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ABSTRACT: The performance of multilevel quantum chemical
approaches, which utilize an atom-based system partitioning
scheme to model various electronic excited states, is studied.
The considered techniques include the mechanical-embedding
(ME) of “our own N-layered integrated molecular orbital and
molecular mechanics” (ONIOM) method, the point charge
embedding (PCE), the electronic-embedding (EE) of ONIOM,
the frozen density-embedding (FDE), the projector-based
embedding (PbE), and our local domain-based correlation
method. For the investigated multilevel approaches, the second-
order algebraic-diagrammatic construction [ADC(2)] approach
was utilized as the high-level method, which was embedded in
either Hartree−Fock or a density functional environment. The
XH-27 test set of Zech et al. [J. Chem. Theory Comput., 2018, 14, 4028] was used for the assessment, where organic dyes interact
with several solvent molecules. With the selection of the chromophores as active subsystems, we conclude that the most reliable
approach is local domain-based ADC(2) [L-ADC(2)], and the least robust schemes are ONIOM-ME and ONIOM-EE. The PbE,
FDE, and PCE techniques often approach the accuracy of the L-ADC(2) scheme, but their precision is far behind. The results
suggest that a more conservative subsystem selection algorithm or the inclusion of subsystem charge-transfers is required for the
atom-based cost-efficient methods to produce high-accuracy excitation energies.

1. INTRODUCTION
Electronic structure modeling is becoming more and more
important in the fields of chemistry, biology, and materials
science as accurate predictions are more and more affordable
for quite large systems. The computational costs of the
traditional, highly accurate methods increase rapidly with the
size of the system: the calculation time of the equation-of-
motion1 or linear-response2 coupled-cluster method with
single and double excitations (CCSD), which is commonly
considered as a sufficiently accurate technique for most
applications, scales as the sixth power with the system size.
The expenses of CCSD quickly become intractable for most of
chemists’ interest; thus, today’s routinely used method is the
time-dependent density functional theory (TD-DFT)3,4 based
upon the Kohn−Sham (KS) formalism,5 as its computational
costs scale as the fourth power of the system size if a hybrid
functional is employed. On the other hand, the accuracy of
TD-DFT is rather limited6,7 in the case of Rydberg states or
excitations with charge transfer character. A popular choice to
overcome the failures of TD-DFT is the systematically
improvable algebraic diagrammatic construction (ADC)
technique,8 but its second-order variant [ADC(2)], which
has the lowest computational cost, still scales as the fifth power

of system size. As a result, it can only be used for medium-sized
molecules, for example, typical organic dyes.
However, it is essential to model the excited states of

extended systems, for instance, DNA-related excited-state
processes and DNA−chromophore interactions.9−13 To
circumvent the scaling of traditional methods, one can
partition a large system at the atomic level into a chemically
relevant (active) subsystem, which is treated with a high-level,
costly method, and an environmental subsystem, where a fast,
more approximate method is employed. The well-known
quantum mechanics/molecular mechanics (QM/MM)14,15

technique utilizes this approach, but “our own N-layered
integrated molecular orbital and molecular mechanics”
(ONIOM)16 scheme also has these basics. In these models,
the borders of the subsystems are usually handled by capping
(link) atoms to saturate dangling bonds, and the environ-
mental subsystem can polarize the active subsystem through
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point charges. They are efficient and simple to implement as
there is no need to modify the quantum chemical code, and the
subcalculations can be easily parallelized. Their downside is
that the subsystems can only be separated effectively along
single, apolar bonds by link atoms, the point charges can
overpolarize the electron density of the active subsystem if they
are spatially close, and it is not always straightforward to select
the atoms of the active subsystem.17−19 Note that these effects
can be more pronounced for excited-state calculations.
Moreover, the predefined or generated point charges, which
are usually parametrized to reproduce the ground-state
electron density, may not be the most suitable representation
of the environment.20 In the case of the ONIOM framework,
the computation of high-energy excitations, which are
necessary for full spectrum simulations, also becomes problem-
atic since the order of states of various subsystems may
interchange, and the simple subtraction technique may use
inappropriate states for the extrapolation.21,22

One possible solution to the problems caused by point
charges and link atoms is the projector-based embedding
(PbE) technique of Manby and Miller,23 which allows for the
combination of high-level DFT or wave function theory
(WFT) methods with cost-effective DFT methods. The
algorithm, which has also been greatly improved in the past
decade,24−32 follows a top-down strategy: after solving the low-
level KS equations of the whole system, the KS molecular
orbitals (MOs) are localized, and the system is split up at the
MO level. Subsequently, a high-level calculation is performed
in the constant potential of the environment, while the MOs of
the environmental subsystem are kept fixed through projection.
In the case of excited states, the problem of the virtual
subspace localization may arise, but the method has been
successfully applied with the fragment localization scheme of
Mayhall and Claudino33 by Jagau and Parravicini.34

Another multilevel approach is the frozen density embed-
ding (FDE) theory of Weselowski and Warshel,35,36 which
follows a bottom-up strategy: the system is partitioned into
many subsystems�typically each solvent molecule around a
solute is considered as a separate subsystem or fragment�and
then the electron density of the predetermined fragments of
the environment is calculated independently. Finally, the
potential of the environment at the active subsystem is
constructed as the sum of the fragment potentials, and an
active subsystem calculation is carried out in the presence of
the embedding potential. This approach is less demanding
compared to the PbE technique since no calculation is
required on the entire system. On the other hand, sufficient
accuracy can only be ensured for noncovalent fragments
because the nonadditive kinetic energy potential, which is an
artifact of the overlapping environmental MOs, is not known.
Note that previous studies showed28,37 that it is necessary to
use a sizable active subsystem to minimize the error of the
QM/MM and PbE calculations, and as a result, the overall
expenses of such schemes are typically dictated by the costs of
the high-level calculation.
Despite the improved characteristics of PbE and FDE over

the QM/MM and ONIOM approaches, the manual selection
of atoms of the active subsystem is still not avoided, and the
results may largely depend on chemical intuition. In contrast,
the subsystem formation of today’s most advanced local
correlation techniques38−46 is solely based on the localization
of MOs and the inclusion of important orbitals is fully
automatic; thus, the most costly calculations are only

performed in the most important but reduced subspaces.
The errors of the local correlation schemes are, as compared
with the canonical methods, marginal if an appropriate set of
subspace truncation parameters is applied, while the computa-
tional costs are reduced by at least an order of magnitude.
However, these algorithms can also be classified into the top-
down class of layering approaches, because their first step is to
solve the Hartree−Fock (HF) equations, which can have
substantial costs even if cost-reduction techniques are
utilized.47−49

Overall, it is not clear which of these approaches has the best
trade-off between accuracy and computational cost for
noncovalent systems. Since in this case, the selection of the
chemically relevant region is straightforward, the focused
models may become competitive with local correlation
approaches. Thus, in this study, we examine the performance
of various ONIOM, PbE, FDE, and local correlation
techniques for the calculation of excitation energies on the
XH-27 test set proposed by Zech et al.,50 which consists of
medium-sized organic dyes surrounded by solvent molecules.
This also provides an opportunity to test the effect of virtual
orbital localization on excitation energies for the first time in
the case of PbE approaches for a wider range of systems. In the
following section, the theoretical basics of the employed
methods are discussed, which will be followed by the
assessment of their performance in extensive benchmark
calculations.

2. METHODS
In this section, the basics of the ONIOM, PbE, and FDE
theories are presented, and our local correlation scheme is
briefly outlined. Before the discussion of their theories, a few
notations are introduced which will be used throughout the
article.
The active and the environmental subsystems will be

denoted with large capital letters A and B, respectively, and
these will appear in the upper right index of the subsystem-
specific quantities. Roman numbers I and II refer to the high-
and low-level methods, respectively, and these will appear in
the lower right index of a given quantity. The serial numbers of
the corresponding electronic states 0, 1, 2, ..., r are displayed
after the roman number, separated by a comma. The MOs (ϕ)
are linear combinations of the atomic orbitals (AOs, χ). The
bar symbol on top of the various quantities will denote a
subsystem-restriction on the utilized AOs, furthermore, the
usual ϕi, ϕj, ϕk and ϕa, ϕb, ϕc notations are reserved for the
occupied and virtual MOs, respectively. For example, the
ground-state density matrix of the active subsystem which is
determined by a high-level method is denoted by DI,0

A , and this
also means that the subsystem MOs are expanded in the AOs
of the full (super) system. In the case of DI,0

A , the MOs are
expanded only in the AOs that are positioned on the atoms of
subsystem A. R will label the coordinates of atoms, while the
coordinates of electrons will be denoted by r. Only closed shell
systems will be discussed, moreover, atomic units and Dirac’s
bra-ket notion will be used throughout.
2.1. ONIOM Scheme. In the original, simplest version of

the ONIOM approach, which is a mechanical embedding
(ME) type approach, the energy (E) of the system in its rth
electronic state can be calculated by the following subtractive
formula
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where RL denotes the coordinates of the link atoms (if any)
and hydrogen atoms are typically used as capping atoms
between carbon−carbon bonds. For the sake of simplicity, this
dependency will be omitted, as link atoms are not used in this
study. An important characteristic of the above formula is that
the interaction energy of the subsystems is only accounted for
at the low-level, and the density matrices of the active
subsystem are calculated in vacuo. The excitation energy, ωr, of
the ONIOM scheme can be obtained by subtracting the
ground state energy from the energy of electronic state r:

= E Er rONIOM ME, ONIOM ME, ONIOM ME,0 (2)

Note that utilizing the subtraction scheme for the excitation
energies of the independent calculations gives the same
expression,

= +r r r rONIOM ME, II,
AB

II,
A

I,
A

(3)

where dependency of the excitation energies on the density
matrix is omitted from the notation and similar formulas can
be derived for the oscillator strengths. The ONIOM-ME
procedure accounts for excitations in the whole system,
including states with charge transfers between subsystems,
and if the ωII,r terms are omitted, we arrive at the simple
vacuum embedding technique. A major disadvantage of this
simple subtraction scheme is that it can be applied in a black-
box manner only to the simulation of full spectra because eq 3
implies that the rth electronic state of subsystems A and AB are
the same, but this is not guaranteed, especially for high-energy
excitations. In this article, we will not deal with this problem as
only the energetically lowest transitions were considered for
such methods, and we recommend the work of Caricato et al.
for the interested readers.21,22

A more advanced approach is the electronic embedding
(EE) variant of ONIOM, where the subsystem energies have
additional dependency:

= [ ] [ { } { }]

+ [ { } { }]

E E E q

E q

D D R

D R
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r r r r

r r

ONIOM EE, II,
AB

II,
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II
A

II,
A B B

I,
A

I,
A B B

(4)

Here {qB} represents the point charges that are associated with
the atoms of subsystem B. These charges affect the electron
densities of the active subsystem at both low and high levels
through an embedding potential, FONIOM EE,

=
| |

F
q

R r
( )ONIOM EE

B

B

B
(5)

where the summation runs over the atoms of subsystem B, and
this potential is added to the core-Hamiltonian of the self-
consistent field (SCF) equations of the active subsystem. Note
that eq 4 is only valid when predefined point charges are
employed, but the charges can also be generated on-the-fly
using the ground-state density matrix of the full system
calculation. The point charge representation of the environ-
ment usually has moderate effect on the outcome of the
calculations, and it is not clear which atomic charge-
determination approach performs the best.20,51 As before, the
subtraction scheme can be used to obtain the excitation

energies of the ONIOM-EE method from the subsystem
excitations as

= [{ } { }}]

+ [{ } { }]

q

q

R

R

;

;

r r r

r

ONIOM EE, II,
AB

II,
A B B

I,
A B B

(6)

where again, the density-matrix dependency of the excitation
energies is omitted from the notation. In ONIOM-EE, similar
to the ME version, all excitations of the system are described at
least at the low level, including the charge transfer ones.
However, the incomplete spectrum simulations could still be
error-prone due to the possible inconsistencies in order of
electronic states. The ONIOM-EE scheme can also be easily
modified into a QM/MM-like model by omitting rII,

AB and

rII,
A at least for cases where the active subsystem excitations

are the only relevant processes. This variant will be referred to
as point charge embedding (PCE).
2.2. Projector-Based Embedding. Using the previously

discussed system-partitioning approach, the ground-state
energy of the full system using the PbE approach can be
written as

= [ ] [ ] + [ ]E E E ED D DPbE,0 II,0
AB

II,0
AB

II,0
A

II,0
A

I,0
A

I,0
A

(7)

where DII,0
AB and DI,0

A are the self-consistent densities of the
supersystem and the active subsystem, respectively, and DII,0

A is
the density of subsystem A computed from the self-consistent
MOs evaluated for the supersystem as explained below. Note
that all the density matrices are expanded over the AO basis set
of the full system. In order to evaluate the above expression,
the first step is to solve the KS equations of the full system
using a low-level DFT technique:

[ ] =F D C SC EII II,0
AB

II II II (8)

Here FII is the KS matrix of the low-level method, CII is the
MO coefficient matrix, S is the AO overlap matrix, EII is the
diagonal matrix which holds the eigenvalues of the operator,
and DII,0

AB is the density matrix of the full system,

=D C C( ) 2 ( ) ( )
i

i iII,0
AB

AB
II II

(9)

calculated using the occupied MOs of the supersystem. The KS
operator is iteratively constructed and diagonalized until self-
consistency is reached, which is followed by the evaluation of
EII,0

AB. Subsequently, the occupied and virtual MOs are localized,
and both the occupied and the virtual MOs are assigned to
subsystem A or B. Using these localized KS MOs, LII, the
density of the active subsystem can be determined as

=D L L( ) 2 ( ) ( )
i

i iII,0
A

A
II II

(10)

which defines the corresponding energy term, EII,0
A . In addition,

the low-level KS matrix for the active subsystem, [ ]F DII II,0
A , is

also built in order to construct the embedding potential, FPbE,
as

= [ ] [ ]F F D F DPbE II II,0
AB

II II,0
A

(11)

Using the following projector of the environmental
subsystem
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= +P L L L L( ) ( ) ( ) ( )
i

i i
a

a a
B

B
II II

B
II II

(12)

the following equation is solved for the active subsystem

=H C SC EI
A

I I I (13)

where CI and EI contain the MO coefficients and the orbital
energies of the reoptimized orbitals, respectively, andHI

A is the
modified Huzinaga-operator of the active subsystem. The latter
is defined as

= +H F SP F F P S SP F P S2I
A

I
B

I I
B B

I
B (14)

and FI is the embedded high-level operator, that is, the sum of
the high-level operator of the active subsystem and the
embedding potential:

= [ ] + [ ]F F D F D D,I I I,0
A

PbE II,0
AB

II,0
A

(15)

Note that the tilde sign emphasizes that a quantity is calculated
in the presence of an embedding potential.
After the MOs are reoptimized, the high-level energy of the

active subsystem, EI,0
A , can be obtained, and a correlation

calculation can be performed in the constant potential of the
environment. Let us point out that we use the above operator
because it keeps the sign of the eigenvalues of the
environmental orbitals; thus, the orbital sorting is less
troublesome during the second SCF run, where occupied
and virtual orbitals are included in the projector.
Note also that the subsystem operator used also maintains

the exact embedding feature of the Huzinaga operator,27,52

which means that the exact ground-state energy of the low-
level method can be reproduced when the low-level technique
is embedded into itself. The final ground-state energy of the
PbE approach can be calculated as

= + [ ]E E F D DTr ( )PbE,0 PbE,0 I I,0
A

II,0
A

(16)

where a first-order energy correction is added, which is derived
from the Taylor-series of EPbE,0 expanded around the density of
the active subsystem. After the ground-state energy is obtained,
the transition energy of electronic state r can, in principle, be
calculated as

= E Er rPbE, PbE,0 (17)

but we do not attempt to calculate the first term on the right-
hand side. Instead of trying to obtain system-wide transitions,
we focus on the excitations of the active subsystem and
evaluate the excitation energy as

= E Er rI,
A

I,
A

I,0
A

(18)

In practice, it means that an excitation energy calculation is
carried out within the active subsystem in the presence of the
embedding potential.
An alternative, less approximate version of PbE is also tested

here. In that approach, the virtual orbitals are not localized, and
the virtual MO space used for solving the equations for the
active subsystem is the original virtual space of the super-
system. Then, the second term on the right side of eq 12 is
zero, but the other equations also hold in this case.
2.3. Frozen Density Embedding. In the case of FDE, the

only option is to calculate the quantities of the active
subsystem, for example, E rI,

A or rI,
A , as the environment only

appears as an embedding potential. On the other hand, it is
more efficient because the whole system is split up into small,
manageable fragments. Note that we will only give a very brief
outline of the theory here, and the interested reader should see
the work of Zech et al.50 and references therein.
The first step of FDE is to determine the electron density of

each subsystem, and then the embedding potential is
approximated as the sum of fragment potentials,

= [ ] + [ ]F F D F D D,FDE II II,0
B

II
nad

II,0
A

II,0
B

(19)

where the last term is the potential derived from the
intersubsystem-related, nonadditive energy terms, which can
be defined generally as

= = [ ] [ ]F
E
D

F D F D
D

nad
nad

A
AB A

A (20)

Specifically, the nonadditive potential can be split into four
terms:

= + [ ] + [ ]

+ [ ]

F V J D D V D D

T D D

, ,

,

II
nad

ne
nad

II
nad

II,0
A

II,0
B

xc,II
nad

II,0
A

II,0
B

s,II
nad

II,0
A

II,0
B

(21)

where Vne
nad is the potential of the nuclei of subsystem B, JII

nad

and V xc,II
nad are the nonadditive Coulomb and exchange-

correlation (XC) potential, and Ts,II
nad is the nonadditive kinetic

energy potential. Note that the first two terms of the above
equation are classical electrostatic terms and have an analytic
form, while the last two ones are nonclassical and have to be
approximated. The usual XC potentials of the DFT functionals
can be used for V xc,II

nad , but an additional approximation has to

be employed for Ts,II
nad, which is, in fact, an artifact of the

overlapping electron densities of the monomers. When the
fragments are not covalently bound, the choice of the
functional form of Ts,II

nad has a minor effect,; otherwise, the
FDE model fails.
2.4. A Local Domain-Based Approximation. Our

recently proposed local domain-based ADC(2) approach [L-
ADC(2)]46 is also tested in this study. In this scheme, a
compact, excitation-specific local domain is constructed for
each transition, which includes all the important MOs for the
excitation and the electron correlation. In addition, the virtual
space of the resulting domains are further reduced, relying on
the virtual natural orbital (VNO) approximation.45 This
algorithm results in significant savings in computation time
and enables us to extend the size of molecular systems that can
be studied. Our numerical experience has shown that, using
conservative predefined cutoff parameters, the mean absolute
error introduced by this combined approach is only 0.015 eV.
The speedups, of course, strongly depend on the nature of the
excitation and electronic structure. Nevertheless, at least an
order of magnitude savings can be expected in computation
time. At the same time, 50-fold speedups were also gained even
for systems of smaller than 100 atoms using triple-ζ basis sets
with diffuse functions. Furthermore, as it was demonstrated,
molecules of up to 400 atoms can be routinely treated. One of
the major advantages of this scheme over the former ones is
that it can be used in a black-box manner. On the other hand,
the solution of the HF and configuration interaction singles
(CIS) equations is required for the entire system. Accordingly,
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the CIS problem is the rate-determining step in this case. As
the considerations regarding the approximations and their
implementations are presented in refs 46 and 45 in detail, only
a short overview of the approach is presented here.
The basic assumption of the local domain construction is

that only a small subset of MOs contributes dominantly to a
transition, and the number of these orbitals does not increase
linearly with the size of the system. It is essential to keep in
mind that the domain should contain all the MOs required for
the adequate description of the ground and excited state
simultaneously. To select the most important MOs involved in
the excitation; first, the CIS eigenvalue problem is solved.
Thereafter, the occupied MOs are localized, and projected
atomic orbitals are constructed to span the virtual space. The
CIS eigenvector is transformed to the basis sets obtained, and
the importance of the corresponding orbitals is analyzed. This
procedure selects the essential orbitals for the CIS wave
function; however, it is well-known that the CIS solution could
be an inappropriate description of the transition. Nevertheless,
it can be assumed that the orbitals involved in the excitation
are spatially close; for example, they can be found on the same
chromophore group. Thus, if the domains are supplemented
with the occupied and virtual MOs lying close to the selected
orbitals, presumably all the important orbitals will be chosen.
On the one hand, this step can improve the selection based on
the CIS solution. On the other hand, as the excitations can also
occur between two distant parts of the system, the occupied
and virtual orbitals can be very far from each other. If only the
orbitals selected relying on the CIS eigenvector were used in
the calculations, the ground state correlation energy and
amplitudes would be close to zero since important occupied
and virtual MOs will be missing from the ground-state wave
function. The aforementioned completion remedies this
problem. During the local domain construction, the number
of atoms, as well as the AO and auxiliary basis sets are also
restricted. The resulting subspace is reorthogonalized and
canonicalized. Accordingly, no changes are required in an
existing ADC(2) code to calculate excited-state properties.
The virtual space of the resulting domain can be further

compressed by invoking the VNO approximation. In this case,
the virtual−virtual block of the one-particle density matrix is
diagonalized. The eigenvectors of this matrix are the VNOs,
while its eigenvalues are interpreted as the importance of the
corresponding orbitals. Consequently, using a predefined
truncation parameter denoted by εVNO, the less important
VNOs can be eliminated. Again, the VNOs should
simultaneously be ideal for the ground and excited states.
For this purpose, in our previous work, a so-called state-
averaged density matrix has been introduced,45 which is
obtained as the average of the approximate second-oder
Møller−Plesset (MP2) and CIS with perturbative second-
order correction [CIS(D)] density matrices. If the VNO
approach is used without the local domain construction, 50%
of the virtual orbitals can be safely neglected using triple-ζ
basis sets with diffuse functions, while the average absolute
error does not exceed 0.015 eV. The approximation is rather
robust as the errors and the cost reductions are independent of
the system size. Furthermore, it can be reliably used for all
types of excitations. The local domain construction and the
VNO approximation can be easily combined without any
restriction. We note that the auxiliary basis can also be
decreased using the natural auxiliary function approximation;53

however, it is out of scope in this study.

3. DETAILS OF THE CALCULATIONS
3.1. Computational Details. The PbE and ONIOM

approaches have been implemented in the MRCC suite of
quantum chemical programs and will be available in the next
release of the package.54 MRCC was utilized in all other
calculations as well. In this study, Dunning’s correlation
consistent double-ζ basis set (cc-pVDZ)55,56 was used. In
addition, the density-fitting approximation was applied to both
the ground and the excited states, and the corresponding
auxiliary basis sets of Weigend et al.57−59 were employed. The
atoms of the organic dye were selected as the active subsystem
in the case of the ONIOM, PCE, PbE, and FDE calculations.
The PbE and ONIOM calculations utilized the Perdew, Burke,
and Ernzerhof (PBE)60 functional and its hybrid version
(PBE0)61 for the exchange-correlation functional as low-level
methods. As the high-level method, the canonical ADC(2)
model was employed in these calculations. The SPADE
algorithm was used to localize the occupied and virtual
subspaces in the case of the PbE calculations, and the relevant
MOs were selected based on the change of the eigenvalues in
the singular value decomposition procedure.33

The point charges were generated on-the-fly using the
ground-state density matrix for the PCE technique and the
electronic embedding variant of ONIOM. The intrinsic atomic
orbitals (IAO) scheme62 was utilized to construct atomic
charges; moreover, Mulliken and Löwdin atomic charges63,64

were also used on the test set but excluded from the discussion
because the IAO charges seem superior (see Supporting
Information). To guarantee the integer charges of all
subsystems, the atomic charges located on the active subsystem
atoms are summed up, the integer charge of the active
subsystem is subtracted, and the remainder is distributed
equally among the atoms of the environment. After this charge-
correction, the atomic charges of the active subsystem are set
to zero.
The results obtained with the FDE technique were extracted

from the paper of Zech et al.,50 where the PBE and HF
techniques were used to generate the densities of the
fragments, and the generated densities were expanded on the
whole system (not solely on the monomers). The LDA65,66

and GGA9767−69 schemes were employed to approximate the
nonadditive kinetic energy potential, and the PBE60 method
was utilized for the exchange-correlation potential.
In all excited-state calculations, the core orbitals were kept

frozen. The assignment of excited states was performed via the
analysis of natural transition orbitals.70 The visualization of
orbitals was done using MOLDEN.71,72 The error of the
excitation energies is defined as the canonical reference
subtracted from the computed value. The statistical error
measures presented in the figures are the mean absolute error
(MAE), standard deviation (SD), and the maximum absolute
error (MAX). All of the computed excitation energies are
available in the Supporting Information.
3.2. Molecular Systems. The XH-27 benchmark set

proposed by Zech et al.50 contains chromophores of chemical
interest in a wide range of environments. These environments
include several small molecules capable of being donors and/or
acceptors in hydrogen bonds: water, ammonia, methanol,
formamide, formic acid, methyl cyanide, methanethiol, and
bromine monofluoride are used as neutral environments, while
methanoate, trifluoric acetate, and the ammonium cation are
employed to account for charged environments. While the
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choice of the environments is clearly focused on hydrogen
bonding, the distance between the environmental molecules
and the chromophores also covers a broad spectrum. As
chromophores, both ionic (xanthinyle anion, pyridiniumyl
benzimidazolide) and neutral (7-hydroxiquinoline, xanthine,
aminopurine, diketopyrrolopyrrole, uracil, benzaldehyde, and
coumarin 120) species are considered in the test set. The
system configurations are labeled by nx, where n is a number
representing the chromophore, whereas x is a letter used to
differentiate among different environments for a given
chromophore. Geometries were taken from ref 50, which
took some of the geometries from ref 73. The interested reader
is referred to ref 50 for a more complete description of the test
set.

4. RESULTS AND DISCUSSION
4.1. ONIOM and PCE Results. The errors of the excitation

energies, calculated with the various techniques, can be seen in
Figures 1, 2, and 3. It is important to note that for the ONIOM approach, the figures only show the statistics of the errors for

the lowest-energy transitions. As expected, the naive
subtraction scheme may use different electronic states for the
extrapolation, which produces unacceptable errors if higher
excited states are also considered (over 0.2 eV on average, but
the maximum error is over 2.0 eV). It is not shown, but this
cannot be alleviated by choosing a better low-level method (in
this case, PBE0 over PBE). However, for the lowest-energy
transitions, the use of hybrid DFT greatly improves the results
of both ONIOM schemes: the MAE drops from 0.40 (0.32) to
0.12 (0.07) eV for the ME (EE) technique; however, the SD is
still around 0.2 eV and the maximum errors are larger than 1
eV. The EE approach looks somewhat more accurate
compared to the ME technique, but this is not consistent for
the different types of excitations. Also, considering the nature
of the test systems, in particular, the presence of more or less
strong hydrogen bonds, it is somewhat surprising that the
ONIOM-EE method is shown to be competitive (at least, for
the low-energy excitations) with the theoretically more
advanced density-embedding schemes, although its robustness
remains questionable. Still, these data indicate that the proper
matching of electronic states with a more conservative active
subsystem selection approach can produce a method better
suited for routine applications.
Much more surprising is the finding that the PCE scheme,

which is the simplest method, provides results comparable to
the more advanced techniques, although it is of somewhat
lower quality than the PbE or FDE approaches. (Note that all
transitions, including high-energy excitations, are considered in
the statistics.) Furthermore, the errors of PCE seem insensitive
to the supersystem density matrix used, which means that this
approach, using a PBE density for the determination of atomic
charges, is the most cost-effective tool of all the investigated
techniques.
4.2. PbE and FDE Results. Overall, the PbE scheme has a

MAE of 0.10 eV, roughly twice of that of FDE. The same can
be said about the SD and MAX values. One notable property
of PbE is, as evident from the individual data presented in the
Supporting Information, that the excitation energies are
systematically overestimated. The choice of the method used
in the supersystem calculation has no significant impact on the
results, as even using HF instead of DFT leads to results of
similar quality. The restriction of the virtual orbital space to the
active domain introduces a small but definitely noticeable error
of 0.02−0.03 eV. Investigating the outliers revealed that they

Figure 1. MAEs (bar heights), SDs (whiskers), and MAXs (crosses)
of the discussed techniques, relative to canonical ADC(2)/cc-pVDZ
reference excitation energies. For FDE, the first and second acronyms
in the parentheses refer to the method used to generate the electron
density and the functional which is utilized to approximate the
nonadditive kinetic energy potential, respectively. For PbE, “loc” and
“noloc” label the approaches where the virtual space is localized and
not localized, respectively. The asterisk for the ONIOM calculations
highlights that only the lowest-energy transitions are counted in the
statistics.

Figure 2. Error measures for the discussed techniques. Only π−π*
transitions are used to calculate the statistics. See the caption of
Figure 1 for further details.

Figure 3. Error measures for the discussed techniques. Only n-π*
transitions are used to calculate the statistics. See the caption of
Figure 1 for further details.
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are predominantly of n → π* character, therefore, a separate
discussion of the π → π* and n → π* excitations will follow
below supported by Figures 2 and 3.
The first observation is that the errors of the π → π*

excitations are significantly smaller than those of n → π*. For
the former, the MAEs are 0.02 eV for calculations using the
complete supersystem virtual orbital space and 0.06 eV when
the virtual orbitals are localized on the subsystems. This is
comparable or even better than FDE’s MAE of 0.06 eV for
these transitions, especially if one considers that the FDE
results were obtained using the supersystem basis set. With this
in mind, the PbE scheme offers similar accuracy at a lower
computational cost with the localization of the virtual orbitals
or increased accuracy at comparable cost when the complete
virtual orbital space is used in the correlated calculation. While
in absolute terms, the effect of localization is the same for the
π → π* states as for the complete test set, in relative terms, the
virtual orbitals of the nonactive subspace have significant
contributions to the excitations with outlying error values.
For the n → π* transitions, the PbE technique is

significantly less accurate than FDE, having up to five times
larger average absolute errors. This can be attributed to the
general nature of the systems included in the benchmark set as
the central chromophore forms hydrogen bonds with the
environmental molecules where the lone pair orbitals of the
solute are inherently involved. While the localization of the
virtual orbitals can have a sizable impact on a few selected
excitations, it is statistically insignificant compared to the effect
the frozen occupied orbitals of the environment can have on
the error. A common property of the outliers is that in the
reference full-system ADC(2) calculations, a considerable
electron density is observed on the environmental molecules
(CT character), while this is not possible in the PbE method.
4.3. Local Domain-Based Calculations. Finally, the

overall performance of our L-ADC(2) approach45 is discussed.
Again, the results are collected in Figure 1. Inspecting the
errors obtained, the overall MAE is no more than 0.023 eV. In
other words, the errors can be reduced by a factor of 2
compared to the FDE approximation, whereas the improve-
ments are even more significant in comparison with the
embedding approaches presented in this study. The precision
of this approach is also outstanding: the lowest SD, precisely
0.018 eV, is achieved, while it is around 0.060 and 0.100 eV for
the FDE and PbE schemes, respectively. Salient errors cannot
be identified as the MAX is also favorable; the largest error is
only 0.063 eV.
The errors are also fairly well-balanced regarding the

excitation types as no significant differences in the accuracy
can be observed between the π → π* and n → π* excitations
(see Figures 2 and 3). The SDs and MAXs are practically
identical for the two types of transitions, the former measure
being 0.014 and 0.015 eV, while the MAX is 0.063 and 0.056
eV for the π → π* and n → π* excitations, respectively.
Inspecting the MAEs, a somewhat larger difference can be
observed with values of 0.030 and 0.014 eV for the π → π* and
n → π* set, respectively. In other words, the error is twice as
large for the former type of excitations. Nevertheless, with the
difference being no more than 0.015 eV in absolute terms, this
result is still acceptable. Interestingly, a similar tendency is seen
for the FDE approximation as well, but this is more likely to be
a result of a fortunate error cancellation of the FDE scheme as
no correlation is observed between the excitation energies and
the overlap of the densities.

The outstanding efficiency of L-ADC(2) relies on the
significant savings in computation time achieved via local
domain construction and the VNO approximation. The
reduced subspace construction decreases the number of
occupied and virtual MOs, while the resulting compact domain
contains fewer atoms as well. Accordingly, the number of
atomic orbitals and auxiliary functions is also reduced. On top
of this, the virtual basis is further compressed by invoking the
VNO approximation using εVNO = 3.5 × 10−4. The percentages
of the retained orbitals and auxiliary functions are collected in
Table 1.

The discussion of the resulting basis set sizes is rather
difficult due to the several factors that influence them.
Nevertheless, about 15% of the occupied orbitals and auxiliary
functions could be neglected. Due to the VNO approximation,
the compression of the virtual space is more notable. In this
case, 35% of the orbitals can be dropped. These favorable
results are somewhat unexpected, considering that most
systems contain fewer than 30 atoms. In the most adverse
cases, the assembled domain contains all orbitals and functions,
while the virtual subspace is only compressed moderately. For
local excitations, on the other hand, half of the occupied MOs
and auxiliary functions can safely be neglected, while the
number of VNOs can be reduced by 60%. In these cases, 30−
35-fold speedups can be realized in the ADC(2) part. These
gains are presumed to be even more radical for larger systems.
The above findings clearly demonstrate the excellent

performance of the L-ADC(2) approach. We would like to
emphasize, however, that in this procedure the HF and CIS
equations have to be solved for the entire supersystem.
Accordingly, despite the significant cost reduction, such
calculations could be more expensive for extended molecular
systems than the embedding schemes. Nevertheless, our results
indicate that the L-ADC(2) method can be an ideal candidate
for benchmarking less reliable approximations for larger
systems, where the canonical ADC(2) calculations are no
longer feasible.

5. CONCLUSIONS
In this paper, various multilevel quantum chemical algorithms
were investigated in order to test their performance in
describing (dominantly local) excited electronic states. Since
the computational costs of excited-state methods are generally
higher than those of the ground-state approaches, the
efficiency of the methods is of utmost importance when
handling extended systems. This study covers a broad range of
multilevel schemes, including the simple ONIOM-ME
approach, the point charge (PCE, ONIOM-EE) and
electron-density embedding (PbE, FDE) methods, as well as
our local electron correlation-based technique. These ap-
proaches are applied to the systems of the XH-27 test set,
where typical organic dyes interact with several solvent

Table 1. Percentage of Retained Occupied and Virtual
Orbitals and Auxiliary Functions in the L-ADC(2)
Calculations

retained occupied
MOs

retained virtual
NOs

retained aux.
functions

average 84.0 65.0 86.2
minimum 51.0 41.0 55.0
maximum 100.0 83.5 100.0
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molecules forming different hydrogen bonds. The partitioning
of such systems is trivial since the chromophore and the
solvent molecules can be selected as active and environmental
subsystems, respectively. As in the original paper of Zech et
al.,50 the ADC(2) approach was used as the reference method
for the assessment, and also the various approximate schemes
used ADC(2) to describe the active subsystem.
In accordance with the expectations, our L-ADC(2)

approach clearly proved to be the most reliable method,
showing a significant improvement in efficiency compared to
the canonical procedure despite the relatively small size of the
test systems and the basis set. Although the accuracy of the
system partitioning-based techniques was found to be close to
L-ADC(2), their precision is far behind. Overall, the FDE, the
PbE, and the PCE approaches proved to be more reliable,
whereas the ONIOM schemes provided the least accurate data.
Still, ONIOM is, in many cases, on par with the L-ADC(2)
approach when only the lowest-energy transitions are
considered, but the troubles associated with the matching of
electronic states at different levels render its application rather
difficult. It is also worth pointing out that, with the exception
of ONIOM, every scheme provided better excitation energies
than the TD-DFT method using either PBE or PBE0
functionals.
However, the assessment requires additional considerations

because several technical details can have significant impact on
the quality of the data. First, one has to be aware that the FDE
results referenced here used the AO basis set of the
supersystem; thus, one can expect that in a typical application
where only the AOs of the active fragments are considered, the
accuracy presumably would decrease. Second, the PbE scheme
appears to be not very sensitive to restrictions of the virtual
subspace, which could result in more efficient calculations as
the number of virtual MOs usually outweighs that of the
occupied ones. This and the fact that PbE can separate systems
through covalent bonds present a serious advantage compared
to FDE.
It can be asserted as a summary that more accurate results,

as was shown for the ground-state calculations, require a more
conservative system partitioning approach for the investigated
methods because strong hydrogen bonds could form an
inseparable part of the active subsystem. This also draws
attention to the description of charge transfers between
subsystems because chemical intuition could fail in predicting
the most important MOs in specific cases. Thus, improved
versions of the ONIOM-EE and the PbE approaches would
present a more competitive alternative to the L-ADC(2)
method. Based on the excellent observed accuracy of L-
ADC(2) as well as the favorable cost requirements of PCE and
PbE, we anticipate that the combination of these approaches in
future studies can present efficient alternatives for modeling
extended systems in their excited states.
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