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Abstract. Two forms of NADH-cytochrome b5 reduc- 
tase are produced from one gene: a myristylated mem- 
brane-bound enzyme, expressed in all tissues, and a 
soluble, erythrocyte-specific, isoform. The two forms 
are identical in a large cytoplasmic domain (Mr = 
30,000) and differ at the NH2-terminus, which, in the 
membrane form, is responsible for binding to the bi- 
layer, and which contains the myristylation consensus 
sequence and an additional 14 uncharged amino acids. 
To investigate how the two differently targeted forms 
of the reductase are produced, we cloned a reductase 
transcript from reticulocytes, and studied its relation- 
ship to the previously cloned liver cDNA. The reticu- 
locyte transcript differs from the liver transcript in the 
5' non-coding portion and at the beginning of the cod- 
ing portion, where the seven codons specifying the 
myristoylatlon consensus are replaced by a reticulocyte- 
specific sequence which codes for 13 non-charged 
amino acids. Analysis of genomic reductase clones in- 

dicated that the ubiquitous transcript is generated from 
an upstream "housekeeping" type promoter, while the 
reticulocyte transcript originates from a downstream, 
erythroid-specific, promoter. In vitro translation of the 
reticulocyte-specific mRNA generated two products: a 
minor one originating from the first AUG, and a major 
one starting from a downstream AUG, as indicated by 
mutational analysis. Both the AUGs used as initiation 
codons were in an unfavorable sequence context. The 
major, lower relative molecular mass product behaved 
as a soluble protein, while the NH2-terminally extended 
minor product interacted with microsomes in vitro. The 
generation of soluble reductase from a downstream AUG 
was confirmed in vivo, in Xenopus oocytes. Thus, differ- 
ently localized products, with respect both to tissues and 
to subcellular compartments, are generated from the same 
gene by a combination of transcriptional and translational 
mechanisms. 

B 
ECAUSE short consensus sequences involved in protein 
targeting and posttranslational modifications are of- 
ten distinct from domains mediating protein function, 

it is possible for cells to produce differently localized ver- 
sions of the same protein. For example, the consensus se- 
quence which determines the covalent attachment of myristic 
acid consists of only six amino-terminal amino acids (Towler 
et al., 1988; Kaplan et al., 1988; Buss et al., 1988), and this 
co-translational modification plays a role in protein targeting 
(Buss et al., 1986; Resh and Ling, 1990). Thus it should be 
possible to produce myristylated and non-myristylated ver- 
sions of t~he same protein, with different intracellular destina- 
tions. To investigate mechanisms by which the cell might 
achieve this goal, we have studied the biogenetic relation- 
ship between the two forms of the flavoprotein NADH-cyto- 
chrome b5 reductase (reductase), which are known to be 
produced from one gene (Leroux et al., 1975; Kobayashi 
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et al., 1990), and which are: (1) a myristylated, membrane- 
associated enzyme, involved in fatty acid desaturation 
(Strittmatter et al., 1974), and present on ER and on outer 
mitochondriai membranes of liver (Borgese and Pietrini, 
1986) and of other tissues (Tamura et al., 1987); and (2) a 
soluble erythroid form, once known as methemoglobin 
reductase (Hultquist and Passon, 1971). 

The membrane form of the reductase has a molecular 
weight of 34,000 and consists of a hydrophilic, cytoplasmi- 
cally exposed domain (flavopeptide domain) and an NH2- 
terminal membrane anchor (Kensil and Strittmatter, 1986). 
Membrane-bound reductase is N-myristylated (Ozols et al., 
1984), both in its outer mitochondrial membrane and its ER 
locations (Borgese and Longhi, 1990). Although the myris- 
tic acid may contribute to targeting and to the overall 
hydrophobicity of the membrane anchor, it is probably not 
sufficient for the interaction of reductase with membranes 
(Gordon et al., 1991). The NH2-terminal domain of the 
reductase contains a stretch of 14 non-charged amino acids 
(residues 11-24 of the primary translation product), and 
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studies with the isolated NH2-terminal peptide have shown 
that this domain penetrates deeply into bilayers (Kensil and 
Strittrnatter, 1986). Consistently, the reductase behaves as an 
integral membrane protein, since its membrane association 
is resistant to alkali (Borgese and Pietrini, 1986), and since 
it binds neutral detergents (Borgese et al., 1982). Thus, the 
primary structure of the membrane anchor of the reductase 
can be thought of as consisting of two parts: an initial stretch 
of amino acids (from position 1 to position 7) which contrib- 
utes the consensus sequence for myristylation (Towler et al., 
1988), and a downstream stretch of hydrophobic residues, 
which interact with the lipid bilayer. The precise topology 
of this domain within the membrane is not known. 

The soluble, erythrocyte-specific form of the reductase, 
plays an important role in methemoglobin reduction (Hult- 
quist and Passon, 1971). The primary structure of this pro- 
tein, purified from human erythrocytes, is identical to that 
of the cytoplasmic domain of the membrane form, with the 
first amino acid corresponding to Phe-26 of the membrane 
enzyme (Yubisui et al., 1986, 1987). This observation has 
led to the suggestion that the soluble form might be gener- 
ated from the membrane-bound enzyme by proteolytic pro- 
cessing during erythrocyte maturation (Yubisui et al., 1987). 
In contrast, on the basis of evidence generated in our labora- 
tory, which indicated the presence in erythrocyte precursors 
(reticulocytes) of a second transcript for the reductase, we 
proposed that soluble reductase might be generated by an al- 
ternative promoter or alternative splicing mechanism (Pie- 
trini et al., 1988). The difference between the reticulocyte 
(R) ~ and liver (L) transcripts was mapped to the extreme 5' 
terminus of the coding region (Pietrini et al., 1988), suggest- 
ing that the R transcript might lack only the codons specify- 
ing the myristylation consensus, and thus encode a nonmy- 
ristylated version of the reductase. 

In the present study, we show that, indeed, an exon en- 
coding the myristylation consensus is excluded from the 
R-mRNA, which is transcribed from a downstream, tissue- 
specific promoter, and, in addition, that the R-transcript gen- 
erates the soluble reductase by an unusual mechanism of al- 
ternative initiation of translation. 

Materials and Methods 

General 
Most of the work involving nucleic acids was carried out by standard proce- 
dures, described in laboratory manuals ("Current Protocols in Molecular 
Biology" (John Wiley and Sons, New York) and Sambrook et al. (1989)). 
For Southern blotting, Hybond N+ filters (Amersharn International, Amer- 
sham, UK) were used. Blots were hybridized with 32p-labeled DNA frag- 
ments or oligonucleotides. DNA fragments were labeled by random prim- 
ing, and oligonucleotides were 5' end labeled using "1"4 polynucleotide 
kinase. Sequencing of recombinant plasmids or of fragments subcloned into 
M13 vectors was carried out with Sequenase (United States Biochemicals, 
Cleveland, OH), following the instructions of the manufacturer. RNA was 
prepared from Sprague-Dawley rat tissues or reticulocytes by acid gua- 
nidinium thiocyanate-phenol-chloroform extraction (Chomczynski and 
Sacchi, 1987). Reticulocytes were obtained from phenylhydrazine-treated 
rats as previously described (Pietrini et al., 1988). For the St nuclease pro- 
tection experiments, polyA+ RNA was selected from total RNA by oligo- 
(dT)-cellulose affinity chromatography. 1st strand eDNA, to be used in 
polymerase chain reaction (PCR) experiments, was synthesized with se- 

1. Abbreviations used in this paper: L, liver; PA, polyacrylamide; PCR, 
polymerase chain reaction; R, reticulocyte. 

quence-specific oligonucleotide primers and total RNA. Reagents were 
from Amersham International, and the reactions were carried out according 
to the instructions of the manufacturer. PCR was carried out in a thermo- 
cycler from Perkin-Elmer Cetus (Norwalk, CT) or in an RNA-DNA ampli- 
fier from Violet (Biostar, Milan, Italy). Thermus aquaticus DNA polymer- 
ase and reaction buffer were from Perkin-Elmer Cetus or from Promega 
Biotec (Madison, WI). DMSO was added to all samples at a final concentra- 
tion of 10%. SDS-PAGE of [35S]methionine-labeled translation products 
was carried out on reduced, alkylated samples, as previously described 
(Borgese et al., 1982). 

Oligonucleotides 
Oligonucleotides were synthesized with a DNA synthesizer (model 380B; 
Applied Biosystems, Foster City, CA). Crude oligonucleotides were de- 
salted by gel filtration, or purified on polyacrylamide sequencing gels. The 
sequences of the oligonucleotides, and the experiments in which they were 
used, are listed in Table I. In the text, oligonucleotides are referred to with 
the Roman numerals used in the Table. 

Cloning of Reticulocyte Reductase cDNA with 
Anchored PCR 
Reticulocyte (R) 1st strand reductase eDNA was obtained from 0.5/zg of 
reticulocyte total RNA and a sequence-specific primer derived from the se- 
quence of the liver (L) clone (oligo I; see also Fig. 2). The eDNA was 
purified, tailed with dATE and amplified with an internal 3' primer (oligo 
II), and two 5' primers (oligo III-"anchor-primer-" and oligo I V -  
"anchor-"), according to the RACE protocol of Frohman et al. (1988). After 
41 cycles, the presence of amplified reductase eDNA was verified by South- 
ern blotting with a eDNA probe containing the first 140 bp of liver reductase 
eDNA. One-fifth of the sample was then reamplified as above, but with omis- 
sion of the 5' anchor-primer. The re-amplified eDNA was cut with Xho 1 
at an internal site and within the 5' anchor (see Fig. 2) and ligated into 
pGem7Zf+ (Promega Biotec). Transformants were screened for reductase 
clones by colony hybridization with the 140-bp Xho 1 fragment of L-eDNA 
(see Fig. 2). 

$1 Nuclease Protection 
Single-stranded anti-sense probes were generated by elongation of 32p 
end-labeled oligonucleotide primers (specific radioactivity: 0.5-1.0 x 107 
dpm/pmol) with Klenow DNA polymerase, on templates provided by 
reductase genomic fragments, subeloned into M13 vectors in the sense 
orientation. A Sau 3a fragment, covering exon 1, was primed with oligo V, 
and a Nco 1 fragment, covering exon 2, was primed with oligo VI (see Fig. 
3). After elongation, the probes were cut at the Eco R1 site of the M13 poly- 
linker, and purified on denaturating gels. 

10 fmol of single-stranded probe were hybridized overnight to 7 txg of 
poly(A+) RNA from rat liver or reticulocytes or of yeast total RNA in 30 
#1 of buffer containing 40 mM Pipes, pH 6.4, 1 mM EDTA, 0.4 M NaC1, 
80% formamide. Hybridization was at 48~ for the exon 1 probe versus 
liver or yeast RNA (see Fig. 3 D) and at 45~ for the exon 2 probe versus 
reticulocyte or yeast RNA (see Fig. 3 E). After hybridization, the samples 
were diluted with 10 volumes of digestion buffer (0.28 M NaCI, 0.05 M 
Na + acetate, pH 4.5 mM ZnHSO4, 10/zg/ml yeast tRNA), and incubated 
with S1 nuclease for 1 h. The concentration of S1 nuclease and temperature 
of incubation were 2,000 U/ml and 40"C, respectively, for the samples hy- 
bridized to the exon 1 probe (see Fig. 3 D); 500 U/ml and 30~ respec- 
tively, for the samples hybridized to the exon 2 probe (see Fig. 3 E). Sam- 
ples were analyzed on 6% polyacrylamide-urea sequencing gels. 

Construction of Plasmids for 
Transcription-translation Experiments 
cDNAs were subcloned into pGEM-3 (Promega Biotech) in an orientation 
which yielded synthetic mRNAs by transcription from the SP6 promoter. 
The identity of all constructs was confirmed by sequencing. 

Details of the constructs are shown in Fig. 1. L-eDNA had originally 
been subcloned as two separate fragments (pG500 and pG900) because of 
an internal Eco R1 site in the reductase sequence (Pietrini et al., 1988). A 
plasmid containing the entire coding sequence for the membrane form of 
the reductase (L-mRNA) was obtained from plasmids pG500 and pG900. 
pG500 (Fig. 1, l ine/) ,  which contains the 5' 460 bp of L-eDNA, was re- 
stricted at the unique Nco 1 site (position 34). The 3' recessed end was 
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Table L Oligonucleotides Used in the Present Study 

Oligo Sequence 

Position in cDNA clones 
or other specifications 

cDNA Position* Use 

I 
II 
HI 

IV 

V 

VI 

VII 

VIII 
IX 
X 

XI 

XII 

XIII 

XIV 

XV 

CCGGAATTCAATGGTGT 
ATTCATGTTTTCCAGGT 
GACTCGAGTCGACATCGA(T)t7 

GACTCGAGTCGACATCGA 

TGCTCAGCTGGGCCCCCAT 

AACAGGCAGAGAGGCAGTC- 
CAGAGC 
CTTGATGTCGGGGTTCTCGAG 

TGTAGAACGGTGCCACCACTG 
GCACTTGAGCCTGCTGTCCAT 
CATGAAGAGGCTGTAGACGAA- 
CCAGACCGG 
AAAGCTTGAGCCTGCTGTCCA- 
TCT 
TCTCGAGGGTGATGGCCGGTG- 
AGGAGCGCTGAAACAGCTTGA- 
TGA 
GTTCTCGAGGGTGATGGCCGG 
TGAGGAGCGCTGAAACAGCTT 
GCTGA 
GTTGCATGCTTGGCCCGCTGC 
TCTGGACTGCCTCTCTGCCTG 
TTTTGAGCCGAGTCGTA 
GTTGCATGCTTGGCCCGCTGC 
TCTGGACTGCCTCTCTGCCTG 
TTTTGAGCCGAATGGTA 

L-cDNAw 462 to 446 
L-cDNAw 438 to 422 

L-cDNAw 52 to 34 

R-cDNAII 35 to 11 

L-cDNAw 159 to 139 

Exon 1"* - 3 5  to - 1 4  
Exon 2** - 3 5  to - 1 4  
L-cDNAw 105 to 76 

R-cDNAII - 3 2  to - 13~w 

L-cDNA~ 145 to 101 

L-cDNAw 147 to 101 
R-cDNAII 

- 5  to 54 
R-cDNAII 

- 5  to 54 

primer for reverse transcriptase (Fig. 2) 
3' primer for anchored PCR (Fig. 2) 
5' primer for anchored P C R - e a r l y  cycles 

(Fig. 2) 
5' primer for anchored P C R - l a t e  cycles 

(Fig. 2) 
Generation of  single-stranded probe 

for S1 protection (Fig. 3) 
Probe for Southern blot and generation 

of  single-stranded probe for S1 protection (Fig. 3) 
3' primer for amplification in expression studies 

(Fig. 4) and in construction of  plasmid pGbk 9, 
pGbk 11, and pGbk 13 (Fig. 1) 

5' primer for amplification (Fig. 4) 
5' primer for amplification (Fig. 4) 
Probe for Southern Blot (Figs. 3 and 4) 

5' primer for amplification of  R-cDNA: construc- 
tion of  pGbk9, pGbkl0,  pGbkl4 (Fig. 1) 

3' mutantllll primer for amplification of  R-cDNA: 
construction of  pGbk 10 (Fig. 1) 

Y mutantlllt primer for amplification of  R-cDNA: 
construction of  pGbkl4  (fig. 1) 

5' mutantllll primer for amplification of  R-cDNA: 
construction of  pGbkl 1 (Fig. 1) 

5' mutantlfll primer for amplification of  R-cDNA: 
construction of  pGbkl3 (Fig. 1) 

* All sequences are given from 5' to Y. 
* The numbering refers either to the sequence in Pietrini et al. (1988) for L-cDNA or to sequences given in Figures of the present paper. When the first number 
is larger than the second one, the sequence of the oligonucleotide is complementary to the indicated region. 
w Pietrini et al. (1988). Downstream to nt. 54, the sequence is common to L- and R-cDNA. 
II See Fig. 1 B. 
** See Fig. 2 B. 
** See Fig. 2 C. 
w167 The first four bases of this oligonucleotide do not belong to R-cDNA, but provide a Hind 3 site. 
Jill Mutant bases are in bold letters. 

filled, and the cDNA fragment was excised with Eco R1 and religated into 
pGEM 3 restricted with Sma 1 and Eco R1. The resulting plasmid was then 
cut with Bam H1 and Eco R1 (Fig. 1, line 2). pG900 (Fig. 1, l ine/),  which 
contains the 896 bp of reductase cDNA downstream to the Eco R1 site, was 
cut with Eco R1 and at an internal Pvu 2 site in the 3' noncoding region 
(Fig. 1, line 2). The two fragments, obtained from pG500 and pG900 (line 
2), were force cloned into pGEM 3 cut with Bam H1 and Sma 1, to generate 
plasmid pGbk2 (Fig. 1, line 3), which contains the entire coding sequence 
for the myristylated form of the reductase, but lacks the 5' noncoding se- 
quence. To obtain a construct containing also the 5' noncoding portion of 
L-cDNA, pGbk2 was restricted with Bam H1 and Xho 1, and then ligated 
to the Bam H1-Xho 1 fragment of pG500 (Fig. 1, line 4a) to obtain pGbk 
3 (Fig. 1, line 5a). To construct a plasmid containing R-cDNA, the fragment 
which had been cloned by anchored PCR (Fig. 2), and which contained a 
5' T20 tail, was cut at the internal Xho 1 site and at the Sal 1 site of the 5' 
PCR primer. The resulting fragment was ligated to pGbk2 cut with Sal 1 
and Xho 1 (Fig. 1, line 4b), to obtain pGbk4 (line 5b). The T20 tail as well 
as the 5' non coding sequence were removed from this plasmid by removing 
the 5' Sph 1 fragment (Fig. 1, line 6a) and religating the plasmid, to obtain 
pGbk5 (Fig. 1, line 7, leJ~). A similar construct, but with deletion of the 
1st ATG of the reductase open reading frame (see Fig. 2 B), was obtained 
by blunting the 3' protruding end of the cut Sph 1 site (Fig. 1, line 6a, mid- 
dle), before religating to obtain pGbk6 (Fig. 1, line 7, middle). A plasmid 
containing the 5' noncoding sequence of R-cDNA and lacking the T20 tail 

was obtained as follows: a 159-bp fragment of pGbk4, starting immediately 
downstream to T20, was amplified with a 3' primer spanning the Xho 1 site 
(oligo VII, Table I) and a 5' primer with a Hind 3 site added at the 5' ex- 
tremity (oligo XI, Table I). This fragment was cut with Hind 3 and Xho 
1 and ligated to pGbk4 restricted with the same enzymes (Fig. 1, line 6b), 
to obtain pGbk9 (line 7, right), pGbk9 was used for the construction of mu- 
tants in the GTG codon at position 48 or in the 2nd in-frame ATG codon 
at position 88 (see Fig. 2 B), by replacement of the Sph 1-Xho 1 or Hind 
3-Xho 1 fragment, respectively, with mutant fragments generated by PCR. 
These were obtained either with a mutant 5' primer spanning the Sph 1 site 
(oligos XIV and XV, Table I), and a non-mutant 3' primer spanning the Xho 
1 site (oligo VII, Table I), to generate mutations in the GUG codon (pGbkl 1 
with GUG~GUC and pGbkl3 with GUG~AUG), or with a non-mutant 
5' primer containing a Hind 3 site (oligo XI, Table I) and mutant 3' primers 
spanning the Xho 1 site (oligos XII and XIII, Table I), to obtain muta- 
tions in the 2nd AUG codon (pGbkl0 with AUG~AUC and pGbkl4 with 
AUG~AGC). 

In Vitro Transcription and Translation 

Linearized plasmids were transcribed SP6 RNA polymerase from Promega 
Biotee, according to the protocol of the manufacturer for cotranscriptional 
capping with m7(5~Gppp(5~G. 

In vitro translations with synthetic mRNAs in the presence of high 
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Figure 1. Construction of plasmids for synthesis of wild-type and mutant reductase mRN,~s. Open rectangles represent coding region of 
reductase cDNA common to L and R types, filled and checkered rectangles represent coding sequence specific to L- and R-cDNA, respec- 
tively. Thick lines represent noncoding portions of reductase cDNA, thin lines represent pGEM 3 DNA. Abbreviations for restriction 
sites are: B, Barn HI; H, Hind 3; K, Kpn 1; N, Nco 1; P, Pvu 2; R, Eco R1; Sa, Sal 1; Sin, Sma 1; Sp, Sph 1; X, Xho 1. The indicated 
sites in the pGEM 3 polylinker are only those which were used for the constructs. See text for further explanations. 

specific activity [35S]methionine were performed in nuclease-treated re- 
ticulocyte lysates supplied by Amersham Corp. (Arlington Heights, IL) 
or Promega Biotec. Lysates were first passed through a Sephadex G-50 
column and then supplemented with the components required for protein 
synthesis at the concentrations previously used (Borgese and Gaetani, 
1983). Concentrations of K + acetate, Hepes-K +, pH 7.4, and Mg 2+ acetate 
were 110, 6, and 1.1 raM, respectively. 

In Vitro Interaction of Translation Products with 
Microsomal Membranes 
For the posttranslational interaction of the different forms of reductase with 
microsomes, translation was stopped by incubation of the samples for 10 
rain at 30~ with 1/4 volume of 8 mM cycloheximide, 8 #g/ml RNase A 
in 110 mM KCI, 1.1 mM Mg 2+ acetate. 8-#1 aliquots of these samples were 
then supplemented with 6 #1 of a suspension of rat liver microsomes pre- 
pared by differential centrifugation (Borgese and Pietrini, 1986) at 8 mg 
proteirdml in 0.25 M sucrose, 0.1 mM EDTA, 1 mM Tris-HC1, pH 7.4. 
Controls received only the buffer. After incubation for 30 rain at 30~ the 
samples were diluted with 36 #1 of 0.01 N NaOH in 0.15 M sucrose and 
layered over a 150 #1 cushion of 0.4 M sucrose, containing 0.01 N NaOH, 
in ultracentrifuge tubes of the TLA 100 rotor (Beckman Instruments, Palo 
Alto, CA). After centrifugation at 65,000 rpm for 30 min at 4~ in the 
TL-100 ultracentrifuge, the supernatants (cushion + load zone) were col- 
lected and precipitated with "[CA, while the alkali-resistant pellets were re- 
suspended with 20 #1 of water. Pellets and supernatants were analyzed by 
SDS-PAGE. 

Microinjection and Subfractionation of Xenopus 
Laevis Oocytes 
Isolation and microinjection of Xenopus laevis oocytes with synthetic, 
capped mRNAs (deriving from 7.5 ng of plasmid) was carried out as de- 

scribed in Ceriotti et al. (1991). 30 min after injection, batches of five oo- 
cytes were pulse labeled for 2 h in 5 #1/oocyte of modified Barth's medium 
(Ceriotti et al., 1991) supplemented with high specific activity lasSlmethi - 
onine (1 #Ci/#l). The oocytes were extensively washed, homogenized, and 
fractionated into membrane and supernatant fractions as described for 
"Method B" by Rapoport (1981). Buffers were supplemented with protease 
inhibitors as follows: 1 mM PMSF, 0.010 T.I.U/ml aprotinin, antipain, 
chymostatin, leupeptin, pepstatin, and bestatin, all at 2 #g/ml. 

For immunoprecipitation, equivalent aliquots of the membrane and su- 
pernatant fractions were adjusted to contain: a final concentration of mono- 
valent ions (K + + Na +) of 150 mM; a final concentration of ethylenedia- 
mine-tetraacetic acid equal to that of the MgCI2 present in the samples plus 
an additional 5 raM; 40 mM Tris-HCl, pH 7.4, 0.04 mM cold methionine, 
protease inhibitors as above, 2% Triton-X-100, and 0.25% gelatin. Samples 
were cleared by centrifugation for 10 rain at 40,000 rpm in the TLA-100.3 
rotor. Reductase was immunoprecipitated from the supernatants with atlinity- 
purified anti-rat reductase antibodies and protein A-Sepharose C1-4B (Phar- 
macia, Uppsala, Sweden), as previously described (Borgese and Gaetani, 
1980), but gelatin was included in the wash buffer. 

Results 

Cloning of Reticulocyte Reductase cDNA 
We previously showed, with RNAse A protection experi- 
ments, that rat reticulocytes contain a second transcript for 
reductase, differing from the L (liver) mRNA within the first 
50-60 nts, and suggested that this second transcript might 
encode the soluble form of the reductase (Pietrini et al., 
1988). To clone this R (reticulocyte) transcript, we used an 
anchored PCR protocol (Frohman et al., 1988), as described 
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A 

nts 500 ~000 
I I 

;: I 

J d, 

8 

-33 ACTTGAGCCT GCTGTCCATC TGGAAAACGT TGC~T-~CTT GGC CCG CTG CTC 
Met Leu Gly Pro Leu Leu 

19 TGG ACT GCC TCT CTG CCT GTT TTG AGC CGA GT___GG GTA CTC TCC CCG 
Tr F Thr Ala Ser Leu Pro Val Leu Ser Arg y~l Val Leu Set Pro 

64 GTC TGG TTC GTC TAC AGC CTC TTC~-~AAG CTG TT~-CAG CGC TCC 
Val TrD Phe Val Tvr Set Leu Phe Met Lys Leu Phe GI~ Arg Set 

107 TCA CCG GCC ATC ACC CTC GAG 
Set Pro Ala Ile Thr Leu Glu 

C 

~- MET Gly Ala Gln Leu 5er Thr~ 
Leu Set Arg Val-- 

MET Leu Gly Pro Leu Leu Trp Thr Ala Set Leu Pro Val I 

l~k~ Val Leu Ser Pro Val Trp Phe Val Tyr Ser Leu Phe MET LyS ..... 

Figure 2. Strategy for cloning the rat reticulocyte reductase cDNA 
(R-eDNA) and relationship between reticulocyte (R) and liver (L) 
cDNgs. (A) In L (liver reductase eDNA - sequence in Pietrini et 
al., 1988), the coding sequence (nts 34-936) is shown as a box and 
the 5' and 3' noncoding sequences as lines. The filled and hatched 
areas at the beginning of the coding sequence indicate the first seven 
codons of the reductase sequence (myristylation consensus) and a 
subsequent stretch of 14 codons specifying hydrophobic amino 
acids, respectively. The filled and open arrowheads indicate the po- 
sitions of the primers used for first strand eDNA synthesis from re- 
ticulocyte RNA (oligo L Table I) and for amplification with the 
RACE protocol (oligo II, Table I), respectively. In R, the portion 
of L-eDNA coding for the myristylation consensus is replaced with 
a different coding sequence (~). The 5' noncoding sequences are 
also different (swiggled line in R, versus straight line in L). The 
region downstream to the Xho 1 site, drawn with dashed lines, was 
not cloned in the present study, but RNAse A protection experi- 
ments indicate that it is identical to the L form (Pietrini et al., 
1988). Abbreviations for restriction enzymes are: R/, Eco R1; X, 
Xho 1. (B) Sequence of 5' Xho 1 fragment of R-eDNA. Portion 
unique to R-eDNA is bold faced, portion common to R- and L-eDNA 
is in normal lettering. Two ATG codons in frame with subsequent 
reductase reading frame are boxed. An in-frame GUG codon is un- 
derlined. 14 hydrophobic amino acids, encoded in the common por- 
tion of the 2 cDNAs, are underlined. (C) Comparison of predicted 
NH2-terminal amino acid sequences of products encoded in L and 
R-cDNAs. (B) This sequence is available from the EMBL/Gen- 
Bank under accession number X65191. 

in the Materials and Methods section. Transformants were 
screened for reductase clones with an L-cDNA probe, and 
three randomly selected positive clones were sequenced: two 
of these contained an Xho 1 fragment identical to that of 
L-eDNA, whereas one contained a different sequence up- 
stream of codon 8 of L-cDNA. The presence of L-type 
mRNA in reticulocytes was not surprising, since it had been 
detected also by the RNAse A protection experiments 
(Pietrini et al., 1988). The relationship between L- and 
R-eDNA is illustrated in Fig. 2. The 5' noncoding region as 
well as the first codons of the 2 cDNAs were different. More 
specifically, the first ATG of L-eDNA, in the expected con- 

sensus for initiation (Kozak, 1989; see Fig. 3 B) is followed 
by six codons which specify a sequence (Gly-Ala-Gln-Leu- 
Ser-Thr: Fig. 2 C) conforming to the minimum myristylation 
consensus (Buss et al., 1988; Towler et al., 1988). Instead, 
in R-eDNA, the first ATG was not in a favorable context for 
initiation (Fig. 2 B), and was followed by 12 codons, not 
present in L-eDNA, in frame with the subsequent reductase 
reading frame (Fig. 2, B and C). Thus, the consensus for 
myristylation was not encoded in this transcript. The full- 
length R-reductase eDNA was not cloned in the present 
study, but our previous work had indicated that, downstream 
to the differing region, the two forms of reductase mRNA 
are the same throughout the coding region and until nt 1,348 
of L-eDNA (Pietrini et al., 1988). We have not investigated 
whether there are differences downstream to this position, 
however, Northern blotting showed that the transcripts in re- 
ticulocytes and in liver were of a similar size (Pietrini et 
al., 1988). 

R-reductase m R N A  Is Generated from a 
1Issue-specific, Downstream Promoter 

Since it is known that the soluble and membrane-bound 
forms of the reductase are generated from one gene (Leroux 
et al., 1975; Kobayashi et al., 1990), it seemed likely that 
the two transcripts that we had identified were the products 
of transcription from two alternative promoters. However, it 
was also possible that the two mRNAs had a common 5' ex- 
tremity, not present in our clones, and were generated by an 
alternative splicing mechanism. The exon-intron organiza- 
tion of the rat reductase gene has been reported (Zenno et al., 
1990), however, since the authors did not know of the exis- 
tence of R-reductase mRNA, they didn't search for the rele- 
vant exon. To study the structure of the 5' portion of the re- 
ductase gene, a rat liver genomic library in lambda charon 
35 (Falany et al., 1987), kindly provided by Drs. Thomas 
Beck and Charles Kasper (University of Wisconsin, Madi- 
son, WI), was screened with cDNA probes specific for L-, 
R-cDNA, or for regions common to the two cDNAs. Three 
overlapping clones were isolated, of which one, clone B2,3, 
recognized by probes specific both for L- and for R-eDNA, 
was selected for further study (Fig. 3). 

As expected, the cDNA sequence unique to the L form, 
i.e., the 5' noncoding sequence, the initiation codon and the 
six codons specifying the myristylation consensus, were 
contained in a separate exon (which we refer to as exon 1), 
followed by an intron donor site (GT) in agreement with pre- 
viously reported data for the human (Tomatsu et al., 1989) 
and rat (Zenno et al., 1990) genes. The region upstream of 
the 5' extremity of our eDNA clone has features found in pro- 
moters of genes lacking tissue-specificity (Dynan, 1986), and 
has already been described by others (Zenno et al., 1990). 

The eDNA sequence unique to the R form (exon 2) was 
found =2,000-bp downstream to exon 1, and was also fol- 
lowed by an intron donor site (Fig. 3 C). The region up- 
stream of our R-cDNA clone has a TATA box between nts 
- 3 0  and - 2 5  relative to the start of the eDNA clone (under- 
lined between positions - 6 3  and - 5 8  of Fig. 3 C), and two 
CAAT-like sequences (consensus: GG T/C CAATCT; Be- 
noist et al., 1980) 65- and l l5-bp upstream to the start of 
the cDNA clone (underlined between positions -102 and 
- 9 7  and between positions -145 and -137 in Fig. 3 C). 
More interestingly, immediately upstream to the first CAAT- 
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Figure 3. An exon encoding 
the myristylation consensus is 
excluded from the reticulocyte 
transcript by an alternative pro- 
moter mechanism. (A) Results 
of restriction mapping and 
Southern blot analysis of ge- 
nomic clone B2,3. Eco R1 di- 
gestion of this lambda charon 
35 clone yielded four frag- 
ments, which were ordered 
on the basis of hybridization 
to cDNA or oligonucleotide 
probes. A 443 bp San 3a frag- 
ment and a 1,133-bp Nco 1 
fragment contained in frag- 
ment 2 (bold lines), which hy- 
bridized to probes specific for 
L- and R-eDNA, respectively, 
were sequenced (see B and C). 
The positions of the L-cDNA 
( 4 ) and R-cDNA ( ' ~ )  spe- 
cific sequences within these 
fragments are shown. The 
Hind 3-Sac 1 fragment, con- 
tained in fragment 3 (bold), 
which was recognized by a 
probe corresponding to the 
beginning of the common por- 
tion of L- and R-eDNA (oligo 
X, Table I) was also sequenced 
(sequence not shown in this 
figure). The position of the 
first exon common to L and 
R-eDNA (tin) within this frag- 
ment is indicated. Abbrevia- 
tions for restriction enzymes 
are: A, Acc 1; H, Hind 3; N, 
Nco 1; R/, Eco R1; Sa, Sau 3a; 
Sc, Sac 1; Sp, Sph 1. (B) Se- 
quence of Sau 3a fragment 
(containing exon 1, expressed 
in the L transcript). (C) Se- 
quence of the first 375 nts of 
the Nco 1 fragment (contain- 
ing exon 2, expressed in the R 
transcript). The downward 
pointing arrowheads indicate 
the start of the L- (B) and 
R- (C) eDNA clones. For both 
Sequences, nt 1 is the A of the 
first ATG in frame with subse- 
quent reductase reading frame. 
Introns are shown in lower- 

case lettering. Backward pointing anx~s (,1) indicate the start of the single-stranded antisense probes used in the S1 protection experi- 
ments shown in D and E, respectively. Upstream of the downward pointing arrowheads, transcriptional initiation sites, determined by SI 
protection, are indicated by dots over the bold-faced letters. The sequence in B corresponds to the one published by Zenno et al. (1990), 
except for two one-base substitutions, at position -351 and -273; four GC boxes are underlined. In C, various possible cis regulatory se- 
quences are underlined (see text for details). The dashed arrows pointing in opposite directions indicate an inverted repeat encompassing 
part of a GATA-1 recognition sequence. (D and E) Determination of transcriptional initiation sites for exon 1 (D) and exon 2 (E) by S1 
protection. (D) A 32P-labeled, single-stranded, antisense probe, covering the region between nts 19 and -376 of the sequence of B, was 
hybridized to poly A+ RNA from liver (lane L) or to the same amount of total yeast RNA (lane Y). (E) A similar single-stranded probe, 
covering the region between nts 39 and -248 of the sequence of C, was hybridized to poly A+ RNA from reticulocytes (lane R) or to 
total yeast RNA (lane Y). After hybridization and nuclease S1 digestion (see Materials and Methods for details), the protected fragments 
were analyzed on sequencing gels, in parallel with a sequencing ladder (lanes G, A, T, and C), obtained from the same cloned genomic 
fragments and oligonucleotide primers which were used for the generation of the single-stranded probes. Numbers on the left indicate 
size (number of nts) of fragments. Arrows point to fragments specifically protected by rat liver (D) or reticulocyte (E) RNA. The asterisk 
in panel E indicates a non-specific band, obtained also with yeast RNA. (C) This sequence is available from EMBL/GenBank under acces- 
sion number X65190. 
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Figure 4. Tissue specificity of 
the expression of R-reductase 
mRNA. (A) Design of the 
experiment. (1) 1.25/zg of to- 
tal RNA from different tis- 
sues, containing unknown pro- 
portions of L-mRNA (5' end 
marked with closed box) and 
R-mRNA (5' end marked with 
checkered box) were used as 
templates for reverse transcrip- 
tion with a primer within the 
sequence common to the 2 
mRNgs (oligo VII, Table I). 
(2) The resulting samples, con- 
taining the first strand cDNgs, 
were divided into two: one 
half (shown on the left) was 
amplified with a 5' primer 
specific for exon 1 (oligo VIII, 
Table I), while the other half 
(shown on the right) was 

amplified with a 5' primer specific for exon 2 (oligo IX, Table I). The 3' primer was the same as the one used for cDNA synthesis (oligo 
VII) for both samples. (3) After 15 cycles of amplification, 2/5 of each sample was analyzed by Southern blotting from a 2.5% agarose 
gel. The blot was hybridized with a fourth, 32P-labeled, oligonucleotide, complementary to the common portion of the two mRN,~s, but 
different from the one used for amplification (dotted line, oligo X, Table I). The expected sizes for the amplified fragments are indicated. 
(B) Result of Southern blot analysis. Each two adjacent lanes, indicated as L and R, show the product of amplification of the same first-strand 
eDNA with a 5' primer specific for exon 1 or exon 2, respectively. First-strand cDN,~s were synthesized from RNA from: lanes 1 and 
2, brain; lanes 3 and 4, heart; lanes 5 and 6, kidney; lanes 7 and 8, skeletal muscle; lanes 9 and 10, liver; lanes 11 and 12, reticulocytes. 
Numbers on the right indicate size (in bp) of standards. 

like sequence is a sequence perfectly matching the recog- 
nition site for the erythroid transcription factor GATA-1 
(previously known as Eryfl, NF-E1, or GF-1; Evans and Fel- 
senfeld, 1989) in inverted orientation (inverted consensus: 
T/C TATC A/T; sequence underlined between positions 
-102 and - 9 7  in Fig. 3 C). This transcription factor is 
highly restricted to the erythroid lineage and appears to play 
a general role in the regulation of erythroid-specific genes 
(Pevny et al., 1991). Part of this GATA-1 recognition se- 
quence is contained in an inverted repeat, shown by the 
dashed arrows of Fig. 3 C. Another GATA-1 binding site, in 
forward orientation (consensus: A/T GATA A/G), is present 
at the beginning of the intron (underlined between positions 
58 and 63 in Fig. 3 C). Also present at the beginning of the 
intron is a "GT box" (underlined between position 125 and 
133). This sequence (GnnnGGTGG) is often found close to 
the GATA-1 recognition site in erythroid promoters, and is 
thought to provide a binding site for a factor which may co- 
operate with GATA-1 (Philipsen et al., 1990). This GT box 
overlaps the sequence starting at position 123, which 
matches the consensus CTGGNTNGNGC (except for the 
last position) and which provides a binding site for the factor 
c~-CP2 in the murine a-globin promoter (Kim et al., 1990). 

A third genomic fragment contained the first exon com- 
mon to the two cDNAs (exon 3), starting from the sequence 
immediately downstream to the myristylation consensus, 
covering the 14 codons specifying uncharged amino acids of 
the membrane anchor, and extending into the cytoplasmic 
domain of the reductase (until position 186 of L-eDNA). The 
sequence of this exon corresponds to the one identified as the 
second exon by Zenno et al. (1990), and is not presented in 
the figure. 

To investigate whether the regions of the gene upstream of 
our cDNA clones were promoters, we mapped transcrip- 
tional initiation sites by St nuclease digestion experiments, 
after hybridization of single-stranded genomic probes with 
liver or reticulocyte polyA+ RNA (Fig. 3, D and E). For 
exon 1 (Fig. 3 D), we found five major protected fragments, 
corresponding to transcriptional initiation sites in the region 
between 2- and 25-bp upstream of the start of our L-cDNA 
clone (shown in bold-faced letters marked with dots in the 
sequence of Fig. 3 B). Multiple transcriptional initiation 
sites are typical of TATA-Iess promoters (Dynan, 1986). For 
exon 2 (Fig. 3 E), two specifically protected fragments were 
observed, (corresponding to the positions shown in bold face 
and marked with dots in Fig. 3 C), 1- and 3-bp upstream of 
the start of the R-cDNA clone. It is probable that the smaller 
protected fragment was due to a "nibbling" artefact, and that 
the true transcriptional initiation site is at position - 3  rela- 
tive to the start of the cDNA clone, 28-nts downstream from 
the TATA box. 

?Issue Distribution of  R- and L-Reductase Transcripts 

The similarity of the putative promoter region upstream of 
the R-specific exon (exon 2) to promoters of erythroid- 
specific genes (Evans et al., 1990) prompted us to study the 
expression of R- and L-mRNA in different tissues (Fig. 4). 
To detect even low levels of each transcript, we used the sen- 
sitive PCR technique, under conditions which have been 
reported to be quantitative (Chelly et al., 1990). 1st strand 
reductase cDNA, synthesized from heart, brain, skeletal 
muscle, kidney, liver, or reticulocyte RNA, was amplified 
with a 3' primer common to the two transcripts, and a 5' 
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Figure 5. R reductase mRNA 
generates 2 products in vitro, 
of which the major one is 
soluble. L-cDNA (pGbk3, 
Fig. 1) or R-cDNA (pGbk4, 
Fig. 1) were transcribed, 
capped, and translated in vitro 
in the presence of [35S]methi- 
onine. After translation was 
terminated, the samples were 
incubated for 30 min with or 
without rat liver microsomes. 
The membrane-associated re- 
ductase was separated by sedi- 
mentation through an alkaline 

sucrose cushion (see Materials and Methods for details). The figure 
shows the result of the analysis of the pellets (P) and supernatants 
(S) of these gradients by SDS-PAGE (10%) and fluorography. Lanes 
1-4, L-eDNA; lanes 5-8, R-cDNA; lanes 1, 2, 5, and 6, posttransla- 
tional incubation with no added microsomes; lanes 3, 4, 7 and 8: 
posttranslational incubation with added microsomes; lanes 1, 3, 5, 
and 7: gradient supernatants; lanes 2, 4, 6, and 8: gradient pellets. 
Numbers on the left indicate relative molecular masses and posi- 
tions of BioRad low molecular weight standards. Downward point- 
ing arrowhead in lane 5 indicates the minor "large" product of 
R-cDNA, which binds to microsomal membranes (lane 8). 

primer specific either for exon 1 or for exon 2 (Fig. 4 A). 
The amplified reductase cDNAs were detected by Southern 
blotting. In this experiment, no internal standardization was 
included, because we were interested in the ratio of L- to 
R-cDNAs within the same cDNA samples, and not in com- 
paring absolute levels of  reductase expression between differ- 
ent tissues. In heart, brain, skeletal muscle, and kidney, we 
could detect only the L form of reductase cDNA (Fig. 4 B, 
lanes 1-8). Even with much longer exposures than the one 
shown in Fig. 4 B, the lanes containing material amplified 
with the exon 2 specific primer remained negative. In liver, 
a small amount of  R-cDNA was detected (Fig. 4 B, lane 10), 
but the predominant form was of the L type (lane 9). Only 
in reticulocytes was the R-form expressed predominantly 
over the L-form. Thus, the R-mRNA has a pattern of  expres- 
sion consistent with that expected for an erythroid-specific 
gene, while the L-form has a distribution expected for a 
housekeeping gene. The small amount of  R-eDNA detected 
in liver may be explained by the large amount of blood in 
liver homogenates and/or by some hepatic hemopoiesis oc- 
curring in the young rats (<l-mo old), which were used in 
this experiment. 

Reticulocyte mRNA Generates the Soluble Form of  
Reductase from an Internal Initiation Codon 

To investigate whether R-mRNA codes for soluble reduc- 
tase, we analyzed the in vitro translation products of syn- 
thetic L- and R-mRNAs. Plasmids suitable for in vitro tran- 
scription were constructed (see Materials and Methods), and 
the synthetic, capped transcripts were translated in a reticu- 
locyte lysate system (Fig. 5). Translation of L-mRNA (de- 
rived from pGbk3, Fig. 1) generated a single polypeptide 
with the known migration of the membrane form of the 
reductase on SDS-polyacrylamide gels (Mr app =33,000; 
Fig. 5, l ane / ) .  This polypeptide could be immunoprecipi- 
tated by antireductase antibodies, and contained covalently 

Figure 6. The two in vitro 
translation products of R re- 
ductase mRNA are generated 
from alternative initiation co- 
dons. Capped, synthetic tran- 
scripts of wild-type R-eDNA, 
or mutants thereof were trans- 
lated in a nuclease-treated re- 
ticulocyte lysate in the pres- 
ence of [35S]methionine. The 
products were analyzed on a 
10% PA gel in SDS. The con- 
structs (see Fig. 1 for details) 
are schematized at the top of 
the lanes: the dashed line indi- 

cates sequence contributed by the plasmid (between the Sp6 pro- 
moter and the cloning site of the reductase cDNA); the full line rep- 
resents reductase sequence. Lane 1, wild-type R-cDNA, containing 
the T(20~ tail introduced for cloning with anchored PCR (pGbk4); 
lane 2, T(20) tail and 5' non-coding sequence deleted (pGbk5); lane 
3, same as construct of lane 2, but first AUG (boxed in Fig. 2 B) 
also deleted (pGbk6); lane 4, wild-type R-cDNA without T(20) tail 
(pGbk9); lane 5, same as construct of lane 4, but with first GUG 
(underlined in Fig. 2 B) changed to GUC (pGb- kll); lane 6, 
same as construct of lane 4, but with first GUG changed to AUG 
(pGbkl3); lane 7, same as construct of lane 4, but with second AUG 
(boxed in Fig. 2 B) changed to AUC (pGbkl0); lane 8, same as con- 
struct of lane 4, but with second AUG changed to AGC (pGbkl4). 
Numbers on the left indicate relative molecular masses and posi- 
tions of Bio-Rad low molecular weight standards. 

linked myristic acid (results not shown). After posttransla- 
tional incubation with microsomes most of this form of the 
reductase was found associated with the membranes in an 
alkali-resistant manner (Fig. 5, lane 4). 

Translation of R-mRNA (transcribed from pGbk4, Fig. 1) 
yielded two polypeptide products (Fig. 5, lane 5): one minor 
product, with an electrophoretic migration slightly slower 
than that of the product of L-mRNA (Fig. 5, lane 5, arrow- 
head); and one major, more rapidly migrating product (ap- 
parent molecular weight 31,000), with a position on the gel 
expected for the soluble form of the reductase (Yubisui et al., 
1984). Both these polypeptides were immunoprecipitated 
with antireductase antibodies (not shown). After posttrans- 
lational incubation with microsomes, much of the minor 
product was found associated with the membranes in an 
alkali-resistant manner (Fig. 5, lane 8), while all of the major 
product remained soluble (Fig. 5, lane 7). The interaction of 
the minor product with membranes was not surprising, since 
the predicted NH2-terminal amino acid sequence is quite 
hydrophobic (see Fig. 2). 

These results demonstrated that, at least in vitro, the solu- 
ble form of the reductase was generated from R-mRNA, 
however, the mechanism of its biosynthesis was not clear. It 
was possible that the soluble reductase was the product of 
proteolytic processing of the minor 33-kD form. However, 
since the first AUG of R-mRNA is not in a favorable context 
for initiation (Pu at - 3 ,  G at +4;  Kozak, 1989) (see Fig. 2), 
it seemed likely that R-mRNA is bifunctional, with initiation 
occurring inefficiently at the first AUG and at an additional 
downstream start codon (Kozak, 1986). To test this idea, we 
constructed mutant forms of R-cDNA (see Materials and 
Methods). 

As shown in Fig. 6, when the entire 5' non-coding region 
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of R-cDNA was deleted, but the first AUG was retained, both 
forms of reductase were still synthesized (compare lanes 1 
and 2). However, when the first AUG was deleted, only the 
low molecular weight, soluble, reductase was made (lane 3). 
This result demonstrates that the soluble reductase is not a 
product of proteolytic processing of the 33-kD form, and that 
the latter is generated from the first, out-of-context, AUG. 

Our next goal was to identify the downstream initiation 
codon used for the generation of soluble reductase. There are 
no further AUGs in the R-specific sequence. The first down- 
stream AUG is in the common region, and specifies the last 
amino acid of the stretch of 14-uncharged residues of the 
membrane form of the reductase (boxed ATG at position 88 
in Fig. 2 B). Thus, initiation from this codon would leave 
out the entire membrane anchor from the translation prod- 
uct. We also considered the possibility that a GUG codon, 
within the common region, encoding a Val at the beginning 
of the hydrophobic stretch, could serve as initiation codon 
(position 49 of R-cDNA; underlined in Fig. 2 B). This is be- 
cause it is known that GUG codons can function as initiators, 
at least in vitro (Peabody, 1989), and because in the human 
reductase this GUG is substituted with an AUG (Tomatsu et 
al., 1989). It will be noticed that neither the GUG nor the 
downstream AUG codon are in a favorable sequence context 
for initiation, although the sequence surrounding the GUG 
is slightly more favorable (G at position +4) than the one 
surrounding the AUG. 

When the GUG was mutated to GUC, there was no change 
in the translation products (compare lanes 4 and 5 of Fig. 6). 
On the other hand, when this GUG was mutated to AUG, 
a third product appeared, with slightly slower mobility than 
that of the soluble reductase (Fig. 6, lane 6). Therefore, the 
soluble reductase is not generated from the GUG at position 
49. In contrast, when the downstream AUG was changed to 
AUC, there was a dramatic decrease in the amount of soluble 
reductase produced (Fig. 6, lane 7), indicating that this 
downstream AUG is the initiator codon for the soluble 
reductase. A small amount of soluble reductase was still pro- 
duced even after mutation of the AUG to AGC (Fig. 6, lane 
8). This might be explained by the use of the two immedi- 
ately adjacent downstream codons, AAG and CUG, both 
with an A at position -3 ,  and both of which have been shown 
to function in vitro (Peabody, 1989). 

It is known that initiation codons used in cell-free transla- 
tion systems often do not reflect the in vivo situation (Kozak, 
1989). To rule out the possibility of artifacts due to the 
reticulocyte cell-free system, we investigated the in vivo 
translation of reductase transcripts, by microinjecting Xeno- 
pus oocytes with the same synthetic capped RNAs used for 
the in vitro experiments. After pulse labeling the injected oo- 
cytes, reductase was immunoprecipitated from the cytoplas- 
mic and membrane fractions (Fig. 7). The L-mRNA gener- 
ated a reductase product with the same gel migration as the 
in vitro synthesized form (compare lanes 4 and 5 of Fig. 7). 
Nearly all of this reductase associated with membranes 
(compare lanes 3 and 4 of Fig. 7). It was more difficult to 
detect the translation product of microinjected R-mRNA. 
However, after a long exposure of the gel, it was possible to 
see a polypeptide, comigrating with the in vitro synthesized 
soluble reductase, specifically immunoprecipitated from the 
soluble fraction of the oocyte (lane 8). This band was not 
present in the membrane fraction (lane 9), and thus corre- 

Figure 7. Translation of reductase mRNA/s in Xenopus oocytes. 
Capped transcripts generated from pGbk3, pGbk4, or pGbk6 (Fig. 
1) were injected into X. laevis oocytes. After incubation for 2 h with 
[35S]methionine, the oocytes were homogenized and separated 
into membrane (P), and soluble (S) fractions. Fractions were solu- 
bilized and immunoprecipitated with antireductase antibodies (see 
Materials and Methods for details). The figure shows the result of 
SDS-PAGE (ll%)-fluorography analysis of the immunoprecipi- 
tares. Lanes 1, 2, 6, and 7, control, mock-injected oocytes; lanes 3 
and 4, oocytes injected with L-mRNA (pGbk3); lanes 8 and 9, oo- 
cytes injected with R-mRNA (pGbk4); lane 10, oocytes injected with 
mutant R-mRNA, lacking the first in frame AUG codon (pGbk6). 
Lanes I, 3, 6, 8 and 10, soluble fraction of oocyte; lanes 2, 4, 7, 
and 9, membrane fraction of oocyte. Lanes 5 and//show the in 
vitro translated products (not immunoprecipitated) from L-mRNA 
(pGbk3) and R-mRNA (pGbk4), respectively. Immunoprecipi- 
tates from oocyte fractions were derived from 4.3 oocytes, except 
for samples of lanes 3 and 4, which were derived from half that 
amount. For the in vitro samples, 1 #1 of translation, containing 
transcript deriving from =1 ng of plasmid, was loaded. Lanes 1-5 
and 11 were exposed overnight; lanes 6-10 were exposed for 12 d. 
Numbers on the left indicate relative molecular masses and posi- 
tions of Bio-Rad low molecular weight standards. 

sponds to soluble reductase. The soluble reductase was also 
generated from the mutant R-mRNA with deletion of the first 
AUG (lane 10). These results confirm those obtained with 
in vitro translation. We were also interested in knowing 
whether the minor NH2 terminally extended product is 
translated from mRNA in vivo. However, after long periods 
of exposure, products immunoprecipitated from the mem- 
brane fraction of noninjected oocytes became visible on the 
fluorogram in the 30-kD region (lane 7), so that it was not 
possible to evaluate the significance of the 33-kD polypep- 
tide in the immunoprecipitate obtained from the membrane 
fraction of oocytes injected with R-mRNA (lane 9). 

D i s c u s s i o n  

Fig. 8 illustrates how a combination of mechanisms operat- 
ing at both the transcriptional and translational levels gener- 
ates different isoforms of the reductase in a tissue-specific 
fashion, as indicated by the results of this paper. In brief, the 
first exon of the reductase gene contains a 5'-untranslated se- 
quence and an ATG in a favorable context for translational 
initiation, followed by six codons which specify the myristy- 
lation consensus. Exon 1 is preceded by a region with fea- 
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Figure 8. Organization of 5' portion of reductase gene: generation 
of two transcripts and three translation products. In the top line, 
which represents the gene, the symbols indicate: P,, housekeep- 
ing promoter; PE, erythroid promoter; m, exon encoding myris- 
tylation consensus; ~, exon encoding reticulocyte-specific hy- 
drophobic sequence; [], first common exon. In the middle line, 
representing the transcripts, the AUG in bold-faced letters indicates 
a strong initiation codon, while the two AUGs in normal lettering 
indicate weak initiation codons. The third line depicts the protein 
products differing at the NH~-termini: protein with NH2-terminal 
filled rectangle: myristylated version of the reductase; protein 
with NH2-terminal checkered rectangle: reticulocyte product with 
hydrophobic, non-myristylated NH2-terminus; product without 
NHz-terminal rectangle: soluble reductase. See text for further 
explanation. 

tures common to promoters of house-keeping genes, con- 
sistent with the expression of the myristylated membrane 
form of reductase in a variety of tissues. Exon 2 contains a 
5'-untranslated region and an AUG in an unfavorable context 
for translational initiation, followed by 12 codons specifying 
uncharged amino acids. It is flanked by a region with features 
common to erythroid promoters, consistent with the tissue- 
specificity reported here for the expression of R-mRNA, and 
with the known erythroid localization of the soluble reduc- 
tase. Transcription from this promoter excludes exon 1 from 
R-mRNA, which instead codes for 2-nonmyristylated forms 
of the reductase; one, starting from the first AUG, with a hy- 
drophobic NH2 terminus; the second one starting from a 
downstream AUG, which lacks the entire membrane anchor 
and which corresponds to soluble reductase. Both these 
forms are produced in the reticuloeyte lysate, while up till 
now we have been able to demonstrate only the production 
of the soluble form in vivo. The downstream AUG codon, 
used to generate soluble reductase, is present also in the 
exon 1-containing transcript, where it is not used. Several 
features of the model of Fig. 8 deserve discussion. 

Organization of  the Reductase Gene 

The cotranslational addition of myristic acid to the NH2- 
terminal glycine of proteins via an amide bond has, in addi- 
tion to the absolute requirement for gly at position 2 of the 
primary translation product, other requirements for the resi- 
dues immediately downstream to this position (Gordon et 
al., 1991). Positions 3 and 6 are of particular importance, 
with only small, uncharged residues allowed in position 3, 
and Ser in position 6 favoring a low Km for the N-myristoyl- 
transferase. Based on experiments with synthetic peptides, a 
core hexapeptide signal sequence for myristylation has been 

defined (Towler et al., 1988). In agreement with these stud- 
ies, expression of clones coding for mutant forms of p60 v-'~ 
(Kaplan et al., 1988) has implicated the first seven residues 
of the primary translation product as constituting the myris- 
tylation signal, while studies with chimaeras have shown that 
the first six codons of p60 v-'r" are sufficient to obtain myris- 
tylation of a passenger protein (Buss et al., 1988). The first 
seven codons of the L-transcript for the reductase conform 
perfectly to the consensus sequence for myristylation. Thus, 
it seems reasonable to conclude that all the information nec- 
essary for myristylation is contained in a separate exon (exon 
1) of the reductase gene, and that this exon contains coding 
information only for the myristylation signal sequence. This 
segregation of the information for myristylation in a separate 
exon has not been found in the genes for other cellular myris- 
tylated proteins, i.e., in the chicken c-src gene (Takeya and 
Hanafusa, 1983), in the human lck gene (Garvin et al., 
1988), or in the gene for human MARCKS (Harlan et al., 
1991). However, the segregation of signal sequences in sep- 
arate exons is found for other NH2-terminal signals, such as 
the one for translocation across the ER. Thus, it is possible 
that the myristylation signal will turn out to be separated 
from the downstream coding sequences also in other genes, 
with obvious evolutionary and regulatory implications. 

Both the human (Tomatsu et al., 1989) and the rat (Zenno 
et al., 1990) reductase gene had been previously cloned and 
reported to consist of nine exons. Here, we demonstrate the 
presence of a 10th exon in the rat gene, in between the first 
two exons found by those authors, which codes for the se- 
quence unique to the R transcript. Both exon 1 and exon 2 
were preceded by promoter-like regions. That these regions 
both function as promoters is suggested by the results of the 
S1 nuclease protection experiments, since the 5' extremities 
of the protected fragments mapped to positions within the 
gene not corresponding to 3' splice sites, and therefore pre- 
sumably corresponding to transcriptional initiation sites. 
The two putative promoters have different characteristics: 
the one preceding exon 1 has features common to promoters 
of housekeeping genes (Dynan, 1986), while the regions 
flanking exon 2 have several possible cis-regulatory elements 
found in erythroid promoters, i.e., a TATA box at the ex- 
pected distance from the cap site, CAAT-tike sequences, 
and, notably, two binding sites for the erythroid-specific 
transcription factor GATA-1, one of them close to a "GT" 
box. Such cis-acting regulatory elements, are found in 
globin promoters (Evans et al., 1990), as well as in those of 
non-globin erythroid genes, such as the glycophorin C (Van 
Kim et al., 1989) the erythroid porphobilinogen deaminase 
(Chretien et al., 1988), and the erythroid 5-aminolevulinate 
synthase (Cox et al., 1991) genes. The pattern of expression 
of the R-type reductase mRNA was also consistent with the 
erythroid tissue specificity of the promoter. Thus, we con- 
clude that the two transcripts, the ubiquitous L-mRNA, and 
the tissue-specific R-mRNA, are generated by an alternative 
promoter mechanism, involving an upstream housekeeping 
promoter, and a downstream erythroid promoter. A similar 
situation has been reported for the human porphobilinogen 
deaminase gene (Chretien et al., 1988), while the erythroid- 
specific isoenzyme of rat pyruvate kinase is transcribed from 
an alternative upstream promoter (Noguchi et al., 1987). In 
these examples, however, the erythroid-specific protein has 
the same cytoplasmic localization and the same function as 
the protein expressed elsewhere. In the case of the reductase, 
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the use of an alternative promoter generates an mRNA whose 
major product is different from that produced elsewhere with 
respect to modification of the primary structure (no myris- 
tylation), localization, and function. 

Translation of R-type Reductase mRNA 
The two in vitro translation products of R-mRNA were 
shown to originate from two AUG codons, both in an un- 
favorable context for initiation (i.e., a pyrimidine in position 
-3,  and a non G at position +4, relative to the A of the initi- 
ation codon; Kozak, 1989). The use of a downstream AUG 
as initiation codon, when the first AUG is weak (leaky scan- 
ning), is predicted by the scanning model (Kozak, 1986). We 
conclude that the major translation product, generated from 
the downstream AUG, corresponds to the well-known solu- 
ble form of the reductase, because: (a) it was produced both 
in vivo and in vitro and remained soluble in both cases; (b) 
it migrated on SDS-PA gels with the expected mobility, and 
the downstream initiator AUG codon is close (three codons 
upstream) to the UUU codon, which specifies the Phe re- 
ported to be the NH2-terminal residue of the purified hu- 
man soluble reductase (Yubisui et al., 1986). 

Although we could not detect the minor NH2-terminally 
extended form of the reductase in microinjected oocytes, we 
believe that it is produced in vivo, because it starts from 
the first AUG, and in all known cases the first AUG is used 
for initiation of translation; a suboptimal sequence context 
will drastically lower recognition by the small ribosomal 
subunit, but is not expected to completely abolish initiation 
(Kozak, 1989). At present we don't know anything about the 
in vivo localization and function of this minor, higher molec- 
ular weight previously undescribed form of the reductase. 
Mammalian erythrocytes do have plasma membrane-bound 
reductase (Borgese et al., 1982; Choury et al., 1981), which 
was always assumed to be identical to the myristylated re- 
ductase expressed elsewhere and posttranslationally deliv- 
ered to ER and outer mitochondrial membranes (Borgese 
and Gaetani, 1980, 1983; Borgese and Pietrini, 1986). It is 
possible that the plasma membrane reductase of red cells 
corresponds to the nonmyristylated form described here, 
and that the nonmyristylated hydrophobic NH2-terminal se- 
quence is related to its different localization in red cells. A 
receptor for the myristoyl-NH2-terminal peptide of p60 V-src 
appears to be involved in the plasma membrane localiza- 
tion of that protein (Resh and Ling, 1990). It could be that 
a similar receptor, specific for the myristoyl-NH~-terminal 
peptide of the reductase, is involved in its endoplasmic retic- 
ulum and outer mitochondrial membrane localization. It 
should also be mentioned that analysis of the NH2-terminal 
sequence of NH2-terminally extended, non-myristylated, 
isoform of the reductase with the von Heijne algorithm (von 
Heijne, 1986) gave a score of +4, 26 for cleavage between 
ser-15 and arg-16. This value is well within the range of 
scores found for translocated proteins, and raises the inter- 
esting possibility that the use of the erythroid alternative 
promoter results in the swapping of a myristylation signal se- 
quence for an ER translocation sequence. We are now at- 
tempting to characterize the biosynthesis and interaction 
with membranes of this interesting product both in vivo and 
in vitro. 

As already mentioned, the production of two polypeptide 
products from the R transcript is consistent with the scan- 
ning model, which predicts that an mRNA will be bifunc- 

tional if the first initiation codon is in an unfavorable context. 
Only some of the small ribosomal subunits will recognize it, 
while others will scan further and initiate at a downstream 
codon (Kozak, 1986). Also consistent with this interpreta- 
tion of our data is the fact that the downstream initiation 
codon used for the synthesis of soluble reductase is present 
in the ubiquitously expressed transcript, but is not used, a 
phenomenon which can be explained by the presence of a 
strong first AUG, which prevents any further scanning of the 
small ribosomal subunit. Indeed, we found that if the context 
of the first AUG of L-mRNA was made suboptimal, the 
downstream AUG was used (results not shown). Unmasking 
of a downstream AUG by an alternative promoter mecha- 
nism is a common ploy for the production of a short and long 
version of the same protein (examples listed in Kozak, 1991). 
In the case of the reductase, however, use of the alternative 
promoter results in swapping of a strong AUG for a weak 
one, with two effects: the production of a new, NH2- 
terminally extended form of reductase, and the unmasking 
of the downstream AUG codon. 

A number of viral and cellular bifunctional messengers 
have been recognized (listed in Kozak, 1991), some of which 
generate products with different subcellular localization 
(Bugler et al., 1991; Lock et al., 1991) or with different 
modification of their primary structure (Kaminchik et al., 
1991). In most bifunctional mRNAs, however, the down- 
stream initiation context is in a favorable context, or, at least, 
has a purine in position -3.  In the case of the reductase, also 
the downstream AUG is in an unfavorable context, and its 
relatively high efficiency of utilization relative to the up- 
stream AUG may be due to secondary structural features in 
its surroundings, or to its greater distance from the cap site. 
Nonetheless, we expect that both these AUGs are used 
inefficiently in vivo, as suggested also by our results with 
microinjected Xenopus oocytes. R-mRNA may belong to a 
class of transcripts which seem designed for poor translation 
(Kozak, 1991), and which often code for regulatory proteins, 
such as transcription factors and protein kinases. The con- 
centration of soluble reductase in the erythrocyte is low 
(Borgese et al., 1982), although the level of mRNA seems 
close to that found in liver (Pietrini et al., 1988 and Fig. 3 
of this paper), an organ which has a considerably higher con- 
centration of the protein. This discrepancy between mRNA 
and protein concentration might be explained by inefficient 
reductase synthesis ensured by a poorly translatable mes- 
senger. 
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