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ABSTRACT

We present and validate tissue expression profile
similarity searches (TEPSS), a computational
approach to identify transcripts that share similar
tissue expression profiles to one or more transcripts
in a group of interest. We evaluated TEPSS for its
ability to discriminate between pairs of transcripts
coding for interacting proteins and non-interacting
pairs. We found that ordering protein–protein pairs
by TEPSS score produces sets significantly enriched
in reported pairs of interacting proteins [interacting
versus non-interacting pairs, Odds-ratio (OR) =
157.57, 95% confidence interval (CI) (36.81–375.51)
at 1% coverage, employing a large dataset of about
50 000 human protein interactions]. When used with
multiple transcripts as input, we find that TEPSS can
predict non-obvious members of the cytosolic ribo-
some. We used TEPSS to predict S-nitrosylation
(SNO) protein targets from a set of brain proteins
that undergo SNO upon exposure to physiological
levels of S-nitrosoglutathione in vitro. While some of
the top TEPSS predictions have been validated
independently, several of the strongest SNO TEPSS
predictions await experimental validation. Our data
indicate that TEPSS is an effective and flexible
approach to functional prediction. Since the
approach does not use sequence similarity, we
expect that TEPSS will be useful for various gene
discovery applications. TEPSS programs and data
are distributed at http://icb.med.cornell.edu/crt/
tepss/index.xml.

INTRODUCTION

Expressed sequence tags (ESTs) are oligonucleotide
sequences obtained by the automated sequencing of
cDNA clones (1). Initially introduced as a cost effective
method to discover new human genes, for physical map
construction and to discover coding regions in a genome,
EST sequencing has rapidly become complementary to the
sequencing of genomic sequences. The central repository
of ESTs, dbEST, which contained only 22 537 ESTs 15
years ago (2), now contains more than 44 million ESTs in
2007. The organisms most represented in dbEST are
human (�9M ESTs) and mouse (�4.5M ESTs), followed
by zebrafish (1.3M ESTs) and Bos taurus (1.3M ESTs)
(http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.
html).

Several successful gene discovery strategies have used
ESTs. For instance, many groups have searched for ESTs
that match representative proteins from a gene family of
interest to identify potential new members of that family.
ESTs which overlap with the coding sequence of the
transcript may help to prioritize novel members of that
protein family, if they share sequence similarity with the
group of genes of interest. This strategy has been used to
clone, for instance, novel members of the G-protein-
coupled receptor family (3,4) and new kinases (5,6).

When a candidate is not expected to share significant
sequence similarity to known proteins, EST information
can still be used to guide gene discovery. In such cases,
EST data can be used to filter genes by tissue expression
profile, to eliminate genes unlikely to encode the function
of the candidate. For instance, a taste receptor is expected
to have its tissue expression restricted to taste buds. Since
taste buds are not explicitly represented in dbEST, we
would not expect a taste receptor to match a large number
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of ESTs. This strategy was used as one of the filtering
steps in the gene discovery pipeline that helped identify the
sweet taste receptor Tas1R3 (7).

In this article, we show how EST data can be organized
to perform tissue expression profile similarity searches
(TEPSS) and used to identify transcripts that are function-
ally related to a query sequence, but need not share
sequence similarity. The TEPSS approach builds on
previous studies that observed a correlation between gene
expression and function [e.g. (8–10) and references therein],
and extends this observation from microarray time course
experiments to the large body of expression data in dbEST.
We validate the TEPSS approach by showing that it can
discriminate between pairs of transcripts randomly chosen
in the genome and pairs of transcripts that code for proteins
that were previously reported to either directly interact or
contribute to the same metabolic pathway. Significantly,
we show that TEPSS can be used for gene function
prediction, such as required for gene discovery, and we
evaluate the predictive ability of the method to rank
proteins that are either part of the ribosome complex or
interact with it. Finally, we apply TEPSS to the prediction
of novel targets of human protein S-nitrosylation (SNO)
and show that TEPSS greatly outperforms the effectiveness
of a random predictor, identifies independently validated
SNO targets and suggests several SNO targets for
experimental validation.

MATERIALS AND METHODS

TiDumpCounts

Counts of ESTs matching each transcript of an organism
are tabulated and stored in binary format. We proceed as
previously described to annotate the transcripts of a
genome with tissue information from dbEST (11,12).
Genomic information was obtained from human Ensembl
build 44 (human NCBI build 36). Files produced by
TissueInfo [called tiac files in ref. (11)] were processed to
yield a table of data where each row is a transcript and
each column a tissue. Each element of this table represents
the count of ESTs, sequenced from a given tissue, that
match a transcript. We call this table the TissueInfo count
data and denote this data structure tcd. TissueInfo count
data is written in binary format with Elias delta coding.
Count files are produced for human and mouse and are
distributed on the TissueInfo web site.

Single query searches

The TissueInfo similarity search engine performs exhaus-
tive searches. A query transcript qi is scored against every
transcript tj of the transcriptome. (Sample scoring
schemes are described in Supplementary Material.) All
the transcripts tj are ordered by their TiSimilarity score,
and the k highest-scoring transcripts are presented to the
user. This search method is implemented in the program
TiSimilarity (option –mode single or –mode list).

Multiple query searches

Multiple queries can be provided to search a transcrip-
tome. In this case, single query searches are performed for

each query qi as described above and results are combined
to yield transcripts most similar to the query transcripts as
a group. Combining results can be done by summing the
scores for transcript ti over all queries (sum of scores
combination, Equation 1). An alternative strategy is to
combine results by summing the inverse of the rank
position for transcript ti over all queries (rank fusion
combination, Equation 2).

scoreðtiÞ ¼
X

qj2Q

scoreðti; qjÞ;

where Q is the set of transcripts used as query.
Equation 1. Sum of score combination.

scoreðtiÞ ¼
X

qj2Q

1

rankðti; qjÞ
;

where Q is the set of transcripts used as query, and
rank(ti, qj) denotes the rank of transcript ti in the result
list obtained for the search done with query qj.
Equation 2. Rank fusion combination.

TEPSS scorers

A tissue expression profile scorer evaluates a score for
each pair of transcripts and can be formally written as
score (counts(tcd, ti), counts(tcd, tj)). (where tcd is the
TissueInfo count data.) The function counts (tcd, ti)
returns the number of counts for transcript ti in the form
of an array of integers, one element for each tissue. In the
current implementation of TiSimilarity, scores are repre-
sented as double precision floating numbers. Various
scoring strategies can be used to quantify the agreement
between tissue expression profiles of two transcripts.
Several strategies were tested and are described in the
Supplementary Material.

Interaction network

The PIANA software (13) was used to assemble the
human protein–protein interaction network (PIN) by
integrating data from the following data sources: IntAct,
DIP, BIND, MINT, MIPS and HPRD (14–19). The PINs
were assembled as undirected and unweighted graphs. The
complete human PIN contained 9937 nodes (here we use
the Ensembl Gene IDs coding for the proteins) connected
by 50 378 edges (i.e. interactions), where two nodes are
connected by an edge if the proteins encoded by the genes
have been reported to interact by at least one of the data
sources. The experimental method(s) used to characterize
each interaction were also recorded. This information was
used to further build PINs containing only interactions
supported by four or more experimental methods (which
contained 1120 nodes and 912 edges).

Metabolic pathways

The genes involved in the different human metabolic
pathways were downloaded from the KEGG database
(20). In total, we considered 198 metabolic pathways
containing 3869 distinct genes (Ensembl Gene IDs).
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Estimation of reported pair enrichment

Wewished to estimate the improvement in the likelihood of
identifying true protein–protein interaction pairs in a
sample of protein pairs using TEPSS. We first calculated
the background chance of picking a reported interacting
pair of proteins in a sample of 5� 106 random protein
pairs. The background chance was 0.0224%. Then, this
fraction was compared to the probability of picking a
reported interacting pair from the fraction of pairs from the
sample which scored above a given threshold. Different
scoring thresholds were established which provided cover-
age of 1, 5, 10 and 50%. This process was repeated for all
the TEPSS scorers. Reported odds-ratio (OR) and 95%
confidence intervals were calculated with http://www.
hutchon.net/ConfidOR.htm.

Ribosome

The members of the cytosolic and mitochondrial riboso-
mal complexes were identified through their gene ontology
annotations using BioMart. The GO IDs used were the
following (GO term and number of Ensembl gene IDs also
indicated): GO:0005830 (cytosolic ribosome, 94),
GO:0005761 (mitochondrial ribosome, 71).

Gene/transcript mapping

Most protein–protein interaction databases associate each
interacting protein with a gene identifier. Every protein in
our PIN is represented by the Ensembl identifier for the
gene encoding that protein. Since TiSimilarity compares
the expression profiles of transcripts (not genes), we
obtained gene-to-transcript relationships from BioMart
and used this information to map gene/protein interaction
pairs to transcript pairs (21). Because one gene may
encode for more than one transcript (and because it is
unclear which transcripts encoded by a gene code for the
proteins that interact), for a given gene pair (gi, gj), we
evaluate all possible pairs of transcripts (ti, tj) such that gi
encodes transcripts tik and gj encodes transcripts tjl. In all
analyses, we consider the score of the gene pair to be the
maximum score over all pairs (ti, tj), such that the
TiSimilarity score between any two genes gi and gj is
assumed to be the best score resulting from the pairwise
comparison of all the transcripts of gi versus all the
transcripts of gj.

scoreðgi; gjÞ ¼ max fscoreðtik; tjlÞg

Equation 3. Deriving scores of gene pairs from scores of
transcript pairs.

TEPSS score distributions

We estimated score distributions for interacting and non-
interacting pairs of proteins. All known interacting pairs
of proteins were selected from the human PIN. Samples of
non-interacting pairs were generated by randomly pairing
proteins whose interaction is not recorded in the
databases. It is true that, in the absence of an experimen-
tally validated negative gold-standard for the interactome,
this may yield samples that include interactions which
have not yet been identified. However, known interactions

account for approximately 0.02% of the total pairwise
combinations between proteins in our dataset and
selecting non-interacting pairs uniformly at random is
deemed as an unbiased estimator of the true negative gold-
standard (22).

Density plots of TEPSS scores were created for the
complete PIN and the PIN whose interactions were
supported by four or more pieces of evidence. The
samples of non-interacting pairs were of the same size as
their interacting counterparts (i.e. 50 378 pairs for the
complete PIN, 912 pairs for the PIN supported by four or
more pieces of evidence) to ensure comparability of break-
even scores.

For human metabolic pathways, we built the TEPSS
score distributions for samples of 5000 gene pairs coding
for proteins in the same metabolic pathway. In this case,
the negative set was built by randomly pairing genes
belonging to different metabolic pathways. Plots were
generated with the R statistical package (23).

Shuffled count data

To establish a negative control, we produced shuffled
versions of the TissueInfo counts data for each transcript
in each organism. The shuffling procedure performs a
random permutation of the EST counts observed for each
transcript. The procedure guarantees that the sum of the
counts for a given transcript is the same before and after
permutation. The counts for all pairs of proteins in the
aforementioned samples of 5000 non-interacting protein
pairs were shuffled and the resulting distribution com-
pared with the distribution of known interacting pairs.

RESULTS

TEPSS approach

We present an extension of TissueInfo (11) to perform
TEPSS. Figure 1 presents an overview of the TEPSS
approach. TEPSS leverage dbEST and the TissueInfo
curated tissue information to produce a table of EST
counts for each tissue in which a transcript is expressed.
The count data are provided on the TissueInfo web site
and are the equivalent of formatted databases used in
sequence similarity searches. The TEPSS search engine
(TiSimilarity) makes it possible to scan count data for a
transcriptome and produce ranked lists of transcripts,
ordered by degree of similarity to the tissue expression
profiles of one or more query transcripts. Figure 2
illustrates how tissue expression profile similarity scores
are evaluated from the tissue count data (see minimum
evidence scorer in the Methods section for a formal
description of this scoring method).

TEPSS scores correlate with direct protein–protein
interactions

It has been shown that interacting proteins tend to be
co-expressed (10). Similarly, proteins expressed in the
same tissues are expected to be more likely to interact
directly than proteins expressed in different tissues.
TEPSS scores quantify the level of agreement between
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the tissue-dependent expression levels of two transcripts in
tissues. We therefore asked if TEPSS scores calculated by
TiSimilarity would be differently distributed for pairs of
interacting and non-interacting proteins. Figure 3 plots
the distribution of TEPSS scores (Confidence scorer, see
Supplementary Material section) for interacting and non-
interacting protein pairs from the complete human PIN.
One of the main drawbacks in the use of PIN-derived
information is that data in the PIN are known to contain a
remarkable amount of noise in the form of false positives
(artifactual interactions deemed as true interactions) and
false negatives (true but yet-undetected interactions) (24).
The larger the number of pieces of independent experi-
mental evidence that support an interaction, the less likely
is the interaction to have been falsely identified. We
therefore also analyzed the distributions of TEPSS scores
from samples of interacting pairs supported by four or
more pieces of experimental evidence. The distributions in

both cases are significantly different from distributions
observed using non-interacting protein pairs (Wilcoxon
rank sum test, two tailed, P <2.10�1074) and the protein
pairs that interact show more positive TEPSS scores than
are observed for non-interacting protein pairs. Also, both
distributions were significantly different from shuffled
count data (see Methods section). The process of shuffling
the count data destroys any correlation between tissue-
specific expression levels, creating transcripts with fictional
expression profiles. Conversely, non-interacting pairs
probably show some correlation between the expression
levels in different tissues because they contain not only a
certain fraction of interacting pairs but also protein pairs
which are related functionally (e.g. metabolically). The
distribution of the scores of the predicted interacting pairs
in the high-confidence set of Espadaler et al. (called I2,
containing pairs of proteins sharing domains with
reported interacting proteins) were also consistent with
this observation (25,26). Figure 4 shows that the same
observation is true for pairs of proteins selected from the
same metabolic pathway versus pairs selected from
different metabolic pathways. Direct interaction between
proteins is often considered as a good predictor of
biological function. Similarly, proteins that are members
of the same metabolic pathways are also considered
functionally related. Our data demonstrate that TEPSS
scores significantly correlate with the likelihood that two
proteins directly interact, or are members of the same
metabolic network.

TEPSS scorers

We implemented various TEPSS scoring schemes and
tested their ability to separate protein pairs reported as
interacting from those not known to be interacting.
Table 1 summarizes the discriminative power of each
scorer (scorers are described in the Supplementary
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Material section). Values shown in Table 1 are the break-
even points of precision-recall curves when a given TEPSS
scorer is used for prediction in a balanced dataset. For
instance, the break-even point value of 0.749 obtained for
the binary scorer indicates that a precision of 74.9% at
74.9% recall can be achieved when predicting reported

protein–protein interaction pairs based on the value of the
normalized confidence score (since the dataset is balanced,
a break-even point of 0.50 would indicate a random
prediction). The minimum evidence scorer is moderately
effective. Scorers are arranged from left to right by
increasing performance (second line). The best prediction
is achieved by the Binary Scorer, a conceptually simple
scoring approach (see Supplementary Methods).
Transcripts may have different baseline expression levels
(e.g. some transcripts are expressed highly in most tissues,
while others may have moderate expression). Since the
binary scorer is immune to baseline differences, we tested
if different baseline expression levels should be controlled
by TEPSS scorers. The comparison between the perfor-
mance measure of the baseline normalized confidence
scorer and the normalized confidence scorer indicates that
this appears to be the case. However, the performance of
the baseline normalized confidence scorer is comparable to
that of the simpler binary scorer.

High TEPSS scoring pairs are enriched
in reported interactions

We asked if selecting pairs of proteins that have the highest
TEPSS scores is an effective strategy to predict true
protein–protein interaction pairs. With the Binary Scorer,
at a coverage of 1%, we observe that the likelihood of
identifying a reported interaction pair is about 100 times
the random expectation [2.5% versus 0.0224%, respec-
tively; OR=157.57, 95% confidence interval (CI) (36.81–
375.51)]. At a coverage of 5%, the enrichment in reported
interacting pairs is about eight-fold [0.189% versus
0.0224%; OR=8.65, 95% CI (2.75–27.29)]. At a coverage
of 50%, the enrichment in reported interactors is about
3-fold [0.0724% versus 0.0224%; OR=4.73, 95% CI
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(3.24–6.90)]. The enrichment observed for other TEPSS
scorers is available in the Supplementary Table 1.

Ribosome TEPSS screen

The ribosome is a large macromolecular assembly of
protein and RNA molecules. In eukaryotic cells, the inner
mitochondrial membrane contains a particular type of
ribosome, different in composition from the cytosolic one.
We asked if the TEPSS approach could efficiently identify
ribosomal transcripts from the human transcriptome.
Figure 5 presents a lift curve constructed by the leave-
one-out validation approach. (Supplementary Figure 1
presents a lift curve constructed by 10-fold cross-valida-
tion.) The curve confirms that TEPSS rank proteins of the
cytosolic ribosome with better ranks than expected by
chance. The number of reported predictions in the top k
results is significantly larger than the number that would
be obtained by a random prediction (for all k, p = 10�10)
(27). A TEPSS screen can also rank transcripts of the
mitochondrial ribosome with better ranks than expected
by chance (data not shown).

Supplementary Table 2 provides the list of transcripts
ranked first when TEPSS is used with all the GO
annotated transcripts of the cytosolic ribosome.
Inspection of the list reveals that most genes top ranked
are true transcripts of ribosomal proteins (RPs). Surpris-
ingly, a few genes that are not annotated as RPs in their
descriptions rank highly in the TEPSS output. For
instance, the receptor for activated protein kinase C
(RACK1) is ranked among the 30 top transcripts priori-
tized by TEPSS in the case of the cytosolic ribosome.
A literature search indicates that RACK1 has been shown
to bind the ribosome by cryo-EM (28,29). Similarly, the
translationally controlled tumor protein (TCTP) ranks in
the top 30, and has been shown to bind to the translation
elongation factor, eEF1A, and its guanine nucleotide
exchange factor, eEF1Bbeta (30). Since eEF1A delivers
aminoacyl-tRNAs to the A-site at the ribosome, TCTP
may indeed associate with the ribosome and be involved
in regulating the efficiency of protein translation (30).
Since TCTP can also be secreted to act as a chaperone (31)
out of the cell, it is remarkable that the TEPSS screen
clearly detected its association with the cytosolic
ribosome.

SNOTEPSS screen

S-nitrosylation (SNO) is the process by which certain
cysteine residues covalently react with nitric oxide or a

nitric oxide derived-species to yield post-translationally
NO-modified proteins (32,33). Since the identification of
these proteins is a challenging bioinformatics problem, we
explored the ability of the TEPSS approach to predict
SNO protein targets. Figure 6 shows the lift curve created
by leave-one-out evaluation, using SNO targets identified
in mouse brain by SNOSID (SNO Site Identification) (34).
This lift curve deviates significantly (P=10�6 at rank 100)
from the diagonal (random prediction). Over 25% of the
test transcripts are found in 2% of the transcripts that
rank highest by TEPSS score. However, we cannot
rigorously assess significance because the complete set of
bona fide SNO target proteins is currently unknown.
Indeed, many proteins are counted as false positives in our
evaluation because they have not yet been reported as
SNO targets. However, it is likely that at least some of
them could be targets of SNO, a conjecture supported by
the following detailed analysis of the top 10 TEPSS
predictions. At least one protein (protein disulfide

Table 1. Discriminative power of the TEPSS scorers

Minimum
evidence
scorer

Confidence
scorer

Binary
confidence
scorer

Pearson
scorer

Normalized
confidence
scorer

Baseline
normalized
confidence
scorer

Binary
scorer

Complete PIN 0.585 (0.001) 0.618 (0.001) 0.644 (0.001) 0.669 (0.002) 0.709 (0.002) 0.727 (0.001) 0.727 (0.002)
PIN supported by �4

pieces of evidence
0.628 (0.005) 0.651 (0.005) 0.661 (0.006) 0.703 (0.006) 0.733 (0.01) 0.741 (0.008) 0.749 (0.01)

Values shown are the break-even points of precision-recall curves when a given TEPSS scorer is used for prediction in a balanced dataset. Values in
parentheses are the standard deviation of the break-even point.
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Figure 5. Screening for ribosomal transcripts. We used ribosomal
transcripts as input to a whole human transcriptome TEPSS search.
The plot shows a lift curve, constructed by leaving out one ribosomal
gene of the input, and searching the genome with the rest of the
ribosomal transcripts. The x-axis indicates at what relative rank in the
genome the gene that was left out was found in the TEPSS output
(fraction of total human transcripts represented in TissueInfo, or the
proportion of the genome that needs to be inspected to find the left out
gene). The y-axis indicates the proportion of ribosomal transcripts
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(% reported_predictions). The diagonal of the plot represents the
expected rate of random prediction. Dotted lines illustrate results
obtained when random sets of transcripts are used as input with
different scorers.
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isomerase, PDI) that was not used in the training set
[and that has been previously shown to be a target of SNO
(35)] was detected among the highest ranking results of the
TEPSS screen. Another top scoring protein is the acyl Co-
A desaturase. Although SNO has not been assessed for
this enzyme, Marra et al. (36) reported that the activity of
acyl Co-A desaturase is modulated by nitric oxide, a
strong suggestion that acyl Co-A desaturase can be
regulated by SNO. Finally, while it has not been shown
that PP2A is S-nitrosylated, this enzyme, which also ranks
highly in the TEPSS screen, dephosphorylates eNOS,
thereby regulating the activity of one of three nitric oxide
synthases (37). Association with eNOS would predictably
increase the concentration of NO and NO-derived species
that PP2A is exposed to, thereby increasing the likelihood
that PP2A undergoes SNO. A list of the top 1000
predicted targets of SNO can be found in Supplementary
Table 3. This list ranks candidate SNO protein targets for
future experimental verification.

DISCUSSION

Gene expression platforms

There are four main sources of expression data: ESTs,
serial analysis of gene expression (SAGE), massive parallel
signature sequencing (MPSS) and microarrays (1,11,38–
40). Microarrays are a popular gene expression platform
because they support flexible experimental designs where a
few conditions can be compared (i.e. tissue types, disease
states or time courses). However, EST, SAGE and MPSS
are methods that attempt to quantify the expression level
of transcripts, and as such complement microarray plat-
forms that are designed to measure fold changes between
two experimental conditions. (Microarray platforms

measure hybridization levels as an aggregate of probe
hybridization properties and mRNA abundance and rely
on fold change calculations to cancel out the effect
of probe hybridization, see Relative expression values
section in http://www.affymetrix.com/support/technical/
whitepapers/sadd_whitepaper.pdf.) Since there is a large
amount of EST data publicly available, and since a wide
variety of human tissues have been sampled by EST
sequencing projects, ESTs can be used to determine the
organism-wide expression profile of a gene. Although we
focused on this source of gene expression data in the
present study, the methods that we describe here may be
applicable to gene expression data generated from other
gene expression platforms as well.

EST data management

Various systems have been developed to manage EST data
and related information. A first category of systems is
focused on clustering ESTs into sequence contigs likely to
represent genes [i.e. TIGR Gene Indices (41), STACK (42)
or Unigene (43)]. Another type of system complements
dbEST with computational annotations to facilitate
computational analyses. For instance, our group has
previously developed the TissueInfo system to organize
information in dbEST and make it possible to calculate
tissue expression profiles for proteins, cDNAs or ESTs (11).
TissueInfo offers a tissue hierarchy [also called the
TissueInfo ontology (12)] and unambiguously maps the
tissue provenance of EST libraries to nodes of the hierarchy
(11). This type of organization greatly facilitates computa-
tional analyses with EST data and has been adopted in
various systems developed after TissueInfo (44,45).

TissueInfo links to genomics databases

The TissueInfo system differs from collections of EST
clusters. When TissueInfo is used to process a collection of
known or predicted transcripts from a genome project, the
tissue expression profiles of the transcript are unambigu-
ously linked to all the annotations maintained by the
genome database about these transcripts. Linking EST
clusters to genomic information is possible, but requires
non-trivial data integration (46). The TissueInfo web site
offers tissue expression profiles calculated from Ensembl
cDNAs that can be used directly for gene discovery. The
data files have been updated periodically since 2001.

Key advantages of TEPSS

The extension of TissueInfo described in this manuscript
makes it possible to perform TEPSS. This is a major
departure from the current practice that consists in
producing tables with tissue expression profiles and
querying these tables to identify genes of interest. The
two key differences are that (i) TEPSS do not require
a priori knowledge of the tissue expression profile that is
expected of gene candidates. The query formulation step is
therefore eliminated. (ii) TEPSS return a ranked list of
candidates that are prioritized by a quantitative score,
whereas queries of tabular data return unordered sets of
genes.
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Figure 6. Screening for SNO protein targets. This lift curve illustrates
that the TEPSS approach can effectively predict SNO targets in the
human transcriptome.

3734 Nucleic Acids Research, 2008, Vol. 36, No. 11



Methods which leverage microarray data

Various studies have presented how correlated expression
in microarray datasets can help predict function. Most of
these studies were performed on yeast datasets (10,47,48),
and cannot be directly compared to the results that we
present here since tissue EST data are not available for
yeast. A few studies have focused on human datasets and
provided web-based tools to identify the genes most cor-
related to a query gene across multiple datasets [see (49)
and Gemma, available at http://www.bioinformatics.
ubc.ca/pavlidis/lab/software.html]. As of writing, we are
not aware that these tools can identify genes most
correlated to a group of genes provided as input and
therefore could not benchmark TEPSS against their
results. Methods that leverage microarray data can often
detect negative correlation between the expression levels
of transcripts. The presence of negative correlation in a
time course experiment may indicate negative feedback
(i.e. one transcript codes for a protein which down
regulates the expression of the second transcript). The
TEPSS approach can identify negative correlation in the
expression of transcripts across tissues (when scoring with
the Pearson scorer, any score below zero indicates
negative correlation). However, contrary to time course
experiments, negative correlation is seldom observed
across tissues. The primary reason for this difference is
that for two transcripts to be negatively correlated in a
time course experiment, the two transcripts must both be
expressed in the same cell type (and thus tissue). These
transcripts are therefore likely to yield TEPSS scores
which indicate positive tissue expression correlation.

Novel contributions

In a pioneering work, Ewing and Claverie have shown
that expression profiles from EST data can be used to
predict functional similarity (8). The present study builds
on this initial observation, but differs in the following
specific contributions. (i) While Ewing and Claverie used a
clustering approach to group functionally related Unigene
clusters, we formalize the functional prediction problem as
a similarity search in the space of tissue expression
profiles. This formalism presents the advantage that we
can predict transcripts that are similar to any arbitrary set
of input transcripts, with respect to their tissue expression
profile. (ii) A second contribution of this study is the
description of tissue expression scoring schemes that out-
perform the Pearson correlation measure described in (8).
(iii) We evaluate the TEPSS approach by leveraging
protein–protein interaction datasets and the large amount
of EST data available today and show that TEPSS can
predict non-trivial functional relationships. (iv) Finally,
our comparison of the predictive ability of different
TEPSS scorers suggests that the level of expression of
two transcripts in tissues is not a strong predictor of the
ability of the proteins coded by the transcripts to interact
(proteins appear equally likely to interact if they are
expressed at similar or very different levels in the same
tissue).

Scorers as tools for hypothesis testing

Comparing the performance for two different scorers can
be used for hypothesis testing. For example, comparing
the performance of the minimum evidence and confidence
scorers may serve to test whether the level of transcript
expression is an important factor when predicting inter-
acting proteins, because these scorers differ in how they
reward large quantitative expression differences in the
same tissue. In the present evaluation, we found that
proteins are as likely to interact whether they are
expressed at similar levels in tissues or at different absolute
levels. Pairing different scorers can help test additional
hypotheses. The TEPSS program makes it easy to
implement new scoring schemes to test new hypotheses
with large protein–protein interaction datasets or other
validation benchmarks. In addition to the ad hoc scorers
presented in this manuscript, we anticipate that prob-
abilistic scorers will also be developed for TEPSS.
Performance evaluation of these scorers on different
functional prediction tasks will be presented elsewhere.

Guidelines for scorer selection

Our results indicate that some of the TEPSS scorers
perform better than others in discriminating between
interacting and non-interacting protein pairs. According
to this benchmark, the binary scorer clearly outperforms
other scorers (Table 1). However it is not clear if the
binary scorer is the best choice for each type of application
TEPSS can be applied to. For instance, in the cytosolic
ribosome screen (Figure 5), the normalized confidence
scorer (second best performance on the protein–protein
interaction benchmark) outperforms the binary scorer.
This suggests that the choice of scorer will depend on the
problem at hand. The lift curve shown in Figure 5 suggests
a procedure to determine which scorer will work best for a
given problem. In this case, different scorers were tried
and the one that produced the best discrimination in a
leave-one-out evaluation would be selected to perform the
final prediction screen. The TEPSS program automates
the calculations of the leave-one-out lift curves to facilitate
scorer selection (option –mode loo-forward).

High TEPSS scoring pairs are enriched
in reported interactions

Our results show an improvement in the likelihood of
identifying reported pairs of interacting proteins with
respect to random expectation. Other methods of predict-
ing protein–protein interactions have been validated in a
similar manner. For instance, Espadaler et al. achieved
about a 6-fold improvement over random when predicting
interacting pairs using structural data about protein–
protein interfaces and sequence data (0.53% versus
0.09%, respectively) at 1.8% coverage [dataset I2 in ref.
(25)]. The 22-fold enrichment at the same coverage
observed in the present study therefore compares favor-
ably with a protein–protein interaction prediction method
that leverages structural and sequence information.
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Ribosomal screen

The TEPSS screen of the ribosome shows that the method
correctly assigns high ranks to proteins that contribute to
this macromolecular complex, confirming what others (10)
have shown. Using a limited EST dataset from six tissues,
Bortoluzzi et al. (50) found that there were 13 RPs with
‘differential’ expression profiles (i.e. they were significantly
overexpressed in one tissue). TEPSS successfully give
relatively high ranks to those RPs. Most interestingly,
TEPSS also give high ranks to proteins that are not
directly part of the ribosomal complex, but that are
directly interacting with this complex.

SNO screen

We used TEPSS to predict novel targets of protein SNO.
The identification of these proteins is a challenging
bioinformatics problem that has hitherto not been
solved successfully. For example, we have recently
shown that the primary sequence flanking cysteine
residues cannot account for the observed SNO selectivity
(34). Greco et al. (51) recently reported that they identified
a sequence motif responsible for SNO. However, this
study did not adequately control for homology in the
SNO proteins that made up the SNO training set (the
training set included several proteins of the same family,
which are expected to be conserved over the entire
sequence). The negative training set was randomly
chosen and did not include the compositional bias found
in the SNO protein set. Since the composition of the
sequences in an alignment is well known to bias the result
of naı̈ve estimates of conservation (52), it is likely that the
‘motif’ reported by Greco et al. can be explained in large
part by the compositional bias of the SNO training set
used in that study. Our report that SNO targets can be
predicted with the TEPSS approach therefore offers a
significant tool for unbiased identification of protein that
may be susceptible to SNO.
In summary, TEPSS is a novel approach to functional

prediction using EST data. TEPSS are especially useful in
discovering functionally similar genes in higher eukar-
yotes, since EST data are plentiful for these organisms.
Because TEPSS are not sequence based, they can be used
as a complementary approach to approaches that rely on
sequence similarity in the coding sequence. The TEPSS
software is distributed under the Gnu General Public
License as part of the TissueInfo package (available from
http://icb.med.cornell.edu/crt/tissueinfo/index.xml).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Francesca Demichelis for her critical reading of
the manuscript. The authors acknowledge support from
the resources of the HRH Prince Alwaleed Bin Talal Bin
Abdulaziz Alsaud Institute for Computational Bio-
medicine and the David A. Cofrin Center for Biomedical
Information at Weill Cornell. DA acknowledges financial

support from the Juan de la Cierva program of the Spanish
MEyC (INFOBIOMED-NoE, IST-507585). BO acknowl-
edges the grant BIO02005-00533 from the MEyC. This
workwas supported byNational Institutes of HealthGrant
HL80702 (to SSG). Funding to pay the Open Access
publication charges for this article was provided by the
National Institutes of Health.

Conflict of interest statement. None declared.

REFERENCES

1. Adams,M., Kelley,J., Gocayne,J., Dubnick,M., Polymeropoulos,M.,
Xiao,H., Merril,C., Wu,A., Olde,B. and Moreno,R. (1991)
Complementary DNA sequencing: expressed sequence tags and
human genome project. Science, 252, 1651–1656.

2. Boguski,M., Lowe,T. and Tolstoshev,C. (1993) dbEST—database
for ‘‘expressed sequence tags’’. Nat. Genet., 4, 332–333.

3. O’Dowd,B., Nguyen,T., Marchese,A., Cheng,R., Lynch,K.,
Heng,H., Kolakowski,L. and George,S. (1998) Discovery of three
novel G-protein-coupled receptor genes. Genomics, 47, 310–313.

4. Marchese,A., Nguyen,T., Malik,P., Xu,S., Cheng,R., Xie,Z.,
Heng,H., George,S., Kolakowski,L. and O’Dowd,B. (1998) Cloning
genes encoding receptors related to chemoattractant receptors.
Genomics, 50, 281–286.

5. Haridas,V., Ni,J., Meager,A., Su,J., Yu,G., Zhai,Y., Kyaw,H.,
Akama,K., Hu,J., Van Eldik,L. et al. (1998) TRANK, a novel
cytokine that activates NF-kappa B and c-jun N-terminal kinase.
J. Immunol., 161, 1–6.

6. Chen,H., Kung,H. and Robinson,D. (1998) Digital cloning:
identification of human cDNAs homologous to novel kinases
through expressed sequence tag database searching. J. Biomed. Sci.,
5, 86–92.

7. Max,M., Shanker,Y., Huang,L., Rong,M., Liu,Z., Campagne,F.,
Weinstein,H., Damak,S. and Margolskee,R. (2001) Tas1r3,
encoding a new candidate taste receptor, is allelic to the sweet
responsiveness locus sac. Nat. Genet., 28, 58–63.

8. Ewing,R. and Claverie,J. (2000) EST databases as multi-conditional
gene expression datasets. Pac. Symp. Biocomput., 430–442

9. Allocco,D., Kohane,I. and Butte,A. (2004) Quantifying the
relationship between co-expression, co-regulation and gene function.
BMC Bioinformatics, 5, 18.

10. Jansen,R., Greenbaum,D. and Gerstein,M. (2002) Relating
whole-genome expression data with protein-protein interactions.
Genome Res., 12, 37–46.

11. Skrabanek,L. and Campagne,F. (2001) TissueInfo: high-throughput
identification of tissue expression profiles and specificity.
Nucleic Acids Res., 29, E102–2.

12. Campagne,F. and Skrabanek,L. (2006) Mining expressed sequence
tags identifies cancer markers of clinical interest. BMC
Bioinformatics, 7, 481.

13. Aragues,R., Jaeggi,D. and Oliva,B. (2006) PIANA: protein
interactions and network analysis. Bioinformatics, 22, 1015–1017.

14. Kerrien,S., Alam-Faruque,Y., Aranda,B., Bancarz,I., Bridge,A.,
Derow,C., Dimmer,E., Feuermann,M., Friedrichsen,A., Huntley,R.
et al. (2007) IntAct—open source resource for molecular interaction
data. Nucleic Acids Res., 35, D561–D565.

15. Salwinski,L., Miller,C.S., Smith,A.J., Pettit,F.K., Bowie,J.U. and
Eisenberg,D. (2004) The database of interacting proteins: 2004
update. Nucleic Acids Res., 32, D449–D451.

16. Alfarano,C., Andrade,C.E., Anthony,K., Bahroos,N., Bajec,M.,
Bantoft,K., Betel,D., Bobechko,B., Boutilier,K., Burgess,E. et al.
(2005) The biomolecular interaction network database and related
tools 2005 update. Nucleic Acids Res., 33, D418–D424.

17. Chatr-aryamontri,A., Ceol,A., Palazzi,L.M., Nardelli,G.,
Schneider,M.V., Castagnoli,L. and Cesareni,G. (2007) MINT: the
molecular INTeraction database. Nucleic Acids Res., 35,
D572–D574.

18. Mewes,H.W., Frishman,D., Mayer,K.F., Munsterkotter,M.,
Noubibou,O., Pagel,P., Rattei,T., Oesterheld,M., Ruepp,A. and
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