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Background: Diabetic nephropathy (DN) is a chronic microvascular

complication in patients with diabetes mellitus, which is the leading cause of

end-stage renal disease. However, the role of copper-related genes (CRGs) in

DN development remains unclear.

Materials and methods: CRGs were acquired from the GeneCards and NCBI

databases. Based on the GSE96804 and GSE111154 datasets from the GEO

repository, we identified hub CRGs for DN progression by taking the

intersection of differentially expressed CRGs (DECRGs) and genes in the key

module from Weighted Gene Co-expression Network Analysis. The Maximal

Clique Centrality algorithm was used to identify the key CRGs from hub CRGs.

Transcriptional factors (TFs) andmicroRNAs (miRNAs) targeting hub CRGs were

acquired from publicly available databases. The CIBERSORT algorithm was

used to perform comparative immune cell infiltration analysis between normal

and DN samples.

Results: Eighty-two DECRGs were identified between normal and DN samples,

as were 10 hub CRGs, namely PTGS2, DUSP1, JUN, FOS, S100A8, S100A12,

NAIP, CLEC4E, CXCR1, and CXCR2. Thirty-nine TFs and 165 miRNAs potentially

targeted these 10 hub CRGs. PTGS2 was identified as the key CRG and FOS as

the most significant gene among all of DECRGs. RELAwas identified as the hub

TF interacting with PTGS2 by taking the intersection of potential TFs from the

ChEA and JASPAR public databases. let-7b-5p was identified as the hub miRNA

targeting PTGS2 by taking the intersection of miRNAs from the miRwalk,

RNA22, RNAInter, TargetMiner, miRTarBase, and ENCORI databases. Similarly,

CREB1, E2F1, and RELA were revealed as hub TFs for FOS, and miR-338-3p as

the hub miRNA. Finally, compared with those in healthy samples, there are

more infiltrating memory B cells, M1 macrophages, M2 macrophages, and

resting mast cells and fewer infiltrating activated mast cells and neutrophils in

DN samples (all p< 0.05).

Conclusion: The 10 identified hub copper-related genes provide insight into

themechanisms of DN development. It is beneficial to examine and understand
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the interaction between hub CRGs and potential regulatory molecules in DN.

This knowledge may provide a novel theoretical foundation for the

development of diagnostic biomarkers and copper-related therapy targets in

DN.
KEYWORDS

diabetic nephropathy, copper-related genes, WGCNA, transcriptional factors,
miRNAs, immune cell infiltration
Introduction

Diabetes mellitus (DM) currently affects more than 350

million individuals worldwide. The number of affected is

expected to exceed 600 million by 2045 (1, 2). Diabetic

nephropathy (DN) is a chronic microvascular complication

that develops in approximately 30% of all patients with DM.

DN is characterized by a persistent increase of albuminuria,

defined as >300 mg in a 24-h period or an albumin-to-creatinine

ratio >300 mg/g, decreased glomerular filtration rate (GFR),

increased blood pressure, and excessive risk of cardiovascular

complications and concomitant diabetic retinopathy (3). Despite

multifactorial treatments that include glycemic, lipid, and blood

pressure control (4), renin-angiotensin system inhibitors

including angiotensin-converting enzyme inhibitors (5) and

angiotensin receptor blockers (6), peroxisome proliferator-

activated receptor agonists (7), PKC antagonist (8), the

angiotensin-converting enzyme inhibitor pyridoxamine (9),

and endothelin receptor inhibitors like atrasentan (10), DN is

the main cause of end-stage renal disease (ESRD) with a high

disability and mortality in western countries. Therefore, it makes

sense to consider new therapeutic approaches for DN based on

novel potential mechanisms.

Copper (Cu) is a crucial trace element that is a structural

component of enzymes. Cu regulates signaling pathways with many

key roles in various biological processes, such as antioxidant activity,

mitochondrial respiration, metabolic reprograming, enhanced

proliferation (cuproplasia), and angiogenesis (11). Normally, Cu

concentrations in cells are kept at an extremely low level by active

homeostatic mechanisms that function across concentration

gradients (12, 13). The elevated intracellular concentration of Cu

exceeding a threshold can be cytotoxic and result in cell death.

However, the specific and complete mechanisms of Cu-induced cell

death remain unclear and contradictory despite decades of research.

Some research indicates that the massive accumulation of reactive

oxidative species (ROS) caused by increased level of Cu ions in cells

results in apoptosis or autophagy (14–19). However, other studies

indicate that Cu-induced toxicity is dependent on the inhibition of
02
the ubiquitin-proteasome system (20–23). A recent study by

Tsvetkov et al. provided the novel proposal that Cu targets

lipoylated tricarboxylic acid cycle proteins to induce cell death

(cuproptosis) independent of the currently known forms of cell

death, including ferroptosis, apoptosis, necroptosis, and oxidative

stress (24). Seven key genes are involved in cuproptosis. These

include Ferredoxin 1 encoded by FDX1. FDX1 is a reductase

responsible for the reduction of Cu2+ to Cu1+ and is an upstream

regulator of protein lipoylation. The remaining six genes include

three genes that encode proteins of the lipoic acid pathway [i.e.,

lipoyl synthase (LIAS), lipolytransferase 1 (LIPT1), and

dihydrolipoamide dehydrogenase (DLD)] and three genes that

synthesize protein targets of lipoylation [pyruvate dehydrogenase

E1 subunit alpha 1 (PDHA1), pyruvate dehydrogenase E1 subunit

beta (PDHB), and dihydrolipoamide S-acetyltransferase (DLAT)]. It

is believed that excessive cellular Cu results in aggregation of

lipoylated proteins and degradation of Fe-S cluster proteins,

leading to proteotoxic stress and subsequently cuproptosis (24).

Some Cu agents have shown promising potential in the

treatment of various diseases. For example, Skrott et al. tested the

cytotoxicity of the ditiocarb-copper complex (CuET) on a panel

of Velcade/Carfilzomib-adapted human cell lines. CuET was

implicated as a promising therapeutic agent for patients with

recurrent, Velcade-resistant multiple myeloma (20). A

statistically significant doubling of progression-free survival

time was observed with elesclomol plus paclitaxel compared to

that of paclitaxel alone in a phase III clinical trial for melanoma

(25). Allensworth et al. found that disulfiram produced oxidative

stress-mediated apoptosis involving the inhibition of NF-kB
signal ing and the reduct ion of levels of aldehyde

dehydrogenase and antioxidant in a multi-inflammatory breast

cancer cellular model (26). However, few studies have focused

on the role of Cu agents in DN (27).

In the present study, we aimed to identify hub Cu-related

genes (CRGs) and predict the potential molecular regulation

network. The findings may provide a novel theoretical

foundation for the development of diagnostic biomarkers and

therapy targets in DN.
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Materials and methods

Datasets and pre-processing

Two DN-related microarray datasets (GSE96804 and

GSE111154) were downloaded from the Gene Expression

Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/

geo/). Both datasets were acquired from the GPL17586 platform.

R software (version 4.1.2) was used to perform data

processing. The probes were mapped to the gene via

Strawberry Perl (version 5.32.1.1) while no-load probes were

removed. The mean value was calculated if more than one

probes matched to the same gene. Normalization is a data

analys is method that adjusts global propert ies of

measurements for individual samples. This method helps to

reduce the global differences of the data distribution (28). In our

study, gene expression values were first converted to log2-

transformed quantile-normalized signal intensity. Then the

log2 - t rans formed matr ix was normal i zed v ia the

normalizeBetweenArrays function of limma package to achieve

consistency between arrays (29). Batch effects are subgroups of

measures that exhibit qualitatively different behavior under

different conditions. Batch effects can pose serious concerns

about the validity of biological findings despite being unrelated

to biological variables in medical research (28). Therefore, the

ComBat function of SVA package was used to eliminate the

batch effect after the normalization of gene expression values

(30). Using the code “data=data[apply(data,1,sd)>0.5]”, we

deleted less variable genes between normal and DN samples

(standard deviation > 0.5). Ultimately, 3044 genes were

subjected to Weighted Gene Co-expression Network

Analysis (WGCNA).
Use of WGCNA to identify gene modules
most related to the development of DN

WGCNA is a systematic approach that can investigate the

association between gene networks and a quantitative measure

(referred to as sample trait). The analysis identifies co-expressed

gene modules with pronounced biological significance (31). In

our study, the binary indicator variable (DN status) was taken as

the sample trait, which helped to find the co-expressed gene

modules with DN. The WGCNA package was used to perform

co-expression network analysis. We normalized the samples and

removed the outlined samples to ensure the reliability of the

network construction. Subsequently, the adjacent matrix that

described the correlation strength between genes was obtained

through the formula listed as follows:

aij =   Sij
�� ��b=   power  Sij,  b

� ��� ��
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where i and j are two individual genes and Sij represents the

Pearson’s correlation coefficient between genes i and j. Power is a

function where Sij is the base and b is the power that is identified

by pickSoftThreshold function. Subsequently, the adjacent matrix

was transformed into a topological overlap matrix (TOM). We

set the deepSplit value and minimum number of genes in the

module as 2 and 50, respectively. Average linkage hierarchical

clustering was performed to identify modules of closely

interacting genes. A height cutoff of 0.25 was selected as the

criterion to merge modules with similar gene profiles using the

DynamicTreeCut algorithm.

To identify the biologically significant gene module, several

metrics were included as the assessment criteria. These included

module eigengenes (MEs), gene significance (GS), and module

significance (MS) (31). MEs are defined as the first principal

component of each gene module, which is regarded as a

representative of all genes in a given module. The significant

gene module is determined by the correlation coefficient between

MEs and the corresponding disease status. GS is defined as the

correlation between gene expression profiles and an external

clinical trait including disease status (GS = -lg p). This metric

helps to incorporate external clinical information into the co-

expression network. The biological significance of the gene

increases with the absolute value of GS. MS is defined as the

average absolute GS measure for all genes within a given module.

MS is used to screen and incorporate the significant

gene module.
Identification of hub CRGs

By searching the key word “copper” in GeneCards (https://

www.genecards.org/) and National Center for Biotechnology

Information (NCBI, https://www.ncbi.nlm.nih.gov/) database

(only for genes of homo sapiens), we obtained 2142 CRGs

summarized in Supplementary Table 1.

We first acquired differentially expressed CRGs (DECRGs)

between normal and DN samples using the LIMMA package

with the criteria of |log2 fold change| ≥ 1.0 and adjusted p< 0.05.

The intersection of DECRGs and genes in the most biologically

significant module identified by WGCNA were regarded as the

hub CRGs. Venn diagram was plotted through the

VennDiagram package.
Prediction of transcription factors and
microRNAs associated with hub CRGs

To explore the potential changes and molecular regulatory

mechanisms happening at the transcriptional level for hub

CRGs, we tried to decode the regulatory TFs and miRNAs

using a network-based approach. Topologically credible TFs

were identified from the JASPAR and ChEA repositories on
frontiersin.org
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the NetworkAnalyst platform (https://www.networkanalyst.ca/).

The intersection of TFs from both repositories was used to

obtain the hub TFs. Similarly, miRNAs targeting hub CRGs

from six repositories, namely ENCORI (https://starbase.sysu.

edu.cn/), miRWalk (http://mirwalk.umm.uni-heidelberg.de/),

RNA22 (https://cm.jefferson.edu/rna22/), RNAInter (http://

www.rnainter.org/), TargetMiner (https://www.isical.ac.in/

~bioinfo_miu/targetminer20.htm), and miRTarBase (https://

www.networkanalyst.ca/), were identified. The intersecting

miRNAs were also identified and retained. Among these

repositories, miRTarBase is the major experimentally validated

database for miRNA-target RNA interactions (32).
Functional enrichment analysis and
protein–protein interaction network
construction

The functional enrichment analysis was performed to

identify the corresponding biological pathways involved in the

hub CRGs. Gene ontology (GO) enrichment analysis interpreted

the biological significance of genes from three perspectives:

biological process (BP), cellular component (CC), and

molecular function (MF). Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis was used to systematically

assess gene function. The “Clusterprofiler” package was

employed to automate the enrichment analysis of gene

clusters. The “org.Hs.eg.db” package was used for conversion

between gene IDs (33).

Proteins execute their respective important biological

functions through mutual affinity within the cell to form the

PPI network. The STRING database permits wide coverage and

completeness of evidence sources by integrating all known and

predicted physical and functional associations between proteins.

Accordingly, this database has been chosen as one of the

European Core Data Resources by the ELIXIR consortium (34)

and is currently used by approximately 5000 users each day. The

database collects and scores evidence of PPI from four sources:

automated text mining of the literature, databases of annotated

complexes or pathways and interaction experiments, predictions

of computational interactions based on co-expression and

conserved genomic context, and transfer of interaction

evidence between organisms in a systematic manner (35). Data

integration across various evidence sources improves the overall

network quality (36–39). STRING was reported to have the

greatest ability to recover a diverse collection of disease-

associated gene sets among 21 human gene–gene interaction

network databases (40). Accordingly, we created the PPI

network to acquire the insights into cellular machinery

operations through the STRING database (https://cn.string-db.

org/). We set the minimum required interaction scores as the

highest confidence (0.900) and hid the disconnected nodes to
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generate the PPI network. Cytoscape (version 3.9.0) software

was used to further present and integrate biomolecular

interaction networks. Subsequently, we used cytohubba (http://

apps.cytoscape.org/apps/cytohubba) to rank and screen the

central or targeted elements of the network. Cytohubba is a

Cytoscape plugin comprising 11 methods for investigating

networks from different viewpoints. The methods include

Maximal Clique Centrality (MCC), Maximum Neighborhood

Component, Density of Maximum Neighborhood Component,

Closeness (Clo), EcCentricity (EC), Radiality (Rad), BottleNeck

(BN), Stress (Str), Betweenness (BC), Edge Percolated

Component, and Degree. Among these methods, we chose

MCC, since it has been identified as the best method to screen

hub CRGs (41).
CIBERSORT immune cell infiltration
analysis

Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) is a gene expression profile-

based method for determining the cell composition of complex

tissues. The method includes expression data of 22 immune cells

(LM22) and performs better than other methods considering

noise, unknown mixture components, and cell types (42). We

used the CIBERSORT algorithm to analyze the normalized RNA

sequence (RNA seq) data and acquire the immune infiltration

status for each sample.

Pearson correlation coefficient was calculated to measure the

correlation between the expression of hub gene and immune cell

infiltration levels.
Results

The flow chart of this study is shown in Figure 1.
Removal of batch effects

Despite the use of two datasets (GSE968034 and

GSE111154) acquired from the same GPL17586 platform,

there were still batch effects for the measurements affected by

laboratory conditions, reagent lots, processing date,

personnel differences, and other causes (28). Therefore, the

ComBat function of the SVA package was used to eliminate

the potentially unwanted sources of variation. Before the

removal of batch effects, samples were clustered by batches

based on pr inc ipa l component analys i s (PCA) of

unnormalized gene expression values (Figure 2A). By

contrast, samples were all mixed together after removing

batch effects based on the first two principal components
frontiersin.org

https://www.networkanalyst.ca/
https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
http://mirwalk.umm.uni-heidelberg.de/
https://cm.jefferson.edu/rna22/
http://www.rnainter.org/
http://www.rnainter.org/
https://www.isical.ac.in/~bioinfo_miu/targetminer20.htm
https://www.isical.ac.in/~bioinfo_miu/targetminer20.htm
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://cn.string-db.org/
https://cn.string-db.org/
http://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/cytohubba
https://doi.org/10.3389/fendo.2022.978601
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ming et al. 10.3389/fendo.2022.978601
A B

FIGURE 2

Principal component analysis (PCA) of two datasets (GSE96804 and GSE111154). The points of the scatter plot represent the samples without (A)
and with (B) the removal of batch effects according to the first two principal components of gene expression profiles.
FIGURE 1

Flow chart of this study. CRG, copper-related gene; DECRGs, differentially expressed copper-related genes; and DN, diabetic nephropathy.
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(Figure 2B). The results confirmed the success of the removal

of batch effects.
DECRGs in DN

The GSE96804 and GSE111154 datasets in the GEO

database were examined. A total of 69 samples were

obtained, which included 24 normal samples and 45 DN

samples. Eighty-two DECRGs were identified between

normal and DN samples. Of these, 26 genes were up-

regulated and 56 down-regulated (Figure 3A). The PPI

network for DECRGs in DN was constructed with a

minimum required interact ion score of 0.900 and

disconnected nodes hidden in the network, which included

80 nodes and 42 edges (Figure 3B). Notably, the PPI network

revealed a close relationship between prostaglandin-

endoperoxide synthase (PTGS2) and cytochrome P450 (CYP)

family 2 subfamily B member 6 (CYP2B6).
Analysis of module closely related to DN

The samples of the GSE96804 and GSE111154 datasets were

clustered using the average linkage and Pearson’s correlation

methods (Figure 4A). A b value of 13 was selected as the soft-

thresholding power to ensure a scale free network (scale free R2 =

0.856), as shown in Figure 4B. A total of seven gene modules were

acquired via the average linkage hierarchical clustering (Figure 4C).

The correlation between modules and DN status is depicted in

Figure 4D. The turquoise module that includes 564 genes was most
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significantly associated with DN. This module was chosen for the

further identification of hub CRGs (R =0.77, p =7e-15).
Identification and analysis of 10 hub
CRGs

By taking the intersection of DECRGs and genes in the turquoise

module, 10 hub CRGs were identified. These were PTGS2, Fos proto-

oncogene, activator protein 1 (AP-1) transcription factor subunit

(FOS), Jun proto-oncogene, AP-1 transcription factor subunit (JUN),

S100 calcium binding protein A12 (S100A12), S100 calcium binding

protein A8 (S100A8), C-X-C motif chemokine receptor 1 (CXCR1),

C-X-C motif chemokine receptor 2 (CXCR2), dual specificity

phosphatase 1 (DUSP1), C-type lectin domain family 4 member E

(CLEC4E), and NLR family apoptosis inhibitory protein (NAIP)

(Figure 5A). The location of each hub CRG on the chromosome is

presented in Figure 5B (PTGS2-1q31.1, JUN-1p32.1, S100A12-1q21.3,

S100A8-1q21.3, FOS-14q24.3, CXCR1-2q35, CXCR2-2q35, DUSP1-

5q35.1, CLEC4E-12p13.31, and NAIP-5q13.2). The PPI network of

the DECRG expression products in DN were constructed using the

STRING database. The network included 13 edges and 10

nodes (Figure 5C).

GO enrichment analysis revealed that in terms of BP, the 10

hub genes were mainly enriched in response to metal ion, response

to organophosphorus, response to purine−containing compound;

in terms of CC, the hub genes were prominently involved in RNA

polymerase II transcription regulator complex, secretory granule

membrane, and transcription regulator complex; with regard to

MF, the hub genes were engaged in C−C chemokine receptor

activity, R−SMAD binding, and C−C chemokine binding

(Figure 5D). KEGG pathway analysis revealed the involvement of
A B

FIGURE 3

Identification of DECRGs. (A) Volcano plot of DECRGs between normal and DN samples. (B) PPI network for DECRGs in DN (80 nodes and 42
edges).
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these genes mainly in the IL−17 signaling pathway, epithelial cell

signaling in Helicobacter pylori infection, Leishmaniasis, C−type

lectin receptor signaling pathway, and tumor necrosis factor

signaling pathway (Figure 5E).
Determination of regulatory signatures
for 10 hub CRGs

To gain insights into the CRG regulatory molecules and

identify substantial changes at the transcriptional level, we

employed publicly available bioinformatic database to reveal

the potential TFs and miRNAs. Here, we present the results from

the JASPAR and miRTarBase databases. The interaction of TFs

and hub CRGs is depicted in Figure 6A and the interaction of

potential miRNAs and hub CRGs is shown in Figure 6B. The

TFs–CRGs and miRNAs–CRGs interaction network analysis

revealed the regulatory activities of 39 TFs and 165 miRNAs

with more than one CRGs, indicating strong interference

between them. The specific regulatory molecules from JASPAR

and miRTarBase for each hub CRG are summarized in

Supplementary Table 2.
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Identification of hub regulatory
molecules for two key CRGs

Based on MCC algorithm of cytohubba plugin in Cytoscape

software, PTGS2 scored the highest among 10 hub CRGs

(Figure 7A). Aside from being the most significant DECRG

according to the differential expression analysis (Figure 3A), FOS

also ranked just behind PTGS2 according to the MCC algorithm

(Figure 7A). Hence, PTGS2 and FOS were considered the two

key CRGs. To find the hub regulatory molecules targeting these

two key CRGs, the intersection of the TFs or miRNAs was

determined from multiple databases.

By taking the intersection of the predicted results from both

the JASPAR and ChEA databases, RELA proto-oncogene, NF-

kB subunit (RELA), was screened as the hub TF interacting with

PTGS2. After combining six databases, i.e., miRTarBase,

ENCORI, RNAInter, TargetMiner, miRWalk, and RNA22, let-

7b-5p was identified as the hub miRNA (Figures 7B–D).

Similarly, cAMP responsive element binding protein (CREB1),

E2F transcription factor (E2F1), and RELA were identified as the

hub TFs for FOS, and miR-338-3p was screened as the hub

miRNA (Figures 7E–G). The detailed regulatory molecules
A B

DC

FIGURE 4

Weighted Gene Co-expression Network Analysis. (A) Clustering dendrogram of 69 samples. (B) Analysis of the scale free fit index for different
soft-thresholding powers (b), and analysis of the mean connectivity for different soft-thresholding powers. (C) Dendrogram of differentially
expressed genes clustered based on a dissimilarity measure (1-TOM). (D) Heatmap of correlations between different modules and clinical traits,
including normal tissues and DN tissues.
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derived from each database for two key CRGs are summarized in

Supplementary Table 3.
Analysis of immune cell infiltration
between normal and DN groups

PCA indicated no overlap of two clusters, indicating a

significant difference in immune cell infiltration between normal

and DN samples (Figure 8A). Based on the CIBERSORT

algorithm, the heatmap for correlation between immune cells is

presented in Figure 8B. The most significant positive correlation

was between activated dendritic cells and naïve CD4+ T cells

(correlation coefficient = 0.93). A remarkable inverse correlation

exists between T cells gamma delta and activated NK cells

(correlation coefficient = -0.51). The relative proportion of

various immune cells in each sample is shown in Figure 8C.

Subsequently, we compared the expression level of different

immune cells between two groups (Figures 8D, E). In contrast
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to normal tissues, infiltration in DN tissue was statistically greater

for memory B cells (p = 0.03), macrophages M1 (p = 0.007),

macrophages M2 (p< 0.001), and resting mast cells (p< 0.001),

while activated mast cells (p< 0.001) and neutrophils (p< 0.001)

infiltrated statistically less in DN tissue.
Correlation between PTGS2 expression
and immune cell infiltration

Next, we investigated the relationship between PTGS2 and

immunological characteristics. It was clear from the lollipop

chart (Figure 9A) and scatter plot (Figures 9B–G) that PTGS2

expression was significantly and positively associated with the

level of infiltration of neutrophils (R = 0.62, p< 0.001) and

activated mast cells (R = 0.39, p< 0.001) and negatively

correlated with plasma cells (R = -0.24, p = 0.049), resting

mast cells (R = -0.29, p = 0.015), macrophages M1 (R = -0.32,

p = 0.0082), and macrophages M2 (R = -0.36, p = 0.0025).
A

B

D E

C

FIGURE 5

Identification of 10 hub CRGs. (A) The 10 hub CRGs were obtained by determining the intersection of DECRGs and genes in the turquoise
module. (B) The specific location of each CRG on the chromosome. (C) PPI network of the 10 hub CRGs (10 nodes and 13 edges). (D) GO terms
in the enrichment analysis of the 10 CRGs. (E) KEGG terms in the enrichment analysis of the 10 CRGs.
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Discussion

In our study, the determination of the intersection of

DECRGs and genes in the turquoise module (R = 0.77, p<

0.001) identified 10 intersection genes (PTGS2, JUN, S100A12,

S100A8, FOS, CXCR1, CXCR2, DUSP1, NAIP, and CLEC4E).

Subsequently, we analyzed the interaction of genes encoding TFs

and miRNAs to discover transcriptional and post-

transcriptional regulators of the intersection genes. TFs,

including STAT3 (43), SP1 (44), USF1 (45), USF2 (46), YY1

(47), EGR1 (48), FOXA1 (49), E2F1 (50), NRF1 (51), SRF (52),

PPARG (53), JUND (54), TP53 (55), and HNF4A (56), were

identified as being associated with the development of DN.

Further, some miRNAs involved in DN (e.g., miR-155-5p,
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miR-221-3p, miR-103-3P) (57–59), immune disorder (e.g.,

miR-4701-5p, miR-232b-3p, miR-338-3p) (60–62), and

different cancers (e.g., miR-22-3p, miR-5096, miR-588, miR-

29a-5p) (63–66) have been identified. TFs and miRNAs basically

target main proteins to influence the progression of various

diseases. Dou et al. (67) described the upregulation of miR-202-

3p in type 1 gastric neuroendocrine neoplasms (g-NENs), which

might initiate the pathogenesis of type 1 g-NENs by targeting

DUSP1. Yao et al. found that miR-29c-3p targeted FOS to inhibit

epithelial-mesenchymal transition and cell proliferation and

contribute to apoptosis in transforming growth factor-beta 2

treated SRA01/04 cells (68). High miR-139-5p expression

reportedly suppressed the c-Jun-vascular endothelial growth

factor/platelet derived growth factor B pathway and reduced
A

B

FIGURE 6

Potential regulatory molecules for the 10 hub CRGs. The red nodes depict the hub CRGs). (A) Ten hub CRGs and their interactions with
potential transcription factors (TFs) based on the JASPAR database (49 nodes and 76 edges). (B) Ten hub CRGs and their interactions with
potential miRNAs based on the miRTarBase database (175 nodes and 189 edges).
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the migration of endothelial colony-forming cells isolated from

patients with diabetes, tube formation, and proliferation. These

events prevent diabetic vascular disease (69). miR-22-3p targets

CXCR2 and then contributes to injury induced by oxidized low-

density lipoprotein (70). The majority of miRNAs are associated
Frontiers in Endocrinology 10
with cancer tissues and lead to various types of cancer

in humans.

Based on the MCC algorithm, we identified PTGS2 as the

hub gene. This gene could be the key Cu-related biomarker or

drug target and could be associated with pathophysiological
A B

D

E

F

G

C

FIGURE 7

Determination of hub regulatory molecules for PTGS2 and FOS. (A) Top eight essential CRGs ranked by MCC scores (NAIP and CLEC4E are not
shown because of the absence of interactions with other CRGs), and PTGS scores the highest among 10 hub CRGs. (B) One hub TF targeting
PTGS2 was identified by taking the interaction of TFs from two databases (JASPAR and ChEA). (C) One hub miRNA targeting PTGS2 was
identified by taking the intersection of miRNAs from six databases (miRWalk, RNA22, RNAInter, TargetMiner, miRTarBase, and ENCORI). (D) Hub
TFs and miRNAs identified by multiple databases for PTGS2. (E) Three hub TFs targeting FOS were identified by taking the interaction of TFs of
two databases. (F) One hub miRNA targeting FOS was identified by taking the intersection of miRNAs from six databases. (G) Hub TFs and
miRNAs identified by multiple databases for FOS.
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mechanisms in DN. PTGS, also known as cyclooxygenase

(COX), is the key gene responsible for prostaglandin

biosynthesis from arachidonic acid, including prostaglandin

E2, prostacyclin, prostaglandin 2 alpha, prostaglandin D2, and

thromboxane. There are two COX isozymes: COX-1 and COX-2.

In the kidney, COX-1 is constitutively expressed and is mainly

present along the distal tubule. COX-1 mediates the synthesis of

prostaglandin E2. The COX-2 gene is inducible and shares

significant homology with COX-1. COX-2 is mainly expressed

in both macula densa cells in the cortex and the thick limb of the

ascending loop of Henle and medulla. Cortical COX-2 plays a

pivotal role in renin release and subsequent pro-hypertensive

effects, while COX-2 in the medullary region contributes to salt

and water reabsorption (71). Accumulated evidence has

associated the overexpression of COX-2 with the progression

of DN, with COX-2 inhibition reducing hyperfiltration and

proteinuria, abrogating Ang II-mediated reductions in GFR,

and retarding progressive renal injury (72–75).

By determining the intersection of TFs or miRNAs from

multiple databases, RELA (p65) and has-let-7b-5p were
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identified as the hub regulatory molecules. NF-kB, frequently
under the form of p50/p65 (RELA) dimer, is a universal TF that

can be post-transcriptionally activated by a number of stimuli,

including infections, radiation, and oxidants, with pro-

inflammatory effects (76, 77). A body of literature supports the

view that the NF-kB signaling pathway serves as the link of Cu

and PTGS. For example, Cu can activate and induce NF-kB-
dependent genes, including COX-2, NOS-II, and TNF-a,
through production of ROS (78). Liu et al. observed that the

intragastrical provision of distilled water with dissolved copper

sulfate (more than 4 mg/kg) to mice was able to activate the NF-

kB signaling pathway and subsequently increase the expression

of COX-2 and prostaglandin E2, thereby inducing an

inflammatory response in the liver (79). Similarly, Yang et al.

observed that excessive Cu intake led to oxidative stress with

activated NF-kB pathway and up-regulated COX-2, inducing

inflammatory responses in immune organs of chickens (80).

These findings indicate that anti-inflammatory therapy

involving COX-2 inhibition might be a promising therapeutic

strategy for DN (74, 81–83). However, few investigators have
A B

D E

C

FIGURE 8

Immune cell infiltration analysis based on the CIBERSORT algorithm. (A) PCA performed on two groups. Red points indicate normal samples and
green points indicate DN samples. (B) Correlation matrix of infiltration degree of immune cells in DN samples. (C) The abundance of different
immune cells in each sample. (D) The infiltration degree of 22 immune cells in each sample. Red squares indicate higher immune infiltration
expression and green squares indicate lower expression. (E) Violin plots of the differential analysis of different immune cells between two groups.
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linked this anti-inflammatory mechanism to the regulation of

Cu homeostasis (84). let-7b-5p is down-regulated in different

biological sources of patients with type 2 DM (85). Li et al.

reported that let-7b-5p could translocate into mitochondria and

lead to reduced ROS production by cardiomyocytes in db/db

mice via the positive modulation of mitochondrial gene

cytochrome b (86). In a prospective study incorporating 116

patients with type 1 DM, let-7b-5p was significantly associated
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with the increased risk of ESRD (Odds ratio = 2.38, p = 0.004)

based on logistic regression analysis (87). However, no study has

investigated the relationship of Cu, let-7b-5p, and PTGS2.

Interestingly, the present PPI network analysis revealed a

strong interaction of PTGS2 with CYP2B6. CYP2B6,

accounting for approximately 3% to 6% of the total hepatic

CYP content, is an important biotransformation enzyme for

numerous clinical drugs and environmental toxins (88). A
G

A

B D

E F

C

FIGURE 9

Correlation between expression PTGS2 expression and different immune cell infiltration degree in DN. (A) Lollipop plot. (B–G) Correlation
between expression of PTGS2 and (B) M1 macrophages expression, (C) M2 macrophage expression, (D) activated mast cell expression, (E)
resting mast cell expression, (F) neutrophil expression, and (G) plasma cell expression.
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considerable interindividual variability in CYP2B6 protein

expression has been observed, which is explained by genetic

factors that include extensive genetic polymorphisms and non-

genetic factors including some inhibitors and inducers (89).

In addition, we identified miR-338-3p as the hub miRNA for

FOS, and CREB1, E2F1, and RELA were screened as the hub TFs.

The Fos gene family is composed of four members: FOS, FOSB,

FOSL1, and FOSL2. These genes encode leucine zipper proteins

that dimerize with the JUN family proteins to form activator

protein 1 (AP-1) TF (90). AP-1 activation contributes to the

accumulation of mesangial cell proliferation, extracellular matrix

production, and subsequent progressive fibrosis in DN (91, 92).

Expression changes of miR-338-3p occur long before the onset

of diabetes. The overexpression of miR-338-3p is able to inhibit

tumor necrosis factor-alpha (TNF-a)-mediated hepatic

gluconeogenesis and rescue TNF-a-induced insulin resistance

by targeting protein phosphatase 4 regulatory subunit 1 (93–95).

E2F transcription factor 1 (E2F1) is crucial in the regulation of

DNA synthesis and cell cycle. E2F1 promotes hepatic

gluconeogenesis and hyperglycemia through the cyclin

dependent kinase 4-Rb1-E2F1 pathway and downstream

activation of phosphoenolpyruvate carboxykinase 1 (96).

CREB1 is a key TF in the basic leucine zipper class. The

elevated phosphorylation level of CREB1 can promote the

synthesis of fibronectin in the mesangial cells treated with high

glucose (25 mmol/L) (97). Although some reports suggested that

inhibition of CREB reduces blood glucose in the liver (4, 11, 12),

another study reported that CREB is not necessary for the

regulation of hepatic glucose metabolism (98). Therefore, the

role of CREB in the regulation of hepatic gluconeogenesis is

still controversial.

In the present study, immune cell infiltration analysis

revealed significant differences in macrophages M1 and M2,

resting mast cells, activated mast cells, and neutrophils between

normal and DN samples. Macrophages are the most prevalent

infiltrating immune cells in the kidney of DN patients. Despite

the elimination of apoptotic cells or any other foreign pathogens

by phagocytosis or T cells activation, macrophages are closely

associated with a decline in renal function (99). Traditionally,

macrophages are classified as classically activated M1 phenotype

and alternatively activated M2 phenotype. M1 is the

predominant phenotype at the site of diabetic kidney injury,

which mediates the initiation phase of inflammation, tissue

damage, and renal fibrosis through proinflammation cytokines

that include TNF-a, interleukin (IL)-6, IL-10 and monocyte

chemoattractant protein 1 (100, 101). M2 is involved in the

wound healing process through production of anti-

inflammatory cytokines, growth factor, and proangiogenic

cytokines. Switching from the M1 to M2 phenotype may

effectively reduce podocyte injury, albuminuria, and

glomerulosclerosis and protect the kidney against DN (102–

105). PTGS2 stimulates a tissue-repair M2 phenotypic changes

in macrophages (101). There is also a close interaction between
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mast cells and development of DN, and the vast majority of mast

cells are located in the peritubular, perivascular, and

per ig lomerular inters t i t ia l reg ions rather than in

intraglomerular areas where inflammatory cells accumulate.

Through release of some bioactive substances, such as tryptase,

chymase, transforming growth factor-beta 1, renin, and TNF-a,
into the tubular interstitium by degranulation, mast cells can

lead to renal inflammation, fibrosis, and the progression of DN

(106). There are very few studies on the role of neutrophils in

DN. Some researchers suggested that a high blood neutrophil to

lymphocyte ratio is a predictor of poor GFR in patients with

diabetes (107, 108).

There are two limitations of our study. First, due to the small

sample size and database limitations, we cannot externally

validate our results. Second, there is a paucity of confirmatory

experiments. Further fundamental and prospective studies

would be beneficial.
Conclusion

We identified 10 hub Cu-related genes (PTGS2, FOS,

DUSP1, JUN, S100A8, S100A12, NAIP, CLEC4E, CXCR1, and

CXCR2). The findings provide insight into the mechanisms of

DN development at the transcriptome level. It is beneficial to

examine and understand the interaction between hub Cu-

related genes and potential regulatory molecules in DN,

which may provide a novel theoretical foundation for the

development of diagnostic biomarkers and copper-related

therapy targets in DN. Further relevant molecular biological

experiments are needed to confirm the function of the

identified genes associated with DN.
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