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Shift a laser beam back and forth 
to exchange heat and work 
in thermodynamics
John A. C. Albay1, Zhi‑Yi Zhou1, Cheng‑Hung Chang2* & Yonggun Jun1*

Although the equivalence of heat and work has been unveiled since Joule’s ingenious experiment 
in 1845, they rarely originate from the same source in experiments. In this study, we theoretically 
and experimentally demonstrated how to use a high-precision optical feedback trap to combine the 
generation of virtual temperature and potential to simultaneously manipulate the heat and work of a 
small system. This idea was applied to a microscopic Stirling engine consisting of a Brownian particle 
under a time-varying confining potential and temperature. The experimental results justified the 
position and the velocity equipartition theorem, confirmed several theoretically predicted energetics, 
and revealed the engine efficiency as well as its trade-off relation with the output power. The small 
theory–experiment discrepancy and high flexibility of the swift change of the particle condition 
highlight the advantage of this optical technique and prove it to be an efficient way for exploring heat 
and work-related issues in the modern thermodynamics for small systems.

Heat and work are two core quantities in thermodynamics, a good control of which is decisive for how broadly we 
can explore this field. The most typical system related to the exchange of heat and work might be the heat engine. 
This old issue has been a relatively complete chapter in the traditional thermodynamics of the macroscopic world1 
and gained a wide application in industry2. However, due to the recent advance in the theory of small systems3–6 
and the technology for manipulating microscopic objects7–9, there has been a renewed interest in that old issue, 
but this time with a focus shifted to the microscopic scale. Nowadays, examples for microscopic heat engines 
have covered a wide spectrum, ranging from those as classical as the microscopic Stirling heat engine10,11 and the 
Brownian Carnot heat engine12 to those as versatile as the microscopic steam engine13, the Brownian gyrator14,15, 
the microscopic rotary engine16, and the single atom engine17.

Among the existing cyclic microscopic heat engines, a paradigm model is a Brownian particle under a cyclic 
variation of confining potential and temperature. This miniature system plays the same role as its macroscopic 
counterpart of the piston-cylinder model for understanding heat engines and has been experimentally imple-
mented in different ways. For instance, Blickle et al. have optically trapped the particle and heated up the 
surrounding medium to vary the real temperature10. Martinez et al. have applied a noisy electrostatic force to 
generate an artificial temperature to replace the above real temperature12. In all those experiments, a common 
feature is that the temperature and the confining potential are separately prepared. It reflects the fundamental 
difference between heat and work, distinguished by whether the transferred energy is ordered or disordered. 
In contrast to these conventional operations, this work combines the generation of temperature and confining 
potential by using a single laser beam of constant intensity in the technique of optical feedback trap (OFT) and 
applies it to realize a microscopic heat engine.

The key idea behind this technique is that to let a Brownian particle perceive a potential, U(x), it is sufficient 
to generate a force f(x, t) on that particle which satisfies f (x(t), t) = [−dU(x′)/dx′]x′=x(t) only at the instant 
location, x(t), of the particle18,19. Since the particle is moving, f(x, t) needs to change swiftly to match the above 
equality at any time t. A simple choice for such a feedback force is the force of an optical tweezers of constant 
intensity, whose magnitude on the particle is tuned by relocating the center of the tweezers. The effective potential 
Uv(x) generated by this feedback force to approach the real potential U(x) is termed a virtual potential (VP). 
Uv(x) will be close to U(x) if one can precisely detect the position of the Brownian particle and has an ultrafast 
feedback system to tune the force, f(x, t), which has been shown feasible20,21. If the time-independent U(x) is 
replaced by a time-dependent potential U(x, t) of an arbitrary shape controlled by some protocol, the strategy 
to determine its f(x, t) is the same. If an extra fluctuation is added to f(x, t), this force will additionally give a 
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virtual temperature (VT) to the particle. Owing to this relation, one should be able to simultaneously control 
the VP and VT of a stochastic thermodynamic process merely by properly shifting the center of a laser beam.

To examine its applicability, we first used the feedback force to create a virtual system (VP and VT) to mimic 
the environment of a Brownian particle confined in a real harmonic potential at a real temperature. The stiff-
nesses of that potential and the temperatures inferred from the position (acquisition-rate-dependent velocity) 
of that particle via the position (modified velocity) equipartition theorem were shown to highly coincide with 
those assigned to the experiment. When the stiffness and temperature were varied, the cumulative sums of heat, 
work, potential energy change, and kinetic energy change agreed well with those given by the analytical formu-
las. Based on this consistency, we built up a microscopic Stirling engine and determined the trade-off relation 
between its efficiency and output power, as well as the efficiency at maximum power η∗ ≈ 0.24 . The outcomes 
confirmed several theoretical predictions22,23 and experimental trends observed in other small systems10,12,20,24 
(see Figs. 2, 3, 4, 5, 6). In comparison with previous experiments, the instant particle response and temperature 
change by using the OFT reduces the theory–experiment discrepancy in the calculation of kinetic energy and 
extends the observation capability far beyond the quasi-static regime. It indicates that steering a laser beam to 
realize a microscopic engine is not only possible but even more accurate. This suggests the OFT to be a promising 
technique for studying general heat-work exchange problems in stochastic thermodynamics.

Methods
The theory and experimental setup for the optical feedback trap.  Let x(t) be the position of a freely 
moving one-dimensional Brownian particle in a surrounding medium at time t (Fig. 1a). The particle is subject 
to the thermal noise ξ f  and an external noise ξ fv (green arrow in Fig. 1b), which are Gaussian and white, with 
�ξ f (t)� = �ξ fv (t)� = �ξ f (t)ξ fv (t ′)� = 0 , �ξ f (t)ξ f (t′)� = 2γ kBTRδ(t − t ′) , and �ξ fv (t)ξ fv (t ′)� = 2γ kBTvδ(t − t ′) . 
Here kB denotes the Boltzmann constant, δ(t − t ′) represents the Dirac delta function, and TR and Tv stand 
for the room temperature and a virtual temperature, respectively. Thus, these stochastic forces will be given by 
ξ f =

√

2γ kBTRg(1) and ξ fv =
√

2γ kBTvg(1) , respectively, with g(1) a Gaussian random noise of zero mean 
and unit variance. We address that the friction coefficient γ in ξ fv is chosen to be the same as that in ξ f  as 
usual, to keep the artificial temperature Tv (an energy scale) given by ξ fv simple. If we impose a harmonic VP, 

Figure 1.   (a)–(c) The feedback protocol for generating the VP and VT. (a) Identify the particle position using 
the PSD. (b) Compute the force, fv + ξ fv , required to generate the effects of the assigned VP and VT. (c) Deflect 
the laser center by the AOD to apply the same amount of force, fot = fv + ξ fv , on the particle. (d) A schematic 
drawing of the OFT. DM: dichroic mirror, PSD: position sensitive device, AOD: acousto-optic deflector, FPGA: 
Field programmable gate array, LS: light source, BE: beam expander, and SC: sample cell.
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Uv(x) = (1/2)kvx
2 to confine the particle, the latter will experience a restoring force fv = −kvx (yellow arrow 

in Fig. 1b), with kv the stiffness of the VP. We stress that ξ fv and fv are not the real forces given by the genuine 
quantities of temperature and potential, but the artificial ones generated by the OFT.

In this experiment, the motion of the Brownian particle is in the overdamped regime, which follows the 
Langevin equation γ ẋ − fv − ξ fv = ξ f  . If the data acquisition frequency to trace the particle is fu < ∞ , only 
discrete particle positions ..., xt , xt+tu , xt+2tu , xt+3tu , ... will be recorded, where tu = 1/fu is the data acquisition 
time. This discrete dynamics will satisfy a difference equation γ (xt+tu − xt)/tu − f̃v − ξ̃ fv = ξ̃ f , with f̃v = −kvxt , 
ξ̃ fv ≡ (γ /tu)

√

kBTv(1−�2)/kotg(1) , and ξ̃ f ≡ (γ /tu)
√

kBTR(1−�2)/kotg(1) , where � ≡ 1− tu/τR and 
τR ≡ γ /kv is the relaxation time of the particle in the VP (see Supplemental Material). This form of ξ̃ fv and ξ̃ f  
will consistently yield an identical mean squared displacement of the particle dynamics for different small tu , 
irrespective of whether the particle is in a free space ( kv = 0 ) or a confined space ( kv > 0 ). For tu ≪ τR , ξ̃ fv and 

Figure 2.   The PDFs of the position fluctuations (a) and of the velocity fluctuations (b), as well as the 
corresponding power spectrum densities (c) for an increasing virtual stiffness, kv , (blue arrow) at a fixed virtual 
temperature, Tv = 0 , (or Tkin = TR ). (d) A comparison between the assigned stiffness, kv , and the measured 
stiffness, keff . The symbols in (a), (b), and (c) have the same kv values as the symbols of the same colors in (d). 
(e), (f), and (g) are similar to (a), (b), and (c), but for an increasing Tv (red arrows) at a fixed stiffness, kv = kot , 
which corresponds to α = 0 . (h) A comparison between the assigned temperature, Tkin , and the measured 
temperature, Teff . The symbols in (e), (f), and (g) have the same Tkin = Tv + TR values as the symbols of the 
same colors in (h). While the symbols in (a), (b), (c), (e), (f), and (g) are experimental values, the lines in (a), 
(b), (e) and (f) are fitting functions and those in (c) and (g) are theoretical functions given by Eq. (3). The slopes 
of the solid lines in (d) and (h) are 1.

Figure 3.   The average kinetic energy change inferred from the experimentally extracted time-averaged velocity 
in units of the thermal energy, kBTkin . The five types of symbol here have the same temperatures as those in 
Fig. 2e. The dashed curve is the theoretically derived kinetic energy change in Eq. (4).
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ξ̃ f  will reduce to the simple form 
√

2γ kBTv/tug(1) and 
√

2γ kBTR/tug(1) , respectively, as in the current experi-
ment, where tu is 100 times smaller than τR.

In the above difference equation, the forces f̃v and ξ̃ fv account for the effects of Uv and Tv to be experienced by 
the particle. Their amounts can be summed up as a net value and provided by the force of an optical tweezers, 
fot = −kot(xt − xL,t) = f̃v + ξ̃ fv (red arrow in Fig. 1c), with xL,t the center position and kot the stiffness of the 
tweezers. Therefore, ideally a requested force amount, fot , could be generated if we were able to shift the laser 
center to the position xL,t = −αxt + ξ̃ fv/kot instantaneously after the particle location xt is detected, where 
α ≡ −(1− kv/kot) is the feedback gain. However, in practice one can only achieve

with an inevitable small delay time td required for the calculation of the feedback force. Clearly, the dynamics of 
xt and xL,t are coupled to each other. Nevertheless, inserting the xL,t in Eq. (1) into the above fot equation and the 

(1)xL,t = −αxt−td + ξ̃ fv/kot,

Figure 4.   The cumulative sums of various energetic quantities during (a) an iso-T compression, where 
keff increases linearly from 10 pN/µ m to 20 pN/µ m within τ = 25 ms at Teff = 300 K, and (b) an iso-k 
expansion, where Teff increases linearly from 300 K to 1200 K within τ = 50 ms at keff = 20 pN/µ m. In (a), the 
experimentally attained 〈Q(t)〉 (red zigzag), 〈W(t)〉 (blue zigzag), 〈�U(t)〉 (purple zigzag), and 〈�K(t)〉 (green 
zigzag) are compared with the theoretically derived 〈Q(t)〉 (magenta smooth dashed) and 〈W(t)〉 (yellow smooth 
dashed). In this scale, the fluctuation of the blue zigzag line is so small that it looks identical with the yellow 
smooth dashed line. In (b), the meanings of different lines are the same as those in (a), except for the white 
dashed line, which replaces the magenta dashed line. Notably, the red line in this plot is hidden under the purple 
line. All experimentally extracted lines have been averaged over an ensemble of 104 stochastic trajectories. For 
the calculation of 〈�K(t)〉 , the sampling time for evaluating the velocity is ts = 100 µs.

Figure 5.   (a) (Top panel) A schematic drawing of the single cycle of a microscopic Stirling engine. The white-
green arrow denotes the increase of the stiffness, kv = keff , of the virtual harmonic potential from kmin = 10 
pN/µ m to kmax = 20 pN/µ m and the blue-red arrow represents the increase of the kinetic temperature, 
Tkin = Teff , from Tc = 300 K to Th = 1000 K. In process A → B (iso-T compression), keff rises linearly from kmin 
to kmax at Tc . In process B → C (iso-k expansion), Teff rises linearly from Tc to Th at kmax . In process C → D (iso-T 
expansion), keff falls linearly from kmax to kmin at Th . In process D → A (iso-k compression), Teff falls linearly 
from Th to Tc at kmin . (Bottom panel) A trajectory of the Brownian particle during a single cycle. The magnitude 
of its position fluctuations depends on the values of keff and Teff . (b) Work fluctuations during 500 cycles of cycle 
time τ = 1 ms (red) and 1s (purple). (c) The cumulative sums of work (the integrals of the curves in (b)) for 
various τ.
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latter into the above difference equation, one can decouple these two dynamics and obtain a difference equation 
purely for the evolution of the Brownian particle in the OFT (see Supplemental Material)

Following Eq. (1), the particle would behave as if it were in a real harmonic potential of stiffness kv at a real 
temperature of value Tv . When the thermal noise ξ̃ f  is also considered, as in Eq. (2), the particle will feel itself 
like at the kinetic temperature Tkin = TR + Tv . Notably, when Tv is varied in the experiment, γ is a constant 
because we do not change TR.

The experimental setup to realize the VP has been introduced in Ref.20, which can be generalized to include 
the VT effect as described above. Here we briefly sketch the setup and refer its details to Ref.20. The feedback 
control loop of the entire trapping system is depicted in Fig. 1d. The Brownian particle in the experiment is a 
polystyrene particle of 1 µm-diameter, which has a mass of m = 5.6× 10−16 kg and is immersed in water. Its 
location, xt , is detected by a position sensitive device (PSD) with a resolution of about 1 nm. This data is sent to 
the homemade LabVIEW program on a field-programmable gate array (FPGA) to compute the fot of the desired 
VP and VT. Once computed, that amount of force is applied to the particle using the acousto-optic deflector 
(AOD), which deflects the center of a laser beam of constant intensity to the position xL,t with a delay time td 
after the particle position is detected. The particle position, xt , is acquired at every 10 µ s, denoted by tu , and 105 
position data are stored every second in the FPGA before sent to the computer for further analysis. The param-
eter values used in the experiment are td = tu = 10 µ s, kot = 30 pN/µ m, γ = 1× 10−8 kg/s, and TR = 300 K. 
The stiffness of the laser trap is calibrated by two methods: the equipartition theorems and the power spectrum 
analysis25, as shown below.

Results
The position distribution and power spectrum density.  As the first step, we investigate the prob-
ability distribution functions (PDF) of the position and the velocity of the particle. Here, the velocity along a 
trajectory is calculated by v̄t = (xt − xt−tu )/tu , with a small tu . The analysis is carried out in two scenarios: (i) 
varying kv under a fixed Tv and (ii) varying Tv under a fixed kv . For case (i), the variances of the position PDF 
decrease with the increasing stiffness kv (Fig. 2a), while those of the velocity PDF remain constant (Fig. 2b). For 
case (ii), the variances of both position and velocity PDFs increase with Tv = Tkin − TR (Fig. 2e,f, respectively). 
The dependence of the PDFs on kv and Tv in these four plots shares the same feature as the PDFs under the vari-
ation of a real potential and temperature.

To inspect the fluctuations of the particle, let us further consider the power spectrum density function of the 
particle position under a feedback control of delay time td20,

with j the imaginary unit. Here, fc ≡ kot/(2πγ ) is the corner frequency of Px(f ) at α = 0 , which denotes the 
onset of the decline of Px(f ) at that α . In Fig. 2c,g, the experimentally measured Px(f ) (symbols) for various kv 
and Tv , respectively, agree very well with the theoretically predicted Px(f ) given by Eq. (3) (solid lines), where 
Tkin in that equation is related to the Tv of the symbols by Tkin = TR + Tv.

(2)γ
xt+tu − xt

tu
+ kot

(

xt + αxt−td

)

= ξ̃ f + ξ̃ fv .

(3)Px(f ) =
kBTkin

π2γ
∣

∣jf + fc + fcα exp (−j2π ftd)
∣

∣

2
,

Figure 6.   Energetics of the microscopic Stirling engine. (a) The experimentally attained βc〈WAB〉 (blue 
diamonds), βc〈WCD〉 (purple circles), βc〈QBC〉 (red triangles), and βc〈QCD〉 (yellow squares) are fitted by four 
functions of the form f (τ ) = ±1/τ + const. , where the values of βc〈WAB〉 , βc〈QBC〉 , and βc〈QCD〉 ( βc〈WCD〉 ) 
are presented on the left (right) axis labeled by EWAB,QBC,QCD ( EWCD ). Therein, the blue line is not connected to 
the leftmost blue point, because work does not obey the above 1/τ relation in this small τ regime, as observed 
in several of our experiments. (b) The dimensionless average total work, βc�W� = βc(�WAB� + �WCD�) , (red 
circles) and injected heat, βc�Q� = βc(�QBC� + βc�QCD�) , (blue squares) over a cycle are fitted by two functions 
of the same form as f (τ ) . (c) The rescaled power output, βcP = βc�W�/τ , (red circles and line) and the engine 
efficiency, η = −�W�/�Q� , (blue squares and line), where symbols are calculated from the data in (b) and the 
lines are given by Eqs. (6) and (7), respectively. The power has a peak at τ ≈ 2.8 ms (green dashed line and the 
efficiency saturates at its maximum, η∞ ≈ 0.35 , (horizontal blue dashed line) in the quasi-static limit τ → ∞ . 
The errors in all symbols from (a) to (c) are the 95% confidence interval.
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In Fig. 2c, all Px(f ) behave like Lorentzian. However, they will gradually deform to a non-Lorentzian shape 
with an emerging resonance peak if kv is further increased, in consistent with what reported before20. To use a 
VP to catch the correct effect of a sharp potential, we need to reduce tu to a sufficiently small value to avoid this 
unphysical non-Lorentzian feature. By contrast, this artifact is insignificant in Fig. 2g, where all Px(f ) are Lorentz-
ian at least up to Tv ≤ 2000 K. Since all the measured Px(f ) in this plot have the same fc (gray dashed line) and 
kot = kv , the definition fc = kot/(2πγ ) implies that an increasing noise intensity does not change the stiffness 
kv of the VP, but only the VT. Notably, the tiny peaks in the high frequency regime in Fig. 2c,g are experimental 
noises caused by the electric background or the laser intensity fluctuations, irrelevant to the above-mentioned 
prominent resonance peak.

Next, we examine whether the position equipartition theorem holds in the above virtual systems. To this end, 
let us compare the effective stiffness keff ≡ kBTkin/�x2� (effective temperature Teff ≡ kv�x2�/kB ) inferred from 
the variances of the PDFs in Fig. 2a (Fig. 2e) with the kv ( Tkin ) of the virtual system assigned to the experiment. 
In Fig. 2a,e, we have set Tkin = TR and kv = kot , respectively. In the comparison of stiffnesses, Fig. 2d shows a 
coincidence between the values of keff  and kv up to kv ≈ 40 pN/µ m (gray shadowed regime), indicating that the 
position equipartition relation, kv�x2� = kBTkin , holds for the VP system at least in this stiffness regime. For kv > 
40pN/µm , Px(f ) starts to deviate from the above-mentioned Lorentzian due to the particle overshoot20. As a 
result, the keff ≡ kBTkin/�x2� calculated from a deformed 〈x2〉 will deviate from the assigned kv . This discrepancy 
can be suppressed by reducing td . In the comparison of temperatures, Fig. 2h reveals an agreement between the 
values of Teff  and Tkin = TR + Tv within 2000 K, which validates the same equipartition relation as above in the 
VT system at least up to that temperature. Alternatively, Teff  can also be determined by the height of the plateau 
of Px(f ) at low frequencies in Fig. 2g, which rises with Tkin , as that in Fig. 2h.

The confirmed position equipartition relations in Fig. 2d,h for the position PDFs in Fig. 2a,e raise a more 
challenging question about whether the velocity PDFs in Fig. 2b,f also comply with the velocity equipartition 
relation m�v̄2� = kBTkin , with the mean velocity v̄ . Here we extend the question and test m�v̄2fs � = kBTkin for dif-
ferent mean velocities, v̄fs , averaged over a short time span ts = 1/fs , where the sampling frequency fs is smaller 
than the above-mentioned acquisition frequency fu = 1/tu . Notice that although m is absent in the overdamped 
formalism, we cannot neglect it in the discussion of the velocity equipartition relation, no matter how small the 
value of m is. One should not expect too much on that relation, because v̄fs is not the instantaneous velocity. This 
relation is especially skeptical for a large ts , as in the current experiment with ts ≥ tu > tm , where the acquisition 
time tu = 10 µ s is already much larger than the inertia time tm ≡ m/γ ≈ 56 ns.

To check the validity of the velocity equipartition relation under the above harsh condition of large ts , we 
calculate v̄fs from the particle trajectories sampled at several distinct fs between 1/2π Hz and 100/2π kHz and 
find rather diverse variances �v̄2fs � at different Tkin . However, when we consider the ratio m�v̄2fs �/(kBTkin) , they 
collapse into a simple curve, as depicted by the symbols in Fig. 3. This ratio is bounded from above by 1, indi-
cating that �v̄2fs � underestimates the variance of the instantaneous velocity. That ratio will increase with fs and 
tend to 1 at large fs to approach the conventional velocity equipartition relation. A comparison shows that the 
experimentally obtained symbols in Fig. 3 are exactly located on the theoretically predicted dashed line L(fs) in 
a modified equipartition theorem24

where T in our experiment is Tkin . Here,

is used to quantify how seriously the conventional equipartition theorem is violated, where fp = γ /(2πm) , 
fk = k/(2πγ ) , f0 =

√

fpfk  , and f1 =
√

f 2p /4− f 20  . Notably, no theory–experiment discrepancy is seen in Fig. 3, 
even when fs is as large as 104 Hz at 2000 K, which contrasts with the apparent discrepancy under an electric 
noise24. That discrepancy is hypothesized to be a consequence of the concentration-polarization process, in which 
the electrophoretic response of the Brownian particle is suppressed by the rearrangement of counterions in the 
electric double layer24. Since our Brownian particle is under an optical noise, it does not suffer from such coun-
terion problem and can respond more instantly to that optical stochastic force. This leads to an invisible discrep-
ancy in Fig. 3, which echoes the hypothesis in Ref.24.

Thermodynamic energetics under a varying potential and temperature.  Before demonstrating 
the microscopic Stirling engine, we scrutinize the nonequilibrium fluctuations of the Brownian particle in a VP 
whose effective stiffness, keff  , and temperature, Teff  , vary in time, in the regime where keff = kv and Teff = Tkin in 
Fig. 2d,h. To determine the energetics of the particle moving along a stochastic trajectory during a given process, 
we adopt the framework of stochastic thermodynamics26. Therein, Q (W) is the energy transferred by heat (work) 
from the environment to that particle and the internal energy only contains the potential energy U for an over-
damped system. While the heat Q(t) =

∫ x(t)
x(0) (∂U(k, x)/∂x)dx , work W(t) =

∫ t
0 (dk/dt

′)(∂U(k, x)/∂k)dt′ , and 
potential energy change �U(t) = U(t)− U(0) can be measured along a trajectory, the kinetic energy change, 
�K(t) , is basically unattainable due to the difficulty of tracing the instantaneous velocity of a fluctuating particle. 
However, the average kinetic energy change, 〈�K(t)〉 , over an ensemble of systems (particles) can be evalu-

(4)
m�v̄2fs �
kBT

= L(fs),

(5)L(fs) = 2f 2s





1

f 20
+

e
− fp+2f1

2fs

f1(fp + 2f1)
−

e
− fp−2f1

2fs

f1(fp − 2f1)




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ated from the change of the variance, ��v̄2fs(t)� , of the velocity v̄fs via the identity ��K(t)� = 1
2m��v̄2fs(t)�/L(fs)

24. In practice, if we define �K(t) ≡ 1
2m�v̄2fs(t)/L(fs) for each trajectory, its ensemble average over all tra-

jectories is exactly the same as the above 〈�K(t)〉 . Although this �K(t) is only an auxiliary quantity lacking 
of a physical meaning, for convenience we will regard it as an “effective" cumulative sum of kinetic energy 
change along a trajectory. While the change of the state variable U(t), or K(t), only depends on the two end 
positions of a trajectory, Q(t) and W(t) are functions of all intermediate positions along the trajectory. For 
the experimentally measured particle positions x0, xtu , x2tu , ..., xNtu within time t, the work is calculated by 
W(t) ≈ (k(t)− k(0))/(2N)

∑N
i=1[(x(i−1)tu + xitu)/2]2 and the heat Q(t) is evaluated using a Simpson-like 

quadrature formula27.
Figure 4 shows the ensemble-averages of the above cumulative sums of energetics during an iso-T com-

pression and an iso-k expansion. In both cases, the process is carried out slowly enough for the system to be 
considered as being in the quasi-static limit. For the iso-T compression in Fig. 4a, the experimentally obtained 
average heat 〈Q(t)〉 (work 〈W(t)〉 ) decreases (increases) logarithmically, as predicted by the analytical formula 
�Q(t)� = −�W(t)� = −kBTeff ln

√
keff (t)/keff (0) depicted by the magenta (yellow) dashed line.23. The average 

potential energy change, 〈�U(t)〉 , is close to zero, which, together with the above work and heat, agrees with the 
first law of thermodynamics. The average kinetic energy change, 〈�K(t)〉 , does not vary much in the whole pro-
cess, which is in consistent with the kv-independent velocity PDFs in Fig. 2b. For the iso-k expansion in Fig. 4b, 
the experimentally attained 〈Q(t)〉 agrees with the theoretical value �Q(t)� = kB[Teff (t)− Teff (0)]/2 , denoted by 
the white dashed line. 〈W(t)〉 stays close to zero, which is plausible because the shape of the VP is never changed 
during the whole process. 〈�U(t)〉 overlaps with 〈Q(t)〉 , in consistent with the first law of thermodynamics. Lastly, 
the linearly increasing 〈�K(t)〉 coincides with the equipartition theorem confirmed in Fig. 2f.

A microscopic Stirling engine.  With all relations justified above, let us move on to the microscopic Stirling 
engine10,23, in which a Brownian particle is manipulated under a time-varying VT and VP, Uv(x, t) = 1

2keff (t)x
2 , 

to convert thermal and artificial fluctuations into mechanical work, in the regime of keff = kv and Teff = Tkin 
again as in Fig. 4. In the following, k and T stand for the above-mentioned stiffness keff  between its minimum 
and maximum magnitudes, [kmin, kmax] , and temperature Teff  between its coldest and hottest values, [Tc,Th] , 
respectively. Figure 5a shows the protocol of our engine (top panel) and a single particle trajectory, x(t), recorded 
within a cycle time τ = 1 s (bottom panel). The Stirling cycle consists of four processes in the stiffness-tempera-
ture space, with the same time span, τ/4 , for each process. In the iso-T compression, the increase of k suppresses 
the fluctuations of x. In the iso-k expansion, the increase of T raises the fluctuations. In the iso-T expansion, the 
decrease of k further enhances the fluctuations. In the iso-k compression, the decrease of T yields a rapid drop of 
the fluctuation magnitude to its initial level at the beginning of the cycle.

Figure 5b depicts the fluctuations of the dimensionless work βcWi in the i-th cycle along a trajectory of 500 
cycles, where βc ≡ 1/(kBTc) denotes an inverse temperature. For a smaller cycle time, such as τ = 1 ms, the work 
fluctuates intensively between negative and positive values and has a positive average. For a larger cycle time, 
such as τ = 1 s, the fluctuations become weaker and negative in any cycle. The corresponding cumulative sum of 
work Wcum(n) =

∑n
i=1 Wi within n cycles are shown in Fig. 5c. The decline of Wcum(n) characterizes the typical 

capability of a heat engine to do work on the surrounding. However, for τ = 1 ms (red curve), the increase of 
Wcum(n) indicates that the surrounding will do work on the system. Thus, the cycle time can serve as a parameter 
to switch the direction of the energy flow of this microscopic system. The critical cycle time for the sign change 
of the work production in Fig. 5c is τ ≈ 1.4 ms, which can be evaluated from the blue curve of work in Fig. 6b.

In Fig. 6a, our experiment shows that all the observed dimensionless average work and heat in different pro-
cesses obey a similar inverse relation to τ : βc�WAB� = βc�WAB�∞ + 4AAB/τ , βc�WCD� = βc�WCD�∞ + 4ACD/τ , 
βc�QBC� = βc�QBC�∞ − 4BBC/τ  ,  and βc�QCD� = βc�QCD�∞ − 4BCD/τ  ,  with AAB = 0.19± 0.004 ms, 
ACD = 0.10± 0.004 ms, BBC = 0.34± 0.023 ms, and BCD = 0.10± 0.012 ms. Here, �·�∞ represents an ensem-
ble average in the quasi-static limit ( τ → ∞ ), 4/τ arises from the time τ/4 for each of the four processes in a 
cycle, and ACD ≈ BCD can be explained by the first law of thermodynamics. The experimentally observed 1/τ 
dependence of 〈WAB〉 , 〈WCD〉 , and 〈QCD〉 for the iso-T process agree with other theoretical analysis22,28, while that 
of 〈QBC〉 for an iso-k process has, to the best of our knowledge, never been reported before. This experimentally 
observed 〈QBC〉 resembles the low-dissipation form of 〈WAB〉 and 〈WCD〉 known in the iso-T processes22,29,30 and 
requires a further theoretical analysis.

Summing up individual values of work (heat) in Fig.  6a, one gets the dimensionless total extracted 
work, βc�W� = βc(�WAB� + �WCD�) (injected heat, βc�Q� = βc(�QBC� + �QCD�) ), during a cycle 
in Fig.  6b. Taking the analytical expressions βc�WAB�∞ = ln

√
a  , βc�WCD�∞ = −(Th/Tc) ln

√
a  , 

βc�QBC�∞ = (Th/Tc − 1)/2  ,  a n d  βc�QCD�∞ = (Th/Tc) ln
√
a  f r o m  R e f . 2 3 ,  i t  y i e l d s 

βc�W� = [1− Th/Tc] ln
√
a+ A/τ  a n d  βc�Q� = −(1/2)[1− Th/Tc]+ (Th/Tc) ln

√
a− B/τ  ,  w h e r e 

a = kmax/kmin . Here, A ≡ 4(AAB + ACD) = 1.16± 0.09 ms and B ≡ 4(BBC + BCD) = 1.89± 0.20 ms for 
the values of kmax , kmin , Th , and Tc assigned in Fig. 5a. In Fig. 6b, the dimensionless average work, βc〈W〉 , 
is positive at τ = 1 ms, decreases monotonically with the increasing τ , and converges to a negative value at 
βc�W�∞ ≡ βc(�WAB�∞ + �WCD�∞) = −0.81 , in the quasi-static limit. By contrast, the dimensionless average 
heat, βc〈Q〉 , is always positive regardless of the cycle time, rises monotonically, and approaches asymptotically 
the theoretical value at βc�Q�∞ ≡ βc(�QBC�∞ + �QCD�∞) = 2.32.

To evaluate the performance of the engine, we calculate two engine characteristics, the power output and the 
efficiency. The former is the work done by the engine per cycle time, which after being rescaled by β−1

c  is equal to
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The efficiency of the microscopic Stirling engine is the ratio of the extracted work to the injected heat,

with ηc ≡ 1− Tc/Th the Carnot efficiency. In the quasi-static limit, inserting τ → ∞ into Eq. (7) will give the 
limiting efficiency23

This efficiency is always lower than the Carnot efficiency due to the additional heat input during the iso-k 
expansion. If we replace the stiffness ratio a by the volume compression ratio, Eq. (8) will recover the efficiency 
of the macroscopic Stirling engine (without a regenerator to store the output heat).

In Fig. 6c, the measured βcP (red circles) lie rather close to the theoretical curve (red line) given by Eq. (6) 
with the A there taken from Fig. 6b. The measured efficiency (blue squares) are almost located directly on the 
theoretical curve (blue line) determined from Eq. (7). The blue line increases monotonically from a negative 
number, where τ is smaller than the intrinsic relaxation time tR = γ /kmin ≈ 1 ms, and asymptotically converges 
to its maximum value η∞ in Eq. (8) in the quasi-static limit when τ > 50 ms. The convergence process within 
milliseconds is much faster than that within seconds in a previous study10. Since Tv in our system can be more 
instantly tuned than the water temperature heated by laser in that study, we can more easily access systems far 
beyond the quasi-static regime.

As commonly known and seen in Fig. 6c, there exists a trade-off relation between the efficiency and power, 
where the latter will become negligibly small when the former arrives at its maximum at large τ . The maximum 
power, P∗ , is determined by the zero of the derivative of Eq. (6) with respect to τ . The cycle time at that P∗ is 
τ ∗ = 4A/[(Th/Tc − 1) ln a] , as depicted by the green dashed line in Fig. 6c. Inserting τ ∗ into the τ of the above 
〈W〉 and 〈Q〉 , one obtains �Q∗� and �W∗� , respectively, and subsequently the efficiency at maximum power (EMP) 
of the microscopic Stirling engine,

where α̃ ≡ B/A . For the values of A and B mentioned before Eq. (6), the above formulas imply α̃ ≈ 1.63 , 
τ ∗ ≈ 2.8 ms, βcP∗ ≈ 0.14 ms−1 , and η∗ ≈ 0.24 . Taking a series expansion of the EMP in Eq. (9), we obtain 
η∗ = ηc/(2− α̃ηc + 2ηc/ ln a) = (1/2)ηc + (α̃/4− 1/(2 ln a))η2c + O(η3c ) . It has a linear term 1/2, which fol-
lows the model-independent universal EMP property in the linear response regime28,30.

It is interesting to compare the EMP of our Stirling engine with those of other Carnot engines. Notice 
that the EMP pointed by the green dashed line in Fig. 6c is calculated under the condition of equal durations, 
τAB = τBC = τCD = τDA = τ/4 . It is stricter than the commonly derived EMP without a specified duration rela-
tion, as in Ref.28. For general engines, the EMP is bounded by ηCA = 1−

√
Tc/Th = 1−

√
1− ηc  , as proposed 

by Curzon and Ahlborn in the framework of finite-time thermodynamics31. For the specific stochastic Carnot 
engine in Ref.22, its EMP, η̄∗ = ηc/[2− ᾱηc] , looks similar to our η∗ in Eq. (9), with ᾱ the irreversible action. 
Since ᾱ can be explicitly related to the stiffness and temperature in that analytically solvable model, one can dis-
cuss whether η̄∗ is bounded by ηCA for certain parameter range or not. For general engines, unfortunately, that 
question does not have an analytical answer and can only resort to experiments or simulations. The empirical 
value of α̃ extracted from Fig. 6a provides an explicit example showing a relation between η∗ ≈ 0.24 , ηCA = 0.45 , 
and ηc = 0.70.

Discussion
With the recent active development in the thermodynamics for small systems, seeking convenient and accurate 
experimental techniques to realize and test concepts in this field becomes increasingly in demand. This work 
demonstrates how to use a single laser beam to simultaneously control heat and work to realize a microscopic 
heat engine. The results not only justify the feasibility of this idea but also feature its high accuracy. Since the VP 
and VT in this technique can be flexibly changed, one can readily modify them to mimic confining potentials 
beyond harmonic shapes and various stochastic forces, including colored and non-Gaussian noises. With these 
merits, the current study opens an attractive possibility for exploring diverse energetics related questions in the 
small world. Some recent examples include systems affected by active heat baths11,32,33 and the high-efficient heat 
engines sped up by shortcuts-to-adiabaticity protocols34.
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