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ABSTRACT
Objective Depression is a prevalent disorder difficult to
diagnose and treat. In particular, depressed patients
exhibit largely unpredictable responses to treatment.
Toward the goal of personalizing treatment for
depression, we develop and evaluate computational
models that use electronic health record (EHR) data for
predicting the diagnosis and severity of depression, and
response to treatment.
Materials and methods We develop regression-
based models for predicting depression, its severity, and
response to treatment from EHR data, using structured
diagnosis and medication codes as well as free-text
clinical reports. We used two datasets: 35 000 patients
(5000 depressed) from the Palo Alto Medical Foundation
and 5651 patients treated for depression from the Group
Health Research Institute.
Results Our models are able to predict a future
diagnosis of depression up to 12 months in advance
(area under the receiver operating characteristic curve
(AUC) 0.70–0.80). We can differentiate patients with
severe baseline depression from those with minimal or
mild baseline depression (AUC 0.72). Baseline
depression severity was the strongest predictor of
treatment response for medication and psychotherapy.
Conclusions It is possible to use EHR data to predict a
diagnosis of depression up to 12 months in advance and
to differentiate between extreme baseline levels of
depression. The models use commonly available data on
diagnosis, medication, and clinical progress notes,
making them easily portable. The ability to automatically
determine severity can facilitate assembly of large patient
cohorts with similar severity from multiple sites, which
may enable elucidation of the moderators of treatment
response in the future.

BACKGROUND AND SIGNIFICANCE
Depression is one of the most prevalent psychiatric
disorders, affecting about 14% of individuals
worldwide. An estimated 10–20% of primary care
visits are related to depression, making it the
second most common chronic disorder seen by
primary care physicians.1 2 The economic cost of
depression is staggering; in the USA, recent esti-
mates put the direct expenses and loss of product-
ivity resulting from depression at about $44 billion
per year.3

Despite the prevalence of depression, treating it
is a challenge. Many depressed patients are not
even diagnosed: a meta-analysis performed by
Mitchell et al1 found primary care physicians, who
deliver the majority of care for depression, only
identify about 50% of true depression cases.
Improving diagnosis of depression would benefit

patients, since early recognition and initiation of
treatment is associated with a better prognosis,
especially in patients exhibiting their first depressive
episode.4 5

Once a depressed patient is diagnosed, selecting
the treatment modality is the next challenge.
Although the different depression treatments have
comparable average effectiveness, individuals vary
widely in their response to treatment.6 The
Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study found only 36.8% of
depressed patients experienced remission of depres-
sion symptoms after the first treatment. Patients
were given the option of up to three additional
treatments, resulting in an overall cumulative remis-
sion rate of 67%.7 However, most patients treated
for depression, especially in primary care, undergo
only one type of treatment: just 25% of patients
pursue additional treatment options beyond their
initial treatment.6 A major reason for this is that
patients may not be willing to consider alternative
modalities following an initial therapy they perceive
to be ineffective.8 Thus, while customizing
follow-up treatments can surely affect prognosis, it
would also be very beneficial to personalize treat-
ment for depression by selecting an initial treat-
ment based on the characteristics of a given patient.
In this regard, we are particularly interested in
moderators—patient characteristics that predict dif-
ferential treatment response—so that we might
optimize initial treatment. Such moderators may
include macroscopic and genomic biomarkers, as
well as environmental factors. In our study we
focus on the following potential moderators:
patient demographics (eg, gender), diagnoses, pre-
scriptions, procedures, and terms used in clinical
text.
Simon and Perlis6 emphasize the difference

between personalizing treatment for depression and
clinical comparative effectiveness studies. The latter
investigates the average effects of different treat-
ments, while the former looks for moderators. For
example, comparative effectiveness studies may
indicate that drug A has a higher success rate than
drug B for treating depression, but a given patient
may have better results with drug B after account-
ing for moderators. Personalizing treatment for
depression focuses on identifying such moderators.
We first use electronic health record (EHR) data

to predict whether patients will be diagnosed with
depression, and to determine how early a predic-
tion can be made. To our knowledge, no such pre-
dictive models have been reported in the scientific
literature. With good sensitivity at a high level of
specificity, such a model could be used for early
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screening of patients; patients classified as having a high risk can
be examined further. In addition, such a model could enhance
cohort building for clinical studies on depression. Several inves-
tigators have demonstrated the utility of using EHR-derived fea-
tures for automated cohort building.9–12

We also develop a model for assessing severity at initial treat-
ment because baseline severity is closely linked with the effect-
iveness of treatment of depression. Patients with severe
depression exhibit lower remission, regardless of treatment.7 13

Prior work also suggests that patients with severe depression are
more likely to benefit from medication as opposed to a placebo,
whereas patients with mild depression respond approximately
equally well to both.14 15 Thus, assessing the initial severity of
depression can assist in both selecting treatment and providing a
baseline for evaluating the effectiveness of treatment.16

We also investigate the potential for using EHR data for per-
sonalizing treatment, by attempting to identify moderators that
predict differential response to medication versus
psychotherapy.

MATERIALS AND METHODS
Data sources and preprocessing
We used EHR data from the Palo Alto Medical Foundation
(PAMF) and Group Health Research Institute (GHRI), both of
which use the Epic EHR system. From the 1.16 million patients
in the PAMF dataset, we selected 5000 depressed patients and
30 000 non-depressed patients (see the ‘PAMF cohort definition
and validation’ section and figure 1). From the 600 000 patients
in the GHRI dataset, we extracted a subset of 5651 patients
treated for depression who have been scored using the Patient
Health Questionnaire (PHQ-9) both at the start of treatment
and after 90 days of treatment. The PHQ-9 is used for screen-
ing, diagnosing, and assessing the severity of depression; it
comprises nine questions that are each worth three points, for a

total score ranging from 0 to 27, divided into bins from
minimal to severe depression (table 1).

The following patient data from PAMF and GHRI are used:
demographic data such as age and gender; structured data such
as International Classification of Diseases, Ninth Revision
(ICD-9) diagnosis codes, RxNorm prescription codes, and
Current Procedural Terminology (CPT) procedure codes; and
unstructured data such as progress notes, pathology reports,
radiology reports, and transcription reports. All structured and
unstructured data are time-stamped. Table 2 summarizes the
overall characteristics of the PAMF and GHRI datasets and
patient cohorts, including data types used and quantity of each
type.

For the GHRI data, ICD-9 codes, RxNorm codes, and CPT
codes are normalized to Concept Unique Identifiers (CUIs) from
the Unified Medical Language System (UMLS) Metathesaurus.
We processed the unstructured clinical texts from PAMF and
GHRI as described previously in LePendu et al.17 In brief, we
use an optimized version of the NCBO Annotator with a set of
22 clinically relevant ontologies (given in online supplementary
materials, List 1), remove ambiguous terms,18–20 and flag
negated terms and terms attributed to family history to reduce
the false positive rate.21 The output of the annotation process is
a mapping from each note to the terms in that note, including
whether each term is flagged as negated and/or related to family
history. Finally, terms are normalized to CUIs and are aggregated
based on the hierarchies of the ontologies. Drugs are normalized
to their active ingredients using RxNorm.22

The 35 000 patients (depressed plus non-depressed) from
PAMF are used to train and test our model for predicting a
future diagnosis of depression. The 5651 patients from GHRI
are used to train and test our models for predicting treatment
outcome and assessing severity; because the dataset contains
PHQ-9 scores before treatment and after 90 days of follow-up,

Figure 1 Selection of depression and
control cohorts from the Palo Alto
Medical Foundation (PAMF) dataset.
ICD-9, International Classification of
Diseases, Ninth Revision.
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it provides a uniform measure for relative improvement.
Moreover, because the diagnosis of depression is validated in
the GHRI patients, we do not perform the selection and valid-
ation steps applied to the PAMF cohort.

PAMF cohort definition and validation
To train and test a model for diagnosing depression, we need a
cohort of depressed patients and a control cohort of non-
depressed patients. The depressed patient cohort consists of all
patients over 18 years of age who meet criteria (explained
below) ensuring that they: (i) indeed have depression, (ii) have a
substantial medical history, and (iii) are likely diagnosed with
the disorder at some point in their recorded medical history at
PAMF (figure 1).23

To meet the criteria for having depression, patients must
have: (i) a depression-related ICD-9 code (table 3),24 25 (ii) a
depression disorder term in their clinical text (online supple-
mentary materials, List 2 gives the terms), and (iii) an anti-
depressive drug ingredient term in their clinical text (online

supplementary materials, List 3 gives the drug terms). The terms
should not be negated or related to family history.

For selecting the depression related terms, we start with a
small seed set (including ‘depressive disorder,’ ‘major depressive
disorder,’ ‘depression adverse event,’ and ‘depressive disorder,
nec’) and expand this set to include terms subsumed by the seed
terms via an ‘is-a’ relationship, and repeat the expansion again
with the new set of terms. The final set of terms is manually fil-
tered to remove terms that result in a significant number of false
positives (ie, patients who have the term in their clinical text but
did not have depression). Depression drug ingredients are
selected by first retrieving drugs that treat depression from the
Medi-Span (Wolters Kluwer Health, Indianapolis , Indiana,
USA) Drug Indications Database, mapping them to active ingre-
dients using RxNorm,22 and finally filtering out those active
ingredients that are also present in drugs with primary indica-
tions other than depression.

A patient is considered to have a substantial medical history if
the patient has at least 1.5 years of visits before the diagnosis.
For each depression patient, we define the time of ‘first diagno-
sis’ as the first date in the patient’s medical history at which
both a depression-related ICD-9 code and an anti-depressive
drug ingredient have occurred.23 This requirement of a substan-
tial medical history ensures the model has enough data to make
a prediction for each patient regarding diagnosis.

Finally, patients must have 100 or fewer days between the
first mention of a depression ICD-9 code and an anti-depressant
term in their medical history. This heuristic eliminates most
patients who were diagnosed with depression before their
medical history at PAMF began.

A total of 10 991 PAMF patients meet these criteria, and are
thus included in the depression cohort (figure 1). To create the
control cohort, we matched six randomly selected non-
depressed patients to each of 5000 depressed patients randomly
selected from the 10 991 patients in the depression cohort. We
found using a subset of 5000 depressed patients greatly
increases computational efficiency while not significantly
harming model performance. This 1:6 matching ratio mirrors
the 14% prevalence of depression in the general population and
is within the range seen in primary care.1 26 Control patients
are patients having neither a depression-related ICD-9 code nor
a depression term mentioned in their medical history. We match
on age (in years) and visit history length (by 6-month periods).
Matching patients based on length of visit history reduces the
likelihood that the lack of a depression diagnosis in the control
patient’s medical record is due to inadequate medical record
length, rather than the patient’s actual lack of depression.

All 5000 depression patients were successfully matched to
controls, resulting in a control cohort of 30 000 PAMF patients.
To validate the quality of the depression and control cohorts, an
expert in mental health conducted a manual review of the

Table 1 Baseline depression severity in the GHRI dataset, based
on PHQ-9 score

PHQ-9 score Depression severity Number of GHRI patients

0–4 Minimal depression 267
5–9 Mild depression 747
10–14 Moderate depression 1294
15–19 Moderately severe depression 1652
20–27 Severe depression 1301

We only consider baseline PHQ-9 scores from patients’ first treatments.
GHRI, Group Health Research Institute; PHQ-9, Patient Health Questionnaire.

Table 2 Summary of PAMF and GHRI datasets

PAMF GHRI

Total patients 1.16 million 600 000
Cohort subset (% depressed) 35 000 (14.3%) 5651 (100%)
Gender split (% female) 55.2% 70.3%
Average follow-up time* 8.02 years 2.50 years
No. cohort visits (encounters) 1.18 million 226 000

Demographic variables
Age Included Included
Gender Included Included

Ethnicity Included Included
Year of birth Included Included

Total structured data 2.34 million 1.50 million
ICD-9 diagnosis codes 2.34 million 521 000
CPT procedure codes – 663 000
NDC prescription codes – 310 000
PHQ-9 scores – 5651

Total unstructured data 2.2 million 237 000
Radiology reports Included –

Pathology reports Included –

Transcription reports† Included Included

*Follow-up time is defined as the time between the first and last visit.
†Transcription reports include: progress, consultation, and nursing notes; secure
messages, letters to patients, ER reports, discharge summaries, and other documents.
CPT, Current Procedural Terminology; ER, emergency room; GHRI, Group Health
Research Institute; ICD-9, International Classification of Diseases, Ninth Revision;
NDC, National Drug Code; PAMF, Palo Alto Medical Foundation; PHQ-9, Patient
Health Questionnaire.

Table 3 Selected ICD-9 codes for depression

ICD-9 code Description

296.2[0–6] Major depressive disorder, single episode
296.3[0–6] Major depressive disorder, recurrent episode
296.82 Atypical depressive disorder
298.0 Depressive type psychosis
300.4 Dysthymic disorder
311 Depressive disorder, not elsewhere classified

ICD-9, International Classification of Diseases, Ninth Revision.
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clinical text histories of 100 randomly sampled patients from
the depression cohort (with 5000 patients), and of 100 ran-
domly sampled patients from the control cohort. From this
manual review, the estimated precision for the depression
cohort is 96%, and the estimated precision for the time of first
diagnosis is 79%. A time of first diagnosis is considered ‘correct’
if it is within 3 months of the actual time the patient was diag-
nosed with depression. The estimated precision for the control
cohort is 91%. Ten of the 100 control patients were excluded
from the analysis because they did not have adequate clinical
notes to determine whether they had depression or not.

Model creation and validation
We train logistic regression models for (i) predicting a diagnosis
of depression, (ii) predicting response to treatment, and (iii)
assessing severity of depression. Specifically, we use Least
Absolute Shrinkage and Selection Operator (LASSO) logistic
regression from the R glmnet package. LASSO is a type of logis-
tic regression that uses L1 regularization, which penalizes the
absolute value of the regression coefficients. This results in
more coefficients equal to zero and thus more interpretable
models.27 Since our model must handle thousands of features,
LASSO is a good choice for pruning features that do not add
predictive value. In contrast, L2 regularization, the other
popular choice for penalized logistic regression, shrinks coeffi-
cients of less predictive features but not necessarily completely
to zero. The features used from PAMF are gender, average
number of visits per year, ICD-9 codes, and disease and drug
ingredient terms in the annotated notes. We use similar features
from GHRI: gender and CUIs from clinical text and coded data
(consisting of diagnoses, prescriptions, and procedures), as well
as age and baseline PHQ-9 score.

We exclude those features used for defining the depression
cohort (see below), as well as terms flagged as negated and/or
related to family history. ICD-9 codes, annotated terms, and
CUIs are converted to binary features: 1 if the feature is present
in a given patient’s medical history and 0 otherwise. Average
number of visits per year is calculated as average number of
visits per day, multiplied by 365. This method gives more
weight to a patient with only two visits a month apart, as
opposed to a patient with only two visits a year apart. To
convert average number of visits per year into discrete features,
we use equal width interval binning, except the last bin has no
upper bound. Equal width interval binning has been shown to
produce results comparable to that of state-of-the-art supervised
methods.28 29 The visit bins are [0, 2), [2, 4), …, [18, ∞) in
units of visits per year.

Predicting a future diagnosis of depression
Our LASSO model for predicting diagnosis of depression classi-
fies a given patient as having either a low risk or a high risk of
an impending diagnosis of depression. In order to simulate the
early prediction of a diagnosis of depression, the EHR data of
patients are truncated at three different cutoffs: the time of ‘first
diagnosis’ (for depressed patients) or the end of the medical
history (for control patients), and 6 months before and 1 year
before first diagnosis. We train the model on a randomly
selected 80% of the 5000 depressed patients and their corre-
sponding matched control patients, and test the model on the
remaining 7000 patients. For the training data, we include EHR
data until the first cutoff for depressed patients and include all
available EHR data for controls, resulting in around 10 600
unique features. After training, we test the model on three dif-
ferent test sets: one for each of the three cutoffs defined

previously. Thus, an accurate prediction of a depression diagno-
sis by the classifier, using EHR data up to the 6-months point,
would be half a year earlier than the doctor’s diagnosis of
depression in the patient. Similarly, an accurate prediction using
EHR data restricted to the time of first diagnosis would be
analogous to the doctor’s diagnosis.

Predicting response to treatment
We attempt to predict response to treatment for depressed
patients using a LASSO model. Specifically, we try to differenti-
ate response for two treatment modalities: medication and psy-
chotherapy. For each treatment modality, we train a model that
predicts the likelihood a patient’s depression will improve after
they undergo the given treatment. Improvement is defined as a
decrease of at least five points in the PHQ-9 score (which
results in a change of severity level). We only consider the first
treatment: 2472 patients are first treated with medication, 1576
of whom improved (63.8%); 2401 patients are first treated with
psychotherapy, 886 of whom improved (36.9%). We exclude
patients who received both medication and psychotherapy for
their first treatment, since we are interested in differential
response to one treatment versus the other.

The features used by these two models include all the previ-
ously described patient features in the GHRI dataset: age,
gender, baseline PHQ-9 score, and CUIs from clinical text and
coded data. We train each model on a randomly selected 80%
of the GHRI patients satisfying the criteria for that model and
test the model on the remaining 20%.

For both the training and test data, we exclude EHR data
within 10 days prior to the start of the first treatment, to avoid
including the period between diagnosis of depression and start
of treatment. This is because our goal is to assess severity of
depression from the patient’s medical history alone, without
incorporating the physician’s initial evaluation at diagnosis.

In addition to predicting response to a particular category of
treatment, we are also interested in identifying moderators of
depression treatment—those patient characteristics that predict
which treatment will perform better for a given patient. We use
information gain to choose the 100 top predictors of a change
of at least ±5 points in the PHQ-9 score after medication and
psychotherapy. Then we perform a standard moderator variable
analysis: we run logistic regression on these predictors, their
corresponding interaction terms with the treatment variable,
and a boolean treatment vector (1 for treatment with medica-
tion and 0 for treatment with psychotherapy). For example,
abortion is one of these top 100 predictors, so we include the
abortion variable and treatment variable, as well as abortion×
treatment, which is 1 if the corresponding patient was both
treated with medication and had an abortion mentioned in her
clinical text, and 0 otherwise.

Assessing severity
We also train and test a LASSO model to predict the baseline
depression severity of GHRI patients, quantified by the PHQ-9
score at the start of the first treatment. Of the 5651 GHRI
patients, 1014 have minimal or mild depression and 1301 have
severe depression. Our model attempts to detect severe depres-
sion in patients (PHQ-9 score >19) (table 1). The model uses
the same features as in predicting response to treatment.
However, we exclude baseline PHQ-9 score because it is a
direct measure of severity, which we are attempting to predict.
The model is trained on a randomly selected 80% of the
patients and tested on the remaining 20%. Similar to before, we
exclude data within 10 days prior to initiation of treatment.
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RESULTS
Predicting diagnosis
Using data for depressed patients up until the time of first diag-
nosis, the model for predicting diagnosis achieved an area under
the receiver operating characteristic (AUC) curve of 0.800 (95%
CI 0.784 to 0.815). This cutoff corresponds with a timely pre-
diction. The AUC is 0.712 (95% CI 0.695 to 0.729) for the
6-month cutoff and 0.701 (95% CI 0.684 to 0.718) for the
1-year cutoff. In total, 553 out of the 10 600 features were used
in this model. Figure 2 shows the receiver operating characteris-
tic (ROC) curves for these three cutoffs, which display the full
range of sensitivity and specificity values achieved by the model.
For example, the ROC curves show that at 90% specificity (ie,
10% false positive rate), the model is able to predict a diagnosis
of depression at approximately 50% sensitivity at the time of
diagnosis and at 25% sensitivity 12 months prior to the time of
diagnosis.

Predicting response to treatment
As mentioned, the GHRI dataset contains 1576 patients whose
depression severity reduced after they were treated with medi-
cation and 896 patients whose depression severity was
unchanged or increased. Our model for predicting improve-
ment after treatment with medication achieved an AUC of
0.661 (95% CI 0.607 to 0.715), using 133 features on average.
Similarly, the dataset had 886 patients whose depression sever-
ity reduced after treatment with psychotherapy and 1515
patients whose severity remained unchanged or increased. Our
model achieved an AUC of 0.749 (95% CI 0.706 to 0.792) for
predicting improvement for these patients, using 193 features
on average.

In both cases the most predictive feature was the baseline
PHQ-9 score, and higher values corresponded with a worse
outcome. We were unable to identify statistically significant
moderators for differential response to medication versus
psychotherapy.

Assessing severity
Our model achieved an AUC of 0.718 (95% CI 0.671 to 0.764)
for differentiating between baseline PHQ-9 scores of minimal/
mild and severe, using 184 features on average.

DISCUSSION
Our results suggest the use of EHR data can improve the timely
diagnosis of depression, which is associated with better progno-
ses when combined with prompt initiation of treatment.4 5

Ideally, we are searching not only for models that can diagnose
depression early to improve prognosis, but also for moderators
that predict outcomes and enable personalized treatment. The
latter requires significant work.

Diagnosing depression in primary care is challenging:
Mitchell et al1 found primary care physicians have a sensitivity
of 50% and a specificity of 81% in diagnosing depression. In
comparison, at a specificity of 80% our model has a sensitivity
of above 65% for predicting diagnosis at the original time of
diagnosis, and nearly 50% for predicting it 6 months prior to
the time of diagnosis. However, these diagnoses likely contain
misdiagnoses (as Mitchell et al observed in other datasets), and
thus do not correspond exactly to the patient having depression.
If our model were trained on a gold standard with verified diag-
noses, it would likely perform similarly, if not better, at predict-
ing depression.

Our models for predicting improvement after treatment with
medication and psychotherapy both detected baseline PHQ-9
score as the most predictive feature: a higher baseline PHQ-9
score, or more severe depression, was associated with a poorer
outcome. This agrees with earlier studies associating severe
depression with poorer treatment outcomes in general across
different treatments7 13 and argues for routine use of the
PHQ-9 as an assessment instrument prior to initiating therapy.

To develop models that uncover moderator effects for person-
alizing treatment, and given the number of possible character-
istics to consider (eg, comorbidities and prescriptions), much
larger datasets are required. We may have been unable to iden-
tify statistically significant moderators because such moderators
exist in non-EHR data (eg, genomics, environmental and life-
style factors).

In learning models for moderator effects of treatments for
depression, three things are clear: we need to accurately identify
patients with (and without) depression, we need to consider the
severity of the depression,7 13 and we need large enough exam-
ples to guarantee the statistical power necessary when examining
many possible moderators. Our work describes a method that
reduces reliance on specific rating scales and thus could allow us
to construct such retrospective cohorts across EHR systems
more portably. Our model for differentiating patients with
severe depression from those with minimal or mild depression
had an AUC of 0.718. Thus, such a model for diagnosing and
assessing severity of depression can help in building and assem-
bling large EHR datasets from multiple sites for future analysis.

Limitations
One limitation of our work is the accuracy of our annotation
workflow in extracting disease and drug ingredient terms from
clinical notes. Although prior validation efforts have indicated
high accuracy, those estimates may change with a different
target condition.17 Our work is also limited by the quality of
our gold standard: that is, the PAMF depression and control
cohorts. Although manually validated via random sampling, the
labels (depressed vs non-depressed) we assign to patients may be

Figure 2 Receiver operating characteristic (ROC) curves for the
model’s performance on test data restricted to three cutoff points.
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incorrect, thus introducing inaccuracies and potential bias in
both training and testing our model. For instance, certain
patients in the control cohort may have depression but are
never diagnosed with it, or some patients in the depression
cohort may be misdiagnosed with depression. This may be due
not only to the difficulty of diagnosing depression, but also
deliberate misdiagnosis in the former case.1 30 In addition, by
limiting our depression cohort of PAMF patients to those who
have taken antidepressants, we are including neither depressed
patients who were treated solely with psychotherapy, nor those
who chose to not undergo treatment. As a result, our depression
cohort is potentially biased towards more severely depressed
patients, since they required antidepressants as treatment.14 15

To determine the sensitivity of our depression cohort con-
struction process, we applied the selection criteria to 42 ran-
domly selected patients from PAMF whose EHR progress notes
were manually reviewed by experts to decide whether they had
depression or not. We classify patients as depressed if they have
a depression-related ICD-9 code in their medical history, as well
as a depression term and an anti-depressive drug ingredient
term in their clinical text. Based on these criteria, we achieved a
precision of 100% and a sensitivity of 48% on classifying these
42 patients, on par with the results of other methods using
structured data to identify depression.31

The time of first diagnosis calculated for the depressed
patients is an approximation to the actual date at which the
patient was first diagnosed with depression. The PAMF dataset
we used also excludes notes from mental health professionals,
due to privacy regulations. Inclusion of these notes may have
improved the accuracy of our model for patients with these
notes in their medical record. In addition, we acknowledge that
predicting diagnosis of depression is not synonymous with pre-
dicting true onset of depression in patients.

Finally, our model for predicting diagnosis of depression can
be converted to an electronic phenotyping model for identifying
patients with depression. Having a regression model to identify
patients for inclusion in studies may work better than ad hoc
algorithms for electronic phenotyping and has broad applica-
tions, eg, for phenome-wide association studies.32 33 In contrast
to the existing model, a phenotyping model would not restrict
depression patients’ EHR data and would also include
depression-related ICD-9 features, disease terms, and drug
terms. (These depression-related features were excluded from
the prediction model because they were already used to define
the depression and control cohorts.) With these highly relevant
additional features, our model’s performance should be on par
with that of existing electronic phenotyping efforts for other
disorders.11 34–36

CONCLUSION
We developed and assessed models that use EHRs for predicting
the diagnosis and assessing the severity of depression. The
model for predicting diagnosis uses ICD-9 codes, disease and
drug ingredient terms extracted from clinical notes, and patient
demographics as features to achieve an AUC of 0.70–0.80 for
predicting a diagnosis of depression in patients, up to
12 months before the first diagnosis of depression. Even up to a
year before their diagnosis of depression, patients show patterns
in their medical history that our model can detect. These results
suggest the use of EHR data can improve the timely diagnosis of
depression, a disorder that primary care physicians often miss.
In addition, our model for identifying patients with severe base-
line depression achieved an AUC of 0.718 when compared
against patients with minimal and mild depression. Use of such

models may enable the merging of disparate EHR datasets to
assemble datasets large enough to uncover moderator effects.
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