): a clock-like histogram showing how often an

individual phase delay occurs relative to another individual or a

metronomic stimulus. Finally, a few techniques from physics, such as

the Allan Factor and burstiness, appear quite promising for quantify-

ing rhythmicity and interactivity of behaviors in time (Goh and

Barabási 2008; Kello et al. 2017; Ravignani et al. 2019).

Insights can be gained by comparing the interpretation of results

across contributed papers, focusing on 2 in particular. From several

perspectives, the indri (De Gregorio et al. 2019) and macaque (Katsu

et al. 2019) work are quite similar, both investigating the temporal

dynamics of interactive calling. However, while the coordinated

vocal behavior in indri is termed “chorusing” (De Gregorio et al.

2019), a similar behavior in macaques is called “turn-taking” (Katsu

et al. 2019). Is the difference between chorusing and turn-taking sub-

stantial, or does it stem from naming conventions used in different re-

search traditions (Kotz et al. 2018; Ruch et al. 2018)? In particular,

similar behaviors consisting of rhythmic vocal interactions are

labeled as chorusing by some (e.g., Kotz et al. 2018; Ravignani et al.

2014; Greenfield and Roizen 1993) while as turn-taking by others

(e.g., Demartsev et al. 2018; Pika et al. 2018; Takahashi et al. 2013).

Going Forward: What’s Next?

All contributions exemplify, in one way or another, some of the cur-

rent and possibly future trends in this field.

First of all, we see the importance of species’ diversity. The study

of animal rhythm and synchrony has historically focused on 6 taxo-

nomic groups: primates, birds, anurans, crabs, orthopterans, and

fireflies. Primate focus has historically been on Simiiformes (or

Anthropoidea), leaving out tarsiers, lorises and lemurs. Likewise,

the rhythmicity of songbirds has been mostly investigated, leaving

out a large amount of interesting avian species. Beyond the groups

discussed here, many other species perform group displays which

may have a precise temporal structure and be worth exploring

rhythmically. Domestic dogs and wolves howl in groups. These ani-

mals are quite common in several parts of the world, so it is surpris-

ing that the precise timing of their choruses remains unexplored.

Within mammals, rhythm in marsupials and monotremes remains

completely unexplored; studying rhythm in these 2 clades would be

particularly intriguing, especially considering how different their

brains are from those of placental mammals (Suárez et al. 2018). In

particular, work targeting complex, bilateral rhythmic coordination

(Sternad et al. 2007) would be particularly interesting due to the

acallosal brains of marsupials and monotremes.

Second, we see an increasing emphasis on cross-species compari-

son and methodological comparability. An example of this is the

human-avian comparative experiments in Seki and Tomyta (2019),

where instructions to human participants are minimized, making

one step towards testing species in comparable ways. Future com-

parative research should strive to achieve, as much as possible, a

good tradeoff among testing (1) top-down, theoretically-driven con-

cepts (2) in an ecologically-relevant, possibly species-specific setup,

(3) while achieving cross-species comparability.

Third, in contrast with research in comparative psychology, we

see attempts to connect rhythmic behaviors with evolution and ecol-

ogy (Backwell 2019; De Gregorio et al. 2019; Ravignani et al.

2019). As previously done with other behavioral traits, a long-term

Table 1. Tinbergen’s 4 questions applied to rhythm

Question Description Example

Ontogeny Rhythm ontogeny concerns the lifespan development of

rhythmic behaviors, with emphasis on the first part of

life.

The song repertoire of some songbird species goes through different

developmental phases of exposure, learning, rehearsal, etc.

Although songs have been mostly studied from a spectral and

combinatorial perspective, also their rhythmic properties should

vary and consolidate as individuals grow (Feher et al. 2009; Norton

and Scharff 2016).

Mechanism Rhythm mechanisms concern the neural and biological

predispositions underlying rhythmic, synchronous or

coordinated behavior.

The midbrain structures underpinning the metronomic, isochronous

tail-wagging of dogs (Ravignani et al. 2018).

Function Rhythm function concerns the evolutionary pressures that

made a particular rhythmic behavior arise in a species.

Rhythmic behavior in some insect species may have evolved as re-

sponse to pressures for mate attraction, whereas in some primates

might have evolved for pair bonding and territorial advertisement

(Ravignani et al. 2014).

Phylogeny Rhythm phylogeny concerns the evolutionary tree of specif-

ic rhythmic behaviors, and whether similar behaviors are

present in closely related species.

Most Otariid pinnipeds have a very isochronous vocal rhythm (the typ-

ical sea lion barking) and similar across Otariid species. Phocid spe-

cies have quite diverse vocal rhythms. It appears that phylogeny

may play a stronger role in Otarid rather than Phocid pinnipeds

(Schusterman 1977; Ravignani 2018a; Terhune 2018).

Glossogeny Rhythm glossogeny concerns the cultural transmission and

change (often termed “cultural evolution”) of rhythmic

behaviors, as opposed to the biological predispositions

underlying these behaviors.

Although still unclear to which features of animal rhythmic behaviors

glossogeny may apply, songs of birds, cetaceans, and pinnipeds are

promising candidates (Feher et al. 2009; Rogers 2017; Ravignani

2018a; Schneider and Mercado 2018)

Tinbergen’s approach (1963) can help answering whether and why a given species “has rhythm” (Ravignani et al. 2018). At least 4 types of questions can be asked

about a particular behavior (Tinbergen 1963); this behavior is, in our case, rhythm (Ravignani et al. 2018). The so-called “proximate causes” are ontogeny and

mechanism. The “ultimate causes” are phylogeny and function, which may be more difficult to tackle empirically for the case of rhythm. Tinbergen’s (1963) 4

questions can be enriched by Fitch’s (2008; 2015) “fifth question”: glossogeny (last row).
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goal of this strand would be to construct “rhythmic phylogenies”

(Gingras and Fitch 2013; Gingras et al. 2013), and map their inter-

action with environmental constraints (Terhune 2018).

Fourth, a new strand of animal rhythm experiments seems to

focus on spontaneous rhythmic interaction. Seki and Tomyta

(2019), in particular, test whether synchrony can be spontaneously

achieved in a species whose common behavioral repertoire does not

include synchrony. Some parrots in Seki and Tomyta (2019) indeed

show a tendency towards synchronizing. Compare this with a recent

experiment in a harbor seal pup (Ravignani 2018b, in press), where

sound playbacks of conspecific calls elicited antisynchronous (rather

than synchronous) vocal responses. In addition, spontaneous rhyth-

mic interaction connects to 2 related themes: learning and ontogeny.

Future questions on rhythm learning and ontogeny will include:

How much learning do specific rhythmic behaviors require (e.g.,

Cook et al. 2013), as opposed to mere exposure triggering behavior-

al predispositions (e.g., Backwell 2019)? How do (possibly learnt)

rhythmic behaviors develop over the lifespan (e.g., Ravignani 2018a

vs. Ravignani et al. 2019)?

Fifth, rhythmic interactivity appears to have taken center stage

(see also Pika et al. 2018; Ravignani and de Reus in press; Ruch et

al. 2018). All papers in this issue, together with several others which

appeared over the last few years, deal with interactive rhythms. This

trend mirrors what has been happening in human cognitive neuro-

science, where individual-centered research has gradually left room

for group experiments. If we can learn anything from past human

work is that maintaining good experimental control in group experi-

ments is hard, but achievable.

Sixth, the field of animal rhythms appears quite open to novel

analytical techniques. These are often re-purposed from other fields,

such as physics (e.g., Allan Factor, Kello et al. 2017), chronobiology

(e.g., phase response curves, Greenfield and Roizen 1993; Sismondo

1990), and neuroscience (e.g., spiking neural trains, Kreutz et al.

2007).

Finally, 2 more trends, which are not represented here but due

to be more prominent in this field, are neuroscience and genetics.

Once a behavior is understood, neuroscientific methods enable a

deeper understanding of its nature in light of all of Tinbergen’s 4

questions. Neuroscientific approaches are, of course, particularly

relevant to understand mechanisms (Kotz et al. 2018). And they

also need not be invasive (e.g., Honing et al. 2018). Likewise, gen-

etics will be helpful to map rhythmic phylogenies. Along these lines,

pioneering work has already been performed in insects (e.g., Zhou

et al. 2011).

In short, rhythm and synchrony in animal movement and com-

munication is an exciting multidisciplinary field developing at a fast

pace. Many questions are open, and numerous low-hanging fruits

are ready for grabs to those interested in the topic. In particular,

datasets to answer several questions have already been collected, but

only analyzed in their spectral dimension. The field of animal

rhythms is open to those who want to approach it from their own

unique perspective. I am extremely curious and positive about how

the field will look like in 20 years from now.
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